
HAL Id: inria-00477520
https://inria.hal.science/inria-00477520

Submitted on 29 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparison of Six UML-Based Languages for
Software Process Modeling

Reda Bendraou, Jean-Marc Jézéquel, Marie-Pierre Gervais, Xavier Blanc

To cite this version:
Reda Bendraou, Jean-Marc Jézéquel, Marie-Pierre Gervais, Xavier Blanc. A Comparison of Six UML-
Based Languages for Software Process Modeling. IEEE Transactions on Software Engineering, 2010,
36 (5), pp.662-675. �10.1109/TSE.2009.85�. �inria-00477520�

https://inria.hal.science/inria-00477520
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID first page 1

A Comparison of Six UML-Based Languages
for Software Process Modeling1

Reda Bendraou, Jean-Marc Jézéquel, Member, IEEE, Marie-Pierre Gervais and Xavier Blanc

Abstract— Describing and managing activities, resources and constraints of software development processes is a challenging
goal for many organizations. A first generation of Software Process Modeling Languages (SPMLs) has appeared in the nineties
but failed to gain broad industrial support. Recently however, a second generation of SPMLs appeared, leveraging the strong
industrial interest for modeling languages such as the UML. In this article, we propose a comparison of these UML-based
SPMLs. While not exhaustive, this comparison concentrates on SPMLs most representative of the various alternative
approaches, ranging from UML-based framework specializations to full-blown executable meta-modeling approaches. To
support the comparison of these various approaches, we propose a frame gathering a set of requirements for process
modeling, such as semantic richness, modularity, executability, conformity to the UML standard, and formality. Beyond
discussing the relative merits of these approaches, we also evaluate the overall suitability of these UML based SPMLs for
software process modeling. Finally, we discuss the impact of these approaches on the current state of the practice, and
conclude with lessons we have learned in doing this comparison.

Index Terms— Metamodeling, Process Modeling, Software Process Modeling Languages, UML.

—————————— � ——————————

1 INTRODUCTION

1

ince the late eighties, there has been a growing inter-
est in viewing software systems as products resulting
from the execution of orderly software development

processes [1] [2]. While traditional verification and valida-
tion approaches (V&V) [3] have the goal of finding and
removing defects in software products, software processes
aim at documenting development practices that are em-
pirically known to have an impact on software develop-
ment time, cost, or quality [4].
Lonchamp defines a software process as "the set of par-

tially ordered process steps, with sets of related artifacts, human
and computerized resources, organizational structures and
constraints, intended to produce and maintain the requested
software deliverables"[5]. This definition highlights the large
number of factors that may influence the efficiency of
software development processes. Software processes are
often more complex and unpredictable than typical pro-
duction processes, as they depend very much on people
and circumstances. Activities of a software process do not
all require automation and depend on communication,
coordination and cooperation within a predefined frame-
work [6].
Thus, a challenging goal for software development or-

ganizations is to find the means of rationally describing
and managing activities, resources and constraints of

their software development processes while taking into
account all these characteristics. Once documented as
process models, software development processes can be-
come important assets of an organization. Process mod-
els can be used to reason about processes, to test and im-
prove them to meet increasing quality and cost expecta-
tions. Beyond this contemplative use, process models can
also be used in a more productive way to automate re-
petitive and non-interactive tasks.
The software community tried to answer the need for

explicit process models with a wide range of Software
Process Modeling Languages (SPMLs). Some of them were
rules based (e.g., MARVEL) [7], others Petri net based
(e.g., SPADE) [8] or programming languages based (e.g.,
SPELL, APPL/A) [9] [4]. While these first-generation lan-
guages were executable and put a strong emphasis on
formality, they did not gain much attention from the in-
dustry [10]. Their complexity, their use of low-level for-
malisms and their inflexibility were among the causes of
their limited adoption [11].
Another factor that contributed to their low impact

was the multiplicity of formalisms and proprietary nota-
tions used as support for describing software processes
[12]. The continuing proliferation of these first-generation
SPMLs has naturally raised the need for standardizing
software process descriptions. Instead of reinventing the
wheel, many industry and research teams were appealed
by the wide diffusion of the UML (Unified Modeling lan-
guage) and explored the possibility of using it as a proc-
ess modeling language. UML is indeed a standard pro-
viding a rich set of notations, diagrams, and extension
mechanisms. Whatever its advantages and drawbacks, it
is undeniably one of the most adopted modeling lan-

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

• R. Bendraou is with UPMC (University of Pierre & Marie Curie), 4 place
de Jussieu F-75005, France. E-mail: reda.bendraou@Lip6.fr.

• J.M.. Jézéquel is with the INRIA-Rennes Bretagne Atlantique, Campus de
Beaulieu, Rennes F-35042, France. E-mail: Jezequel@inria.fr.

• M.P. Gervais. is with the University of Paris X, Nanterre F-
92001,France., E-mail: Marie-Pierre.gervais@lip6.fr.

• X.Blanc is with the UPMC university, 4 pl. Jussieu, Paris 75005, France.
E-mail: Xavier.blanc@lip6.fr.

1 This work has been partially supported by the S-Cube Network of Excellence of
the European FP7 and the IST Modelplex project, contract n° IST-3408.

S

guage of this decade. As a result, many UML-based ap-
proaches for software process modeling in particular and
for process modeling in general emerged. Some of them
succeeded even to be standardized[13], [14], raising again
the usual questions: Does UML offer a real benefit as a basis
for a process modeling language? If I have to adopt a UML-
based approach, which one fits best my needs? What would be
the cost of adopting such approaches?
Even if in the literature many works addressed the use

of UML within the several phases of the software devel-
opment process, none of them gives a detailed review of
approaches that use UML as the basis for the definition of
a software process language. By comparing UML-based
languages for software process modeling, this paper aims
to help software engineers answer the above-cited ques-
tions. Our goal is to provide project managers, method-
ologists and process modelers with a detailed review of
these approaches, highlighting their advantages and their
drawbacks. Since each reviewed approach offers specific
features, this comparison should help in choosing the
appropriate language depending on project specific needs
(e.g., documenting processes, support for enactment and
simulation, improvement, process compositions, etc.).
The approaches addressed by this comparison are the

OMG standard SPEM (version. 1.1 & 2.0), the PROME-
NADE language, Di Nitto et al. approach, Chou's ap-
proach and the UML4SPM language. They regroup repre-
sentative initiatives from the industry, research projects
and academic research groups. In order to compare them,
we propose a frame gathering a set of requirements for
Process Modeling languages (PML), as identified by sev-
eral research efforts in the literature. These requirements
are semantic richness, executability, modularity, formal-
ization, tooling support, graphical representations and
the support of multiple perspectives and the conformance
of the reviewed approaches with regard to the UML.
Before presenting this comparison, the next section

addresses one of the preliminary questions this paper
tries to answer: is UML suitable for process modeling? We
will see for instance that while UML presents a serious
potential in terms of expressiveness, the executability and
formality aspects remain one of its major weakness. In
Section 3, we briefly introduce the PML requirements we
used for comparing the above-cited approaches in Section
4. Additionally, Section 4 discusses how the various ap-
proaches deal with the executability and formality issues.
The impact of these approaches on the current state of the
art is discussed and some lessons learned while compar-
ing them are given in Section 5. We also give the reader
the means to answer the question: which approach fits best
my needs? Finally, Section 6 concludes this paper.

2 THE SUITABILITY OF UML FOR PROCESS
MODELING

In the last decade, UML succeeded to become the de facto
standard for modeling software systems. However does
this necessarily make it a good candidate for modeling
processes, including software and business processes?
Arguably, UML offers a powerful set of notations and

diagrams that allow capturing both static and dynamic
aspects of processes and can increase their understand-
ability. Most widely used diagrams in the context of proc-
ess modeling are (i) the class diagrams for representing
process constituents and the relationships that link them,
(ii) the state machine diagrams for modeling possible
workproduct or activity states and the events that trigger
state changes, (iii) finally, the activity diagrams for mod-
eling the workflow.
Furthermore, in its version 2.0, UML goes beyond

graphical representations by offering a high potential for
expressing a large variety of processes. Thanks to Activity
and Action packages, it provides concepts for expressing
proactive and reactive controls, conditional branches,
loops, exception handling as well as a numerous actions
with computational semantics. It also supports a large
number of Workflow patterns, a taxonomy of generic, re-
curring constructs originally devised to evaluate work-
flow systems, and more recently used to successfully
evaluate business process languages and Process Aware
Information Systems (PAIS) in general (see [15], [16] and
[17]). In accordance with Jablonski and Bussler’s original
classification [18], these patterns span the control-flow, data
and resource perspectives of PAIS, the two later perspec-
tives being more specific to business processes rather than
to software processes. In [19], authors evaluated the ca-
pacity of UML2.0 in modeling twenty control-flow pat-
terns that commonly recur in process models. Examples
of such patterns are parallel split, multiple merge, de-
ferred choice, etc. UML2.0 succeeded in representing all
of them except for four, which makes it more expressive
than some business process formalisms (e.g. BPEL: Busi-
ness Process Execution Language) [20]. Data patterns
mainly deal with data visibility, data interaction and data
transfer and routing. Examples of such patterns are the
multiple instances data pattern, the database task trigger
patterns and so on. In [21], it has been demonstrated that
eighteen of the forty data patterns were supported by
UML2.0, which remains quite satisfactory. As for resource
patterns, they address all the issues about work allocation
to process's resources, the ability for resources to see the
work status, resources allocation conflicts, work distribu-
tion and so on. According to [22] however, UML2.0 only
satisfies six of the forty-three resource patterns, which
reduces its suitability for modeling the resource perspec-
tive. Still many of these perspectives can be addressed at
a lower level by an execution support of UML-based
process models.
Regarding executability, it is clear that from the hypo-

thetical day when a UML virtual machine would be uni-
versally adopted, UML-based process models would have
a real benefit. Process modelers supposed to be already
familiar with UML diagrams would then simply have to
draw their process models using their usual UML tools.
They would then be able to test, execute and debug them
as everyone does with her usual programming language.
UML2.0 offers the potential to define such virtual ma-
chine thanks notably to the Activity and Action packages,
which come with an operational semantics. Some ambi-
guities in this operational semantics (given in natural lan-

