A multi-scale "soil water structure" model based on the pedostructure concept

Abstract : Current soil water models do not take into account the internal organization of the soil medium and, consequently, ignore the physical interaction between the water film at the surface of solids making the soil structure, and this structure. In that sense they empirically deal with the physical soil properties that are all generated from this soil water – structure interaction. As a result, the thermodynamic state of the soil water medium, which constitutes the local physical conditions, namely the pedo-climate, for biological and geo-chemical processes in soil, is not defined in these models. The omission of soil structure from soil characterization and modeling does not allow for coupling disciplinary models for these processes with soil water models. The objective of the article is to present a soil water structure model, Kamel®, which should be liable to open the deadlocks above-mentioned. This computer model was developed based on a new paradigm in soil physics where the hierarchical soil structure is taken into account allowing for defining its thermodynamic properties. After a review of soil physics principles which forms the basis of the paradigm, we describe the basic relationships and functionality of the model. Kamel® runs with a set of 15 soil input parameters, the pedohydral parameters, which are parameters of the physically-based equations of four soil characteristic curves that can be measured in the laboratory. For cases where some of these parameters are not available, we show how to estimate these parameters from commonly available soil information using published pedotransfer functions. A published field experimental study on the dynamics of the soil moisture profile following a pounding infiltration rainfall event was used as an example to demonstrate soil characterization and Kamel® simulations. The simulated soil moisture profile for a period of 60 days showed very good agreement with experimental field data. Simulations using input data calculated from soil texture and pedotransfer functions were also generated and compared to simulations of the more ideal characterization. The later comparison illustrates how Kamel® can be used and adapt to any case of soil data availability. As physically based model on soil structure, it may be used as a standard reference to evaluate other soil-water models and also pedotransfer functions at a given location or agronomical situation.
Type de document :
Article dans une revue
Hydrology and Earth System Sciences Discussions, European Geosciences Union, 2009, pp.1111-1163
Liste complète des métadonnées


https://hal-bioemco.ccsd.cnrs.fr/bioemco-00396487
Contributeur : Erik Braudeau <>
Soumis le : jeudi 18 juin 2009 - 12:01:51
Dernière modification le : lundi 29 mai 2017 - 15:09:29
Document(s) archivé(s) le : lundi 15 octobre 2012 - 14:35:25

Fichier

hessd-6-1111-2009.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Erik Braudeau, Rabi Mohtar, Nadim El Ghezal, Mohammed Salahat, Pierre Martin. A multi-scale "soil water structure" model based on the pedostructure concept. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 2009, pp.1111-1163. <bioemco-00396487>

Partager

Métriques

Consultations de
la notice

589

Téléchargements du document

176