BENDRAOU: A SURVEY ON UML-BASED LANGUAGES FOR SOFTWARE PROCESS MODELING odd page 3

guage in the standard), have however to be first fixed.
This is one of the purposes of a recent initiative at the
OMG, called Executable UML Foundation [23]. The objec-
tive of this proposition is to unify the definition of a com-
putationally complete and compact subset of UML 2.0
(the “Executable UML Foundation”) with a full specifica-
tion of the execution semantics of this subset. “Computa-
tionally complete” means that the subset shall be suffi-
ciently expressive to allow definition of models that can
be executed on a computer either through interpretation
or as equivalent computer programs generated from the
models through some kind of automated transformations.
We will see in this paper how one of the reviewed ap-
proaches (i.e., UML4SPM) get inspired by the Executable
UML initiative in order to propose a process engine for
executing UML-based process models. Other approaches
like Di Nitto’s one proposes to generate executable code
from UML diagrams used for modeling the software
process. Along the same line, some academic efforts and
industrial projects already tried to formalize and to exe-
cute UML2.0 Activities [24], [25].
The lack of formality is clearly a weakness of the UML

language. However, as discussed in section 3.5, this prob-
lem can be mitigated by relying on the formal semantics
of some other well-known formalism. In the context of
process modeling, Activity diagrams are the most used
UML diagrams for modeling the process flow of work. A
definition of their formal semantics was already provided
by many works in the literature [26], [27] and [28]. Most
approaches consisted in mapping activity diagram con-
cepts into Petri nets in order to perform model analysis
and verification.
In Section 4 we will see how the compared ap-

proaches use the UML potential as a basis for process
modeling and how they extend it in order to overcome
some of its limits.
In the next section we introduce the PML require-

ments used for the SPMLs comparison.

3 PROCESS MODELING LANGUAGE
REQUIREMENTS

Many requirements related to process modeling lan-
guages have been identified in the literature [29] [30] [31]
[32] [33]. They vary from facilitating human understand-
ing, to analyzing processes, or to providing an automated
execution support. For carrying out the comparison of
UML-based SPMLs, we selected most predominant and
common requirements from the above-cited references. In
the following, we introduce them briefly; the interested
reader can refer to the referenced papers for more details.
We also consider the tooling support and conformity of
the compared approaches to the UML standard as core
requirements.

3.1 Semantic Richness (Expressiveness)
Semantic richness relates to a SPML ability to express
what is actually performed during software development
processes. It encompasses many aspects summarized as
follows:

Core Process Elements
Early classification of the constituents of software process
models have been proposed in the literature [34] [35] [36]
[5, 37] [38]. This classification considers as core process
elements the concepts of Activity, Artifact, Role and Agent.
Activities and Actions Coordination
These mechanisms fall into two categories, Proactive Con-
trol and Reactive Control [39]. Proactive control is an im-
perative specification of the order in which activities have
to be executed. Main means used to formalize proactive
control are Precedence relationships (i.e., start-start, start-
finish, finish-start, finish-finish) [40] and Call Actions (i.e.,
explicitly calling an activity, an operation, etc.). Reactive
control is the specification of the conditions or events in
response to which activities are to be executed. Examples
of means used to express reactive control are Exceptions
and Event handling,.
Exception Handling
Exceptions are parts of processes. They can result from
violations of some process constraints or steps and can
include changes in resources, organizational structure,
task priority, and so on [41]. Thus, the process language
should be able to capture possible process failures and to
propose strategies to resolve them and to recover a stable
state of the process.

3.2 Conformity to the UML Standard
In this aspect, we aim to evaluate to what extent the com-
pared approaches reuse the UML standard. In other
terms, do the approaches define an extension in form of a
MOF metamodel, of a Profile, or simply reuse UML dia-
grams as a base framework for their language. This
would allow for instance for a tool editor to evaluate the
cost of building a tool to support such approaches and for
process users to evaluate to what extent they can reuse or
customize their favorite UML tool.

3.3 Graphical Representations and Support of
Multiple Views

In this point, we consider the clarity of process modeling
and the support of multiple perspectives/views on the
process. For the first point, we use an actual real example
(see below) of a software development process and model
it with each of the compared approaches. For the second
one (i.e., support of multiple views), we enumerate the
multiple views offered by each approach and we check
whether they are mutually consistent.
Process Example
This process example was provided by our industrial
partners within the IST European Project
MODELPLEX. It is first described in natural language
and then modeled using the various approaches
The process is composed of two phases: "Inception" and

"Construction". For brevity reasons, the "Construction"
phase is skipped here. The "Inception" phase is composed
of two activities: The "Elaborate Analysis Model" activity
and the "Validate Analysis Model" activity. The "Elaborate
Analysis Model" activity takes as input a requirements
document and produces a UML "Analysis Model". The
"Analysis Model" is then taken as input by the "Validate

Analysis Model" activity that is composed of the following
steps: 1) Get the "Analysis Model"; 2) Submit the UML
model for validation to a UML Checker Tool, which emits
a validation report; if the "Analysis Model" is valid then
go to the next phase. If the "Analysis Model" is invalid
then, comeback to the "Elaborate Analysis Model" activ-
ity. The role in charge of both activities of this phase is
played by the "Analyst".

3.4 Executability
Having a support for executing process models can help
in coordinating between process's participants, enforcing
artifacts routing, ensuring constraint integrities and proc-
ess deadlines. It can also be of an effective aid since proc-
ess models can be used for simulation and testing.

3.5 Modularity
Modularity is about the ability to combine different
chunks of processes in order to build a new one.

3.6 Formality
In this paper, since the SPMLs we compare are UML-

based, we rely on the literature [42] [43] [25] [44] to assess
the formality of UML. We also discuss the different ap-
proaches adopted by these SPMLs, for verifying, validat-
ing or analyzing process models.

3.7 Tooling Support
We also consider also the tooling support criterion, which
is of prime importance when having to choose between
different SPMLs.

4 COMPARING UML-BASED SOFTWARE PROCESS
MODELING LANGUAGE

 In this comparison, we focused on representative SPMLs
from four different kinds of approaches.
• Standard SPMLs, i.e. the various version of OMG's
SPEM (Software Process Engineering Metamodel) that
come both in the form of a MOF meta-model and a
UML profile (sections 4.1 & 4.2).

• SPMLs resulting from the specialization of an Object-
Oriented framework, with a modeling layer in UML
and an implementation layer partially generated from
the UML layer (DiNitto's approach [10] and PROME-
NADE [45] [46], section 4.3).

• SPMLs consisting of high-level UML-Based diagrams
and an ad-hoc low-level process language (Chou's ap-
proach [47], section 4.4).

• SPMLs trying to complement the meta-level approach
with full executability (UML4SPM, section 4.5).

4.1 Standard UML-based SPMLS

4.1.1 SPEM1.1 Evaluation
SPEM1.1 (Software Process Engineering Metamodel) is
the OMG's standard for software process modeling. It
was adopted by early 2005 [14], [48]. Even if SPEM2.0 is
under finalization at the OMG, we found it interesting to
present SPEM1.1, since some companies have already
adopted it and may be interested to evaluate the cost and

benefits of migrating SPEM 1.1 models to SPEM 2.0.
4.1.1.1 Semantic Richness

Table 1., summarizes expressiveness aspects of
SPEM1.1.

Table 1. Expressiveness aspects of SPEM1.1

4.1.1.2 Conformity to the UML Standard
SPEM1.1 uses some basic modeling concepts from
UML1.4 to describe rules, constraints, vocabulary, and
notation to be used in defining process models [49]. It
comes in form of a MOF 1.3-compliant metamodel and a
UML1.4 profile. The metamodel is defined as an exten-
sion of a subset of UML1.4.

4.1.1.3 Graphical representations and sup-
port of Multiple Views

 SPEM1.1, through its UML profile, proposes to reuse a
subset of UML diagrams (i.e., Class, Activity, Statechart,
Sequence, Use Case, and Package diagrams) in order to
describe process aspects. These diagrams are customized
thanks to a set of graphical icons, which represents lan-
guage's concepts (e.g., WorkDefinition, Step, WorkPro-
duct, etc.). Mainly, one needs to handle the Class diagram
for representing relationships between different process
constituents, the Activity diagram to describe the se-
quencing of activities with their inputs and outputs and
finally, the Use Case diagram to show the relationships
between process roles and the main work definitions.
Example of a process representation using SPEM1.1
In (fig. 1), the workflow view of the process example - the
inception phase- introduced in section 3.2 is given using
SPEM1.1 notations. SPEM1.1 uses UML1.4 activity dia-
grams, which are customized by icons defined in the
SPEM1.1 profile. Swim lanes are used to define process
roles. One has to notice that an activity cannot be shared
by more than one role (one role by swim lane according
to the UML standard). The details of the “Validate Analy-
sis” activity were skipped for brevity reasons.

4.1.1.4 Executability
Executability is out of SPEM1.1 scope.

4.1.1.5 Modularity
One of the major issues of SPEM1.1 is ProcessCompo-

nent compositions, which is supposed to be the mecha-
nism for process compositions. A ProcessComponent is a
chunk of process description that is internally consistent
and may be reused with other ProcessComponents to as-

Approach

Semantic Richness

SPEM1.1

Core Process Elements

Activity Work Definition, Activity. An Activity

may be composed of Steps

Role Process Role

Artifact WorkProduct

Agent Not addressed

Tool Not addressed

Activities Coordination

Proactive Control Kinds of precedence ensured: start-

start, finish-start or finish-finish. The

start-finish precedence is lacking

Reactive Control Not addressed

Exception Handling Not addressed

BENDRAOU: A SURVEY ON UML-BASED LANGUAGES FOR SOFTWARE PROCESS MODELING odd page 5

semble a complete process. However, developers who
want to combine two or more ProcessComponents in order
to get one coherent process, have to carry out a manual
unification procedure (i.e. renaming process elements). In-
deed, to combine for instance two ProcessComponents P1
and P2, at least the output WorkProducts from P1 must be
unified i.e., made identical with the WorkProducts inputs
to P2. Other elements may possibly be unified in addition,
such as ProcessRoles.

Figure 1. Representing a process example using SPEM1.1 notations.

4.1.1.6 Formality
Works dealing with formality in SPEM1.1 mainly attempt
to address the numerous ambiguities and inconsistencies
of the language by constraining the MOF metamodel. In
[50], many of these ambiguities are identified. In [51], ad-
ditionally to the identification of other inconsistencies,
authors propose the use of OCL for a more rigorous
specification of SPEM1.1's semantics.

4.1.1.7 Tooling Support
Regarding the tooling support, we can mention the Ra-
tional Process Workbench (RPW) from Rational [52], IRIS
Suite from Osellus [53], and SPEM Profile from Objecteer-
ing [54]. However, each of these tools proposes its own
formalism for process model persistency. Thus, no model
exchanges are possible between the various tools.

Discussion
To summarize, SPEM1.1 presents the advantage of being
based upon UML, which makes it a good candidate for a
large adoption since many people are familiar with the
UML. However, SPEM1.1 has had a limited success
within the industry. One of the obstacles was that the
standard included many ambiguities. Another one was
because SPEM1.1 process models were only contempla-
tive models. No execution support was provided.

4.1.2 SPEM2.0 Evaluation
SPEM2.0 comes with a new attractive vision. It consists in
separating all the aspects, contents and materials related
to a software development methodology from their pos-
sible instantiation in a particular process [55].
SPEM2.0 defines three compliance points. The first one

called "SPEM Complete" is dedicated to case tool providers
who want to support the description of large-scale
method libraries as well as process definitions that may
reuse the method library contents. It contains all SPEM2.0
packages. The second compliance point is the "SPEM
Process with Behavior and Content" and is dedicated to tool
providers who are only interested in providing concepts
for describing process models without referring to a par-
ticular method library (e.g., the Agile community). The
last compliance point is the "SPEM Method Content" ; it is
recommended for implementers who primarily focus on
managing the documentation of development methods,
techniques, and best practices.

4.1.2.1 Semantic Richness
Table 2., summarizes expressiveness aspects of SPEM2.0:

Approach

Semantic Richness

SPEM2.0

Core Process Elements Depends on the Compliance point

used

Activity Activity, Task Definition

Role RoleUse, Role Definition

Artifact WorkProductUse, WorkProduct Defi-

nition

 Agent Not addressed

Tool Tool Definition

Activities Coordination

Proactive Control Ensured thanks to the WorkSequence

concept. Kinds of precedence: start-

start, finish-start, finish-finish and start-

finish

Reactive Control Not addressed

Exception Handling Not addressed

Table 2. Expressiveness aspects of SPEM2.0

4.1.2.2 Conformity to the UML Standard
SPEM2.0 comes in the form of MOF2.0-compliant meta-
model that reuses UML2.0 Infrastructure [56] and
UML2.0 Diagram Interchange specifications [57]. No con-
cept from the UML2.0 Superstructure (Sp) [58] is reused.
The standard comes also in form of a UML Profile where
each element from the SPEM2.0 metamodel is defined as
a stereotype in UML2.0 Sp.

4.1.2.3 Graphical representations and sup-
port of Multiple Views

Since SPEM2.0 does not reuse UML2.0 Sp., it does not rely
on the diagrams offered by UML. Instead, SPEM2.0 pro-
poses a behavioral model for describing the workflow of
the process using a set of icons defined in the SPEM2.0
profile. It also proposes kinds of proxy classes in order to
link the process description with some external behav-
ioral models defined in other formalisms such as BPMN
[59], UML activity diagrams, etc. However, the standard
is not clear about how to achieve this and states that this
remains a tool’s implanter responsibility. If many external
behavioral models are used, it is up to the process mod-
eler to ensure consistency between these models.
Example of a process representation using SPEM2.0
In SPEM2.0, different concepts are proposed for repre-
senting process elements. Their use mainly depends on
the compliance point chosen by the process modeler for

Document

Activity
Process Role

UML Model

Object flow Control flow

SPEM1.1 Icons

Elaborate Analysis Model

Validate Analysis Model

Requirements

UML An. Model

Validation Report

Validation ok.

Validation not ok.

Analyst

modeling the process. For instance, if one is using the
"SPEM Process with Behavior and Content" compliance
point, she would be referring to artifacts used by proc-
ess's activities as "WorkProduct Uses". However, when
using the "SPEM Method Content" compliance point and
one is describing a method, she would refer to artifacts
produced or consumed by a method's Task Definitions as
"WorkProduct Definition". Finally, if one is using "SPEM
Complete", she can use both WorkProduct Use and Work-
Product Definition. The WorkProduct Definition would be
used for documenting the artifact used by her method
and the WorkProduct Use would be used in her process
model as a reference (pointer) to the WorkProduct Defini-
tion given in the instantiated method instead of describ-
ing again the artifact within the process model.

Figure 2. Representing a process example using SPEM2.0 notations.

Figure 2. presents the description of the process exam-
ple using the "SPEM Process with Behavior and Content"
compliance point. Notice that using another compliance
point, would imply the use of a different notation. The
last alternative consists in using an external behavioral
model such UML activity diagrams. In this case, the proc-
ess representation would roughly resemble the one given
in figure 1 (cf. section 4.1.1.2).

4.1.2.4 Executability
Even if process enactment was among the main require-
ments when the SPEM2.0 RFP was issued [60], the
adopted specification does not actually address the en-
actment issue. Nevertheless, it clearly suggests two possi-
ble ways of enacting SPEM2.0 process models. The first
option consists in mapping SPEM2.0 process models to-
wards some project planning tools such as IBM Rational
Portfolio Manager [61] or Microsoft Project [62]. While
this approach maight be very useful for project planning
it is not considered as process enactment. Project plans
are used by project manager in order to estimate whether
the process would be in schedule, whether more persons
need to be assigned to process tasks, etc. There is no sup-
port for automatic task assignments to responsible roles,
no automatic routing of artifacts, no automatic control on
work product states and so on. The second option pro-
posed by the standard is to transform SPEM2.0 process

models into some business process execution formalisms
such as BPEL [20]. Nevertheless, SPEM2.0 supposes that
this task is tool implementer’s responsibility. In [63], au-
thors demonstrate the limit of such approach.

4.1.2.5 Modularity
SPEM2.0 provides various mechanisms for reusing, ex-
tending and customizing process models and methods.
At the "SPEM Process with Behavior and Content" compli-
ance point, extension of process models is ensured thanks
to the Activity's "Activity Use Kind" property (enumera-
tion). Depending on the value of the property, a process's
activity 1) can extend an activity from another process; 2)
can be extended by another process's activity or 3) com-
pletely replaces an activity in another existing process.
At the "SPEM Method Content" or "SPEM Complete"

compliance points, the specification proposes mecha-
nisms such as Variability Element and Process Component.
The former allows not only for extending process's activi-
ties as in the "SPEM Process with Behavior and Content"
compliance point but also to any metaclass inheriting the
Variability Element abstract metaclass. This would allow a
process model or contents of one method to redefine, re-
use or replace another method's contents or process mod-
els. The detail of this mechanism is given in more detail in
[55]. The latter, i.e., Process Component, is a means for de-
fining a kind of reusable black box process identified by
its ports (i.e., Workproducts inputs and outputs of the Proc-
ess Component). Finally, the concept of Method Plugin is
introduced. It makes it possible to organize method con-
tents and processes in one independent and reusable
plugin. A Method Plugin can extend many other Method
Plugins and can be extended as well.

4.1.2.6 Formality
To deal with formality in SPEM2.0, some references

propose to use a translational semantics approach. The
approach consists in relying on a well-defined formalism
to express semantics of a given language [64]. This en-
ables the validation of SPEM2.0 process models by using
model-checking techniques. For example, [65] used timed
Petri nets to formally express SPEM2.0 process models.
LTL (Linear Temporal Logic) formulae related to process
model properties are then generated over the Petri nets
and passed to a model-checker2. This allows checking
some properties on the process such as: does every proc-
ess's activity eventually start? Do all started activities
eventually finish? Etc.

4.1.2.7 Tooling Support
Regarding the tooling support, an open source project
called EPF (Eclipse Process Framework) [66], which was
initially introduced for supporting the IBM's UMA
method (Unified Method Architecture), is on the way to
be fully compatible with SPEM2.0. A commercial version
of this tool exists: the Rational Method Composer (RMC)
tool [67]. Objecteering also proposes a commercial tool on
top of both EPF and Microsoft Project called PRO3 [54].
Tool vendors aiming at a SPEM2.0 profile implementation

2 TINA Model-Checker (TIme petri nets Analyser) at:
http://www.laas.fr/tina/

Inception

Elaborate Analysis Model

Validate Analysis Model

UML Analysis Model

Validation Model

Requirements
Analyst

<<Input, mandatory>>

<<Output, mandatory>>

<<Output, mandatory>>

<<Input, mandatory>>

<<Performs, primary>>

Iteration Activity WorkProduct Use Role Use

SPEM 2.0 Notation (SPEM Process with Behavior and Content)

BENDRAOU: A SURVEY ON UML-BASED LANGUAGES FOR SOFTWARE PROCESS MODELING odd page 7

still have to face the problem of defining the OCL con-
straints for the UML2.0 metamodel in order to respect the
SPEM2.0 semantics. Indeed, the specification defined the
profile but intentionally left the writing of OCL rules up
to the profile implementers. The argument was that the
semantic was already defined in the SPEM (MOF) meta-
model.

Discussion
The main advance in the SPEM2.0 specification is the
proposition of a clear separation between the contents of
a method and its possible use within a specific process.
However, with the introduction of extension mechanisms,
compliance points and the notion of Method Plugins, the
specification turns out to be very complex and hard to
understand. Regarding executability, we saw that
SPEM2.0 does neither provide concepts nor formalisms
for executing process models. For modularity aspects, the
standard proposes powerful mechanisms for extending
process models and methods, which requires extensive
implementation efforts in order to respect the semantics
of all the proposed extension mechanisms.

4.2 Framework Specialization Approaches
In this Section, we investigate SPMLs resulting from the
specialization of an Object-Oriented framework, with a
modeling layer in UML and an implementation layer par-
tially generated from the UML layer. We principally focus
on DiNitto's approach [10], and then we briefly overview
a variant of this approach called PROMENADE [45] [46].

4.2.1 Di Nitto et al. Approach Evaluation
Di Nitto's et al. approach [10], aims at assessing the pos-
sibility of using a subset of UML1.3 [68] as an executable
PML. It comprises two main phases. The first one consists
in describing processes using UML diagrams. The second
phase consists in translating these UML diagrams into
code that can be enacted by the team's events-based
workflow engine called OPSS (ORCHESTRA Process
Support System) [69].

4.2.1.1 Semantic Richness
This approach uses UML1.3 diagrams as a high-level
modeling language. There is no extension to the UML1.3
metamodel, no stereotyping or new concepts introduced.
The approach uses a predefined class diagram to repre-
sent basic process constituents such as Activity, Artifact,
Agent, etc. Table 3., summarizes expressiveness aspects of
Di Nitto’s approach:

4.2.1.2 Conformity to the UML Standard
In this approach, process constituents are modeled as a

specialization of a predefined UML1.3 class diagram that
comprises classes used by the OPSS engine. These classes
can be specialized by process modelers in order to adapt
the predefined class diagram to a specific process. A
process modeler willing to use OPSS has to start defining
her own activity types, agent types, etc. by specializing
the existing classes.

Approach

Semantic Richness

Di Nitto's et al.

Core Process Elements provided in terms of UML1.3 classes

(Instances of the UML Class metaclass)

Activity Activity

Role Not addressed

Artifact Artifact

Agent Human Agent

Tool Software Agent

Activities Coordination

Proactive Control Use of UML1.3 sequence control flow

for modeling finish-start precedence and

Join, Fork for modeling start-start

Reactive Control In state diagrams, events are used as

means to trigger transitions allowing

activity state changes

Exception Handling Possibility to define error states in state

diagrams

Table 3. Expressiveness aspects Di Nitto’s approach

 4.2.1.3 Graphical representations and sup-
port of Multiple Views

The UML diagrams used in this approach are activity
diagrams for modeling the flow of work (called Activity
Graphs in UML1.3), class diagrams to associate process
concepts with concepts that are part of the OPSS engine.
Each OPSS class has an associated state machine to de-
scribe the lifecycle of its instances. A precise and complete
definition of these state machines is critical for process
execution, since they encapsulate the process business
rules. However, one has to notice one lack. There is no
link between the activity and class diagrams. The ap-
proach does not define one activity diagram per class but
one activity diagram for all classes representing an activ-
ity in the class diagram. Each class is represented by an
action or a subactivity state in the activity diagram. Au-
thors claim that the link between action or subactivity
states defined in the activity diagram and classes defined
in the class diagram is checked through name matching.
However, this may work for one simple class diagram,
but in case of combining many class diagrams to form one
global process definition this may become complicated.
Example of a process representation using Di Nitto’s
approach
In order to represent a process using Di Nitto’s ap-

proach one has 1) to specialize OPSS classes given in the
predefined class diagram (fig. 3a), 2) to model the flow of
work using activity diagrams (fig. 3b) and 3) to model
state machines proper to each activity to define process
business rules (not represented). Authors claim that using
the composition relationship in the class diagram allows
defining activities composed of many other activities,
each activity having its own performer. However, this
composition aspect cannot be reflected in the activity dia-
gram. In the activity diagram, an action state (atomic ac-
tion) or a subactivity state is realized by one and only one
role materialized by the swim lane. Thus, representing a
compound activity with each of its component activities
having a different performer is impossible with UML ac-
tivity diagrams.

(a) Class diagrams (b) Activity diagrams

Figure 3. Representing a process example using DiNitto’s approach.

4.2.1.4 Executability
To execute the process, all diagrams are used for generat-
ing the code. User-defined classes derived from prede-
fined classes to describe specific elements of the process
are translated into the corresponding Java classes, with
their attributes, methods and associations as described in
the UML class diagrams. The body of methods is defined
according to the information provided by the correspond-
ing state and activity diagram. However, the weak point
in this translation is how precedence relationships (se-
quencing of activities) defined in the activity diagram are
reported into the Java code. Unfortunately, the only refer-
ence to this by the authors is: "relations represented in the
activity diagrams are translated into Java code which manages
such relations" [10]. Another lack of this approach in terms
of executability is that the code of new operations intro-
duced in user-defined classes can only be inferred from
the state diagram of the class. If the modeler does not
provide enough information in the state diagram, the im-
plementation of the operation is left incomplete.

4.2.1.5 Modularity
Modularity was not addressed in this approach.

4.2.1.6 Formality
No approach is proposed for validating the process
model. An operational semantics is given to process mod-
els consisting of class, activity and state diagrams,
through a Java code generation.

4.2.1.7 Tooling Support
Authors propose a code generator that transforms UML
diagrams into Java code that is used as input of the OPSS
workflow tool developed by the same team [69].

Discussion
The advantage of this approach is that process constitu-
ents can easily be defined by simply specializing a set of
predefined classes provided by the approach in form of a
UML class diagram. The flow of work is given in activity
diagrams, while the lifecycle of each entity is defined by a

state machine. However, we saw that the activity and
class diagrams have no links with each other. The ap-
proach does not extend the UML language nor introduce
new concepts. Process elements are simply instances of
the UML Class metaclass, which means that they all have
the same semantics and notation as the UML Class meta-
class. Regarding execution, it is mostly based on how
state diagrams defined by the user are precise enough
and sound in order to enable a complete code generation
and to allow process execution within OPSS. Otherwise,
code has to be added manually. The weak point in the
executability aspect remains how information defined in
activity diagrams, state machines and class diagrams are
integrated to generate the Java classes needed for the exe-
cution. Authors did not detail how this integration is real-
ized. Modularity was not addressed by the approach.

4.2.2 The PROMENADE Approach Evaluation
Promenade stands for (PROcess-oriented Modelling

and ENactment of software DEvelopment). It is a soft-
ware process modeling language defined in the context of
the ComProLab project [45], [46] and is based on UML1.3
[68]. Since this approach follows the same principle as
DiNitto's, we briefly present its main features, and we
discuss its advantages and drawbacks regarding PML
requirements.
To model a process using Promenade, one has to spe-

cialize the set of predefined classes provided by the ap-
proach. To define precedence between process's tasks,
one has to define a precedence graph, which defines the
order between all tasks of the process. Precedence rules
are described using a declarative formalism, which is
quite simple. However, authors do not specify how the
precedence graph (including precedence rules) is to be
integrated with the class diagram to form a complete
process description.
For combining many processes (modularity), authors

propose to make all process elements of the same type
from the various processes, inherit from the same prede-
fined classes defined by Promenade. However, to avoid
name clashes, authors propose to rename manually all the
classes that represent the same artifacts but that are called
differently from one process into another. What makes
the approach more complex is that the precedence graph
has also to be modified accordingly. Finally, the approach
does not provide any mechanism or way to execute
Promenade process models; no tool was provided.

4.3 Two Layers Approaches
In the context of a research project financed by the Na-
tional Science Council of Taiwan, Chou proposed a soft-
ware process modeling language consisting of high-level
UML1.4-based diagrams and a low-level process lan-
guage [47]. While UML diagrams are used for process's
participants understanding, the process language is used
to represent the process - from UML diagrams – in a ma-
chine-readable format i.e., a program.

4.3.1 Chou's Approach Evaluation
4.3.1.1 Semantic Richness

Table 4., summarizes expressiveness of the approach:

Validate Analysis Model

UML Analysis
Model

 [Created]

Requirement
documents

 Elaborate Analysis Model

Validation
Report

 [Created]

[Else]

[Validation Ok]

Analyst
HumanActivity

ElaborateAnalysisModel

ValidateAnalysisModel

HumanAgent

Analyst

Artifact

ValidationReport

UMLAnalysisModel

BENDRAOU: A SURVEY ON UML-BASED LANGUAGES FOR SOFTWARE PROCESS MODELING odd page 9

Approach

Semantic Richness

Chou's Approach

Core Process Elements provided in terms of UML1.4 classes

(Instances of the UML Class metaclass)

Activity Activity

Role Not addressed

Artifact Document

Agent Not addressed

Tool Tool

Activities Coordination

Proactive Control Ensured thanks to UML Activity se-

quence for modeling finish-start. Use of

fork and join elements for modeling

start-start

Reactive Control Use of events and exception handlers

Exception Handling Exception Handlers are represented as

activities in AD and as operations in

the code

Table 4. Expressiveness aspects Chou’s approach

4.3.1.2 Conformity to the UML Standard
The language does not extend UML to define a new lan-
guage for process modeling. Rather, it proposes to reuse
UML1.4 activity and class diagrams. These diagrams rep-
resent the high-level part of the language. At the lower
level, the author uses a proprietary object-oriented lan-
guage for representing the process as a program.

4.3.1.3 Graphical representations and sup-
port of Multiple Views

The author proposes the use of two diagrams called P-
activity diagram and P-class diagram. These diagrams are
respectively based on a subset of the UML1.4 Activity and
Class diagrams [70]. The P-activity diagram is used to
model activities, their sequencing and synchronization,
events and exception handlers. The P-class diagram is
used to model products, roles, tools, schedules, budgets
and their relationships. All these elements are in fact rep-
resented as UML classes with attributes and operations.
However, there is no link between the two diagrams.
They are just used for the process comprehension.
Example of a process representation using Chou’s ap-
proach
 As in Di Nitto’s approach, Chou uses class diagrams to
model process constituents and activity diagrams to
model the flow of work. Thus, the representation of the
process example will be the same as the one given in fig-
ure 3, section 4.2.1.2. At the lower level, the process mod-
eler has to manually write the process program using
Chou’s OO process language.

4.3.1.4 Executability
While the P-class and P-activity diagrams are provided as
a means to reason about the process, the approach does
not provide an automatic generation of process programs
from these diagrams towards the proprietary process exe-
cution language defined by the author. The process pro-
gram has to be implemented by developers according to
what is defined within the diagrams.

4.3.1.5 Modularity
Modularity is not addressed by the author.

4.3.1.6 Formality

No approach for process model validation is proposed.
UML diagrams used for modeling processes and process
programs used for process enactment are completely in-
dependent one from one another.

4.3.1.7 Tooling Support
No prototype is provided by the author.

Discussion
In Chou’s approach, process constituents are represented
as instances of the UML Class metaclass, which might not
fit the semantics of software process constituents. One
drawback of this approach is the lack of automatic gen-
eration of process programs from P-x diagrams, which
requires a complete rewriting of the process by develop-
ers mastering the proprietary OO language the author
proposes. Any addition to the P-class diagram imposes
the coding of a new class and most of all, its linking with
the other process classes.

4.4 Combining meta-modeling and executability
The UML4SPM language was developed in the context of
the ModelWare [71] and ModelPlex [72] European pro-
jects. It allows the definition of process models which can
be simulated and executed straightforwardly and with-
out any transformation step thanks to the Execution Model
approach [50] [73].

4.4.1 UML4SPM Evaluation
4.5.1.1 Semantic Richness

Table 5.summarizes expressiveness aspects of UML4SPM:
Approach

Semantic Richness

UML4SPM

Core Process Elements

Activity Software Activity

Role Responsible Role

Artifact WorkProduct

Agent Agent and Team

Tool Tool

Activities Coordination

Proactive Control Ensured thanks to the combination of

control flow, object flow, Invocation

Actions and control nodes. Only the

start-finish precedence relation is lacking.

Reactive Control Ensured through events (Message,

Change and Time events) and actions

(AcceptEvent and SendSignal actions)

Exception Handling Use of RaiseExceptionAction and Excep-

tionHandler concepts
Table 5. Expressiveness aspects UML4SPM

4.4.1.2 Conformity to the UML Standard
UML4SPM comes in form of a MOF2.0-compliant meta-
model. It contains two packages: (1) the UML4SPM Proc-
ess Structure package, which contains the set of primary
process elements; and (2) the UML4SPM Foundation pack-
age, which contains the subset of UML2.0 concepts ex-
tended by these process elements.

4.4.1.3 Graphical representations and sup-
port of Multiple Views

In UML4SPM, Activity diagrams are used to model the
sequencing of Software Activities and WorkProducts ex-

change between Actions. It is considered as the principal
diagram and describes the process flow of work and the
different roles involved in the process. This diagram is
used for comprehension and training purposes. It is also
the source of the process execution support.
Example of a process representation using UML4SPM
In order to be more intuitive, the UML2.0 Activity nota-
tion was slightly enriched in order to take into account
some features proper to software process modeling. Main
additions - not all presented in the diagram, figure 4- con-
cern the ability to express extra information within the
activity notation, such as roles, pre and post conditions,
priority of the activity, its complexity, whether it is hu-
man (H) or machine oriented (M), accepted and triggered
events, exception handlers, and so on. It is important to
note that this extension does not affect the comprehension
of people familiar with the use of UML2.0 Activity dia-
grams. The difference with UML1.x activity diagrams is
that in figure 4., the “Elaborate Analysis Model” is not an
activity but a CallBehaviorAction that, thanks to the com-
plete arrow symbol, synchronously calls the “Elaborate
Analysis Model” activity defined in another diagram. The
complete notation of UML4SPM is given in [74].

Figure 4. Representing a process example using UML4SPM

4.4.1.4 Executability
For executing UML4SPM process models, two ap-
proaches have been explored. The first one consists in
reusing business process execution engines by mapping
UML4SPM models towards BPEL [20]. Mapping rules
and a prototype were defined in [63]. The second ap-
proach consisted in developing an operational semantics
with an explicit Execution Model for UML4SPM. Each ele-
ment of the UML4SPM metamodel is provided with an
eval function that directly describes its effect on the Execu-
tion Model. Then, a UML4SPM process model can be exe-
cuted straightforwardly without any transformation
steps. The only condition is that process models are well-

formed. The authors provide a Java implementation of
the Execution Model. More details on the UML4SPM Exe-
cution Model can be found in [74].

4.4.1.5 Modularity
To compose a new Software Activity from other Software

Activities one can take advantage of the flexibility offered
by the UML2.0 CallBehaviorAction. The CallBehaviorAction
allows two Activities to be interconnected in a practical
way. The advantage of this construct is that behaviors are
invoked as methods in classical programming languages.
This way, modellers do not have to carry out the unifica-
tion of Software Activities inputs and outputs (i.e., making
their names identical). CallBehaviorAction being a CallAc-
tion, casting of parameters is done implicitly when activi-
ties are invoked thanks to the abstraction given by the
UML InputPins and OutputPins concepts.

4.4.1.6 Formality
UML4SPM mainly reuses UML2.0 activity diagrams as a
basis for software process modeling. A definition of the
formal semantics of UML2.0 Activity diagrams was pro-
vided by many works in the literature [26], [27] and [28].
Most approaches consisted in mapping activity diagram
concepts into Petri nets in order to perform model analy-
sis and verification. These techniques have already been
used to verify SPEM2.0 process models, so they could be
reused for UML4SPM [65].
If we consider that the result of transforming

UML4SPM models into BPEL is the actual definition of
the process, then verification needs to be applied on BPEL
process descriptions. Like for activity diagrams, many
efforts have been made in order to define a formal seman-
tics to BPEL. Most of them use the ASM formalism (Ab-
stract State Machine), which seems to be the more appro-
priate for achieving correctness and completeness of the
dynamic behaviours of the language [75] [76]. Others rely
on Petri nets for static analysis of BPEL descriptions [77]
[78].

4.4.1.7 Tooling Support
Authors propose a UML4SPM editor and an interpreter,
both integrated into the Eclipse development environ-
ment. The editor is automatically generated from the
UML4SPM metamodel, which adds a degree of flexibility
in case of the evolution of the language. The interpreter
comes in form of Java classes representing the UML4SPM
Execution Model. UML4SPM process models once edited
can straightforwardly be executed within the same envi-
ronment and it is completely transparent to the process
modeler. The prototype can be downloaded at [74].

Discussion
For people who are not familiar with the newly defined
UML2.0 standard, it may take quite a long time to get
familiar with the use of UML2.0 control nodes, events,
pins, actions and so on. This can then hamper the use of
the UML4SPM language. However, UML4SPM proposes
to deal with one kind of diagram (i.e. Activity diagrams)
for modeling and executing software processes. The ap-
proach proposes two ways of supporting process enact-
ment and simulation. The first one relies on a mapping
into BPEL while the second one enables the production of

Inception Phase

Pre-Condition: Requirement Documents available

Post-Condition: UML Analysis Model Validated

Role (s): Analyst

 Validate Analysis Model
 (in: UML Analysis Model)

UML Analysis
Model

[Created]

Requirement
documents

 Elaborate Analysis Model
 (in: Requirement Document)

Validation
Report

[Created]

[Else] [Validation Ok]

- M -

BENDRAOU: A SURVEY ON UML-BASED LANGUAGES FOR SOFTWARE PROCESS MODELING odd page 11

executable software process models through the Execution
Model approach. Finally, modularity is addressed thanks to
CallBehaviorActions. This is fully automated when auxil-
iary software activities (i.e., activities with their isInitial
property set to false) are added to a main process (i.e. a
software activity having its isInitial property set to true).
However, in case of composing different processes hav-
ing all their isInitial property set to true, one of them have
to be designated as the main process and the isInitial
property of the remaining ones have to be set to false.

5 COMPARATIVE EVALUATION
The aim of this section is to discuss the merits and limits
of each of the studied approaches and to answer some of
the questions raised in the introduction of this paper.
Which approach best fits my needs?
In the previous sections, we evaluated UML-based ap-
proaches for modeling software processes. Each one ad-
dressing different process aspects, it is not possible to
nominate the universally best approach. However, herein
we summarize some of the observations we made while
comparing the different systems according to the PML
requirements. This may help in choosing the most suit-
able approach with respect to project and team specific
needs.
To give a summary picture of this comparison, we pro-
pose to rate approaches with respect to PML require-
ments with the following values: “0” when a requirement
is not supported by the approach, “1” when it is partially
supported, and “2” when it is fully. For composite re-
quirements such as “semantic richness”, the same notation
is applied for each of its components, and combined as
follows: “0”if all the components of the composite re-
quirement are rated at “0”, “2” if all the components of
the composite requirement are rated at “2”, and “1” oth-
erwise.
While being quite partial and subjective, this evalua-

tion makes it easier for a decider to identify the language
answering her expectations. Of course, the reader still
needs to refer to the detailed review given in this paper
and to the original work of approach’s authors in order to
evaluate more precisely the potential of each system. This
is particularly true when two or more approaches have
the same rate for an atomic requirement (i.e. not com-
posed of other requirements). As an example, all the ap-
proaches have the rate 2 for the “Conformity to the stan-
dard” and “Graphical representations and support of multiple
views” requirements. In case where all the approaches
have the same rate for a composite requirement, then the
reader is encouraged to look at the rate of the components
of this requirement in order to have a more precise
evaluation.
The result of evaluating the reviewed approaches is

given in table 6. In case where an approach obtains the
highest rate regarding a requirement (i.e. 2), this is high-
lighted by making the rate bold. Hereunder, for each re-
quirement, we discuss the contribution of each approach
and we identify the most adequate approaches with re-
spect to it.

Semantic richness
Most approaches feature all common process elements
except the notion of Agent, which is lacking in three ap-
proaches out of six (SPEM1.1, SPEM2.0 and Chou's ap-
proaches). Exception handling is also missing in all the ap-
proaches except Chou's and UML4SPM ones. Proactive
control is more widely supported than Reactive control,
which in most cases is provided by means of events mod-
eled within state diagrams. SPEM1.1 & SPEM2.0 do not
feature Reactive Control at all. Table 6 gives a summary of
the semantic richness capabilities of each approach. Ac-
cording to this summary, UML4SPM followed by Di Nit-
to’s and Chou’s approaches are those that provide more
capabilities regarding the expressiveness requirement
while SPEM1.1 is the less expressive one.
Executability
Regarding executability, Chou's approach consists in
manually rewriting the process program from the UML
diagrams in order to execute the process. Di Nitto’s ap-
proach consists in generating code from the three UML1.3
diagrams used for describing the process (i.e., Activity,
Class and State Machine). However, no information is giv-
en about how process aspects (i.e., activity sequencing,
events, actions, class's operations and attributes) defined
in these diagrams are translated and integrated into the
Java code. UML4SPM proposes two approaches for exe-
cuting process models. The first one promotes the reuse
of existing BPEL process engines, but it requires a con-
figuration phase. The second one makes it possible to
execute and to simulate process models straightfor-
wardly, without any transformation of configuration step,
based on the notion of Execution Model. However, the cur-
rent UML4SPM process engine still does not integrate all
the utilities related to resources allocations and manage-
ment. Looking at the summary table, we can see that Di
Nitto’s approach and UML4SPM are the only approaches
that provide an automatic execution support for process
models while Chou’s approach still requires hand-coding
the process in order to execute it. SPEM1.1, SPEM2.0 and
Promenade do not offer any execution support.
Conformity to the UML standard
Three of the six approaches we discussed (i.e., Di Nitto et
al., Promenade and Chou approaches) do not define new
concepts nor extend UML metamodel ones. They simply
provide a predefined UML class diagram for defining
main process constituents (i.e., Activity, Role, Artifact,
Agent or Tool) in terms of instances of the UML1.x Class
metaclass (i.e., simple UML classes). Thus, these process
elements do not have specific semantics and notations:
they borrow them from the UML Class metaclass.
SPEM1.1, SPEM2.0 and UML4SPM are the only SPMLs
that provide a set of concepts with their own semantics
and notations through metamodel and profiling mecha-
nisms instead of simply using UML diagrams. SPEM2.0
redefines many concepts from scratch instead of simply
reusing them from the UML2.0 activity and action pack-
ages. SPEM1.1 makes quite a good trade-off. It offers
simple concepts through a MOF metamodel extending
UML1.4 concepts. Still, all the approaches conform to the
UML standard in one way or another, which justifies the

rate 2 for all the systems in the evaluation table.
Graphical Representations and Support of Multiple
Views
The activity diagram remains the most used diagram in
all the approaches for representing the process workflow
except in SPEM2.0. The Di Nitto, SPEM1.1, Chou and
Promenade approaches use extensively the class diagram
in order to represent basic process elements and their re-
lations. Additionally, Di Nitto’s approach uses state ma-
chines in order to represent process element’s lifecycles.
SPEM2.0 does not rely on UML diagrams for representing
processes but provides a behavioral diagram based on a
set of proprietary notations. UML4SPM uses mainly the
activity diagram
Modularity
SPEM2.0 provides a range of mechanisms for extending
and combining chunks of process and method descrip-
tions, which justifies its highest rate in the evaluation ta-
ble. SPEM1.1 approach for composing process models
uses on a name-based unification procedure (i.e. renam-
ing process elements) and presents some limitations as
discussed in section 4.1.1.4. UML4SPM is also weak in
offering a completely automated solution for composing
different processes. Modularity is not supported by the
remaining approaches.
Formality
Formality is the main weakness of most of the ap-
proaches. We saw that most of them do not provide a
built-in formal semantics. Still, model-checking tech-
niques can be used in order to verify some properties of
the process. This is can be done for instance in the case of
SPEM1.1, SPEM2.0 and UML4SPM by translating process
descriptions into Petri nets (the semantics then being in
the translation). In Di Nitto’s, Promenade, and Chou’s
approaches, the process description is scattered in differ-
ent and independent diagrams, which makes it difficult to
ensure process consistency.

Tooling Support
Finally, regarding the Tooling Support, only the industrial
standards (i.e., SPEM1.1 and SPEM2.0) have some well-
supported implementations. This justifies the rate 2 in the
evaluation table. However, the standard implementation
differs among tools and process models are stored in
proprietary formats, making process model exchanges
quite impossible. In Di Nitto’s, Chou’s and UML4SPM
approaches, prototypes do exist but we had access to the
UML4SPM process engines only. No tool or prototype
does exist for Promenade.

6 CONCLUSION
This paper provided an extensive overview of predomi-
nant UML-based languages for software process model-
ing. We have framed a set of requirements for process
modeling language designs. This set of requirements has
been used as a basis for the evaluation and the compari-
son between the various approaches. Beyond providing a
detailed comparison, we also evaluated the suitability of
UML as a process modeling language and we highlighted
its advantages as well as its drawbacks. We showed that
whilst UML offers a high potential regarding under-
standability – using graphical representations and expres-
siveness, it still fails in offering executable and formal
process models. We also saw how the studied ap-
proaches reuse UML as a building block for modeling
software processes and how each of them tried to over-
come UML limits by offering its own solutions. Each ap-
proach providing a different set of capabilities and ways
to address process modeling issues (e.g., standardization,
reuse, execution, expressiveness, etc.), it remains up to
project managers, according to the result of this evalua-
tion, to choose the approach that best fits their expecta-
tions.

Approaches

Requirements

SPEM1.1 SPEM2.0 Di Nitto's

et al.

Promenade Chou's

Approach

UML4SPM

Semantic Richness 1 1 1 1 1 1

Process Elements 1 1 1 2 1 2

Proactive Control 1 2 1 1 1 1

Reactive Control 0 0 2 1 2 2

Exception Handling 0 0 1 0 2 2

Conformity to UML 2 2 2 2 2 2

Graphical Representations and

Support of Multiple Views
2 1 2 2 2 1

Executability 0 0 2 0 1 2

Modularity 1 2 0 1 0 1

Formality 1 1 0 0 0 1

Tooling Support 2 2 1 0 1 1

Table 6: Summary of the evaluation of UML-Based approaches with regard to PML Requirements

BENDRAOU: A SURVEY ON UML-BASED LANGUAGES FOR SOFTWARE PROCESS MODELING odd page 13

REFERENCES

[1] S. M. Sutton Jr., P. L. Tarr, and L. J. Osterweil, An Analysis of Process
Languages, CMPSCI Technical Report 95-78, University of Massachusetts,
1995.
[2] C. Montangero, J. C. Derniame, B. A. Kaba et al., “The software proc-
ess: Modelling and technology,” Lecture Notes In Computer Science; , vol.
1500, pp. 1-14, 1999.
[3] ANSI/IEEE, IEEE Standard for Software Verification and Validation
Plans, The Institute of Electrical and Electronics Engineers, Inc., 1987.
[4] S. M. Sutton Jr., D. Heimbigner, and L. J. Osterweil, “APPL/A: a lan-
guage for software process programming,” ACM Trans. Softw. Eng. Meth-
odol., vol. 4, no. 3, pp. 221-286, 1995.
[5] J. Lonchamp, “A structured conceptual and terminological framework
for software process engineering,” in Proceedings of the 2nd International
Conference on Software Process, Los Alamitos, CA, 1993, pp. 41-53.
[6] F. Ruiz-Gonzalez, and G. Canfora, “ Software Process: Characteristics,
Technology and Environments ” UPGrade, The European Journal for the
Informatics Professional, vol. 5, pp. 6-10, 2004.
[7] G. E. Kaiser, N. S. Barghouti, and M. H. Sokolsky, “Preliminary experi-
ence with process modeling in the MARVEL software development envi-
ronment kernel,” in Proceedings of the 23rd Annual Hawaii International
Conference on System Sciences, Hawaii, USA, 1990, pp. 131-140.
[8] S. Bandinelli, A. Fuggetta, and C. Ghezzi, “Software Process Model
Evolution in the SPADE Environment,” IEEE Trans. Soft. Eng., vol. 19, no.
12, pp. 1128-1144, 1993.
[9] R. Conradi, M. L. Jaccheri, C. Mazzi et al., “Design, Use and Imple-
mentation of SPELL, a language for Software Process Modelling and Evo-
lution,” in Proceedings of the 2nd European Workshop on Software Process
Technology, 1992, pp. 167-177.
[10] E. Di Nitto, L. Lavazza, M. Schiavoni et al., “Deriving executable
process descriptions from UML,” in Proceedings of the 24th International
Conference on Software Engineering, Orlando, Florida, 2002, pp. 155-165.
[11] B. Henderson-Sellers, and C. A. González-Pérez, “A Comparison of
Four Process Metamodels and the Creation of a New Generic Standard,”
Information and Software Technology, vol. 47, no. 1, pp. 49-65, 2005.
[12] A. Finkelstein, J. Kramer, and B. Nuseibeh, Software process model-
ling and technology: Advanced Software development Series, John Wiley
& Sons Inc, 1994.
[13] OMG, "Workflow Management Facility Specification v1.2", OMG
document formal/00-05-02, at http://www.omg.org/spec/WfMF/, 2000.
[14] OMG, SPEM1.1, “Software Process Engineering Metamodel”, OMG
document formal/05-01-06, at http://www.omg.org/cgi-bin/doc?formal/05-
01-06/, 2005.
[15] M. Dumas, and A. ter Hofstede, H. M. , “UML Activity Diagrams as a
Workflow Specification Language,” in Proceedings of the 4th International
Conference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, 2001, pp. 76-90.
[16] W. Van der Aalst, A. ter Hofstede, B. Kiepuszewski et al., “ Workflow
patterns,” Journal of Distributed and Parallel Databases, vol. 14, no. 3, pp.
5–51, 2003.
[17] S. White, "Process modeling notations and workflow patterns," Work-
flow Handbook 2004, L. Fischer, ed., pp. 265–294, FL, USA: Future Strate-
gies Inc., Lighthouse Point, 2004.
[18] S. Jablonski, and C. Bussler, Workflow Management: Modeling Con-
cepts, Architecture and Implementation, London,UK.: Thomson Computer
Press, 1996.
[19] P. Wohed, W. van der Aalst, M. Dumas et al., “Pattern-based analysis
of UML activity diagrams,” in Proceedings of the 25th International Con-
ference on Conceptual Modeling (ER’2005), Klagenfurt, Austria, 2005, pp.
63-78.
[20] OASIS, Web Services Business Process Execution Language Version
2.0. Working Draft. WS-BPEL TC OASIS, January 2007.
[21] N. Russell, A. ter Hofstede, D. Edmond et al., “Workflow data pat-
terns: Identification, representation and tool support,” in Proceedings of the
25th International Conferenceon Conceptual Modeling, Klagenfurt, Austria,
2005, pp. 353-368.
[22] N. Russell, W. van der Aalst, A. ter Hofstede et al., “Workflow re-
source patterns:Identification, representation and tool support,” in Proceed-
ings of the 17th Conference on Advanced Information Systems Engineering
(CAiSE’05), Porto, Portugal, 2005, pp. 216–232.

[23] OMG, Semantics of a Foundational Subset for Executable UML Mod-
els RFP, OMG document ad/05-04-02, at:
http://www.omg.org/spec/FUML/1.0/Beta1/, 2005.
[24] V. Vitolins, and A. Kalnins, “Semantics of UML 2.0 Activity Diagram
for Business Modeling by Means of Virtual Machine,” in Proceedings of
the 9th IEEE International EDOC Enterprise Computing Conference, 2005,
pp. 181-194.
[25] STL. "STL: The UML2,0 Semantics Project,"
http://www.cs.queensu.ca/~stl/internal/uml2/.
[26] H. Störrle, and J. H. Hausmann, “ Towards a Formal Semantics of
UML 2.0 Activities,” in Proceedings of Liggesmeyer, K. Pohl, and M.
Goedicke, editors, Software Engineering, 2005, pp. 117-128.
[27] J. P. Barros, and L. Gomes, “Actions as Activities and Activities as
Petri nets,” in Workshop on Critical Systems Development with UML,
Seiten, 2003, pp. 129-135.
[28] S. Sarstedt, “Semantics Foundation and Tool Support for Model-
Driven Development with UML2 Activity Diagrams, PhD document,” Ulm
University, 2006.
[29] B. Curtis, M. I. Kellner, and J. Over, “Process modeling,” Communica-
tions of the ACM, vol. 35, no. 9, pp. 75-90, 1992.
[30] M. L. Jaccheri, M. Baldi, and M. Divitini, “ Evaluating the Require-
ments for Software Process Modelling Languages and Systems” in Process
support for Distributed Team-based Software Development (PDTSD'99),
Florida, USA, 1999, pp. 570-578.
[31] K. Z. Zamli, and P. A. Lee, “Taxonomy of process modeling lan-
guages,” ACS/IEEE International Conference on Computer Systems and
Applications, pp. 435-437, 2001.
[32] P. Armenise, S. Bandinelli, C. Ghezzi et al., “A Survey and Assess-
ment of Software Process Representation Formalisms,” Int. Journal on
Software Engineering and Knowledge Engineering, vol. 3, no. 3, pp. 401-
426, 1993.
[33] C. Schlenoff, A. Knutilla, and S. Ray, “Unified Process Specification
Language: Requirements for Modeling Process,” Interagency Report, vol.
5910, 1996.
[34] M. Dowson, B. Nejmeh, and W. Riddle, “Fundamental Software Proc-
ess Concepts” in 1st European Workshop on Software Process Modeling,
Milan, Italy, 1991, pp. 15-37.
[35] R. Conradi, C. Fernstr, A. Fuggetta et al., “Towards a Reference
Framework for Process Concepts,” in 2nd European Workshop on Software
Process Technology, 1992, pp. 3-17.
[36] P. H. Feiler, and W. S. Humphrey, “Software process development and
enactment: concepts and definitions,” in 2nd International Conference on
Software Process. 'Continuous Software Process Improvement' Berlin,
Germany, 1993, pp. 28-40.
[37] J. Lonchamp, "A structured conceptual and terminological framework
for software process engineering." pp. 41-53.
[38] A. Fuggetta, “Software process: a roadmap,” in Conference on The
Future of Software Engineering, Limerick, Ireland, 2000, pp. 25-34.
[39] A. Wise, B. S. Lemer, E. McCall, K. et al., “Using Little-JIL to Coor-
dinate Agents in Software Engineering,” in 15th IEEE international confer-
ence on Automated Software Engineering, 2000, pp. 155-165.
[40] C. Popescu, and C. Charoenngam, Project Planning, Scheduling, and
Control in Construction: An Encyclopedia of Terms and Applications:
Wiley-Interscience, 1995.
[41] M. Klein, and C. Dellarocas, “A Knowledge-based Approach to Han-
dling Exceptions in Workflow Systems,” Computer Supported Cooperative
Work (CSCW), vol. 9, no. 3, pp. 399-412, 2000.
[42] L. Briand, Y. Labiche, M. Di Penta et al., “An Experimental Investiga-
tion of Formality in UML-Based Development,” IEEE Trans. Softw. Eng.,
vol. 31, no. 10, pp. 833-849, 2005.
[43] W. McUmber, E. , and B. Cheng, H. C., “A general framework for
formalizing UML with formal languages,” in Proceedings of the 23rd Inter-
national Conference on Software Engineering, Toronto, Ontario, Canada,
2001, pp. 433-442.
[44] A. S. Evans, and S. Kent, “Meta-modelling semantics of UML: the
pUML approach,” in 2nd International Conference on the Unified Modeling
Language, Colorado, USA, 1999, pp. 140-155.
[45] X. Franch, P. Botella, X. Burgus et al., “ComProLab: A Component
Programming Laboratory,” in Proceedings 9th Software Engineering and
Knowledge Engineering Conference, 1997, pp. 397-406.
[46] X. Franch, and J. Rib, “A Structured Approach to Software Process
Modelling,” in Proceedings of the 24th Conference on EUROMICRO -
Volume 2, 1998, pp. 753-762.

[47] S.-C. Chou, “A process modeling language consisting of high level
UML diagrams and low level process language,” Journal of Object-
Oriented Programming, vol. 1, no. 4, pp. 137-163, 2002.
[48] OMG, SPEM1.0, “Software Process Engineering Metamodel”, OMG
document formal/02-11/14, at http://www.omg.org/cgi-bin/doc?formal/02-
11-14/, 2002.
[49] OMG, UML1.4, "Unified Modelling Language", version 1.4., OMG
document formal/01-09-67, at http://www.omg.org/spec/UML/1.4/, 2001.
[50] R. Bendraou, M.-P. Gervais, and X. Blanc, “UML4SPM: A UML2.0-
Based metamodel for Software Process Modeling,” in Proceedings of
ACM/IEEE 8th MoDELS/UML, Montego Bay, Jamaica, 2005, pp. 17-38.
[51] B. Combemale, A. Caplain, X. Cregut et al., “Towards a rigorous
process modeling with SPEM,” in Proceedings of the ICEIS'06, Paphos,
Cyprus, 2006.
[52] IBM. "Rational Process Workbench (RPW)," http://www-
128.ibm.com/developerworks/rational/library/6001.html#author.
[53] Osellus. "Osellus IRIS Suite," www.Osellus.com.
[54] Softeam. "Objecteering," http://www.Objecteering.com.
[55] OMG, SPEM2.0, "Software Process Engineering Metamodel", OMG
document, final adopted specification, ptc/07-03-03, at
http://www.omg.org/spec/SPEM/2.0/, 2007.
[56] OMG, UML2.1.1, "Unified Modeling Language", Infrastructure Speci-
fication, version 2.1.1., OMG document formal/07-02-06 ,at
http://www.omg.org/spec/UML/2.1.1/, 2007.
[57] OMG, Diagram Interchange, adopted specification, OMG document
formal/06-04-04, at http://www.omg.org/spec/UMLDI/, 2006.
[58] OMG, UML2.1.1, "Unified Modeling Language", Superstructure
Specification, version 2.1.1., OMG document formal/07-02-04 , at
http://www.omg.org/spec/UML/2.1.1/, 2007.
[59] OMG, BPMN, Business Process Modeling Notation final adopted
specification, OMG document dtc/06-02-01, at
http://www.omg.org/spec/BPMN/1.2/, 2006.
[60] OMG, SPEM2.0 RFP, “Software Process Engineering Metamodel”,
OMG document ad/2004-11-04, 2004, at http://www.omg.org/docs/ad/04-
11-04.pdf, page last visit October 8, 2009, 2004.
[61] IBM. "Rational Portofolio Manager (RPM)," http://www-
306.ibm.com/software/awdtools/portfolio/index.html.
[62] MPM. "Microsoft Project Manager ";
http://www.microsoft.com/france/office/2007/solutions/epm/overview.msp.
[63] R. Bendraou, A. Sadovykh, M.-P. Gervais et al., “Software Process
Modeling and Execution: The UML4SPM to WS-BPEL Approach,” in
Proceedings of 33rd EUROMICRO Conference on Software Engineering
and Advanced Applications, 2007, pp. 314-321.
[64] C. A. Gunter, and D. S. Scott, Semantic domains: MIT Press, Cam-
bridge, MA, USA, 1991.
[65] R. Bendraou, B. Combemale, X. Cregut et al., “Definition of an Ex-
ecutable SPEM 2.0,” in Proceedings of the 14th Asia-Pacific Software
Engineering Conference, 2007, pp. 390-397.
[66] EPF. "Eclipse Process Framework (EPF)," www.eclipse.org/epf/.
[67] IBM. "IBM Rational Method Composer (RMC),"
www.ibm.com/software/awdtools/rmc/
[68] OMG, UML1.3, "Unified Modelling Language", version 1.3., OMG
document formal/00-03-01, at http://www.omg.org/spec/UML/1.3/, 2000.
[69] G. Cugola, E. Di Nitto, and A. Fuggetta, “The JEDI Event-Based In-
frastructure and Its Application to the Development of the OPSS WFMS,”
IEEE Trans. Softw. Eng., vol. 27, no. 9, pp. 827-850, 2001.
[70] S.-C. Chou, “Process Program Development Based on UML and Ac-
tion Cases, Part 1: the Model,” Journal of Object-Oriented Programming,
vol. Vol. 13, no. 2, pp. 21-27, 2000.
[71] Modelware. "Modelware, IST European Project contract no 511731,"
http://www.modelware-ist.org/.
[72] Modelplex. "Modelplex, IST European Project contract IST-3408,"
http://www.modelplex-ist.org/.
[73] R. Bendraou, M.-P. Gervais, and X. Blanc, “UML4SPM: An Executa-
ble Software Process Modeling Language Providing High-Level Abstrac-
tions,” in Proceedings of the 10th IEEE International Enterprise Distributed
Object Computing Conference, 2006, pp. 297-306.
[74] R. Bendraou. "UML4SPM Publications, Prototype, notation and
evaluation using the ISPW-6 Process example," http://pagesperso-
systeme.lip6.fr/Reda.Bendraou/Publications.htm.
[75] R. Farahbod, U. GlÄasser, and M. Vajihollahi, “Specification and
Validation of the Business Process Execution Language for Web Services,”
In Abstract State Machines, pp. 78-94, 2004.

[76] D. Fahland, and W. Reisig, “ASM-based semantics for BPEL: The
negative control flow,” in In Proceedings of the 12th International Work-
shop on Abstract State Machines, Paris, France, 2005, pp. 131-151.
[77] S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to Petri nets”
in in Proceedings of 3rd International Conference on Business Process
Management, 2005, pp220-235.
[78] C. Ouyang, W. M. P. van der Aalst, S. Breutel et al., Formal Semantics
and Analysis of Control Flow in WS-BPEL BPM Center Report BPM-05-
13, BPMcenter.org, 2005.

