Composite waves for a cell population system modelling tumor growth and invasion

Min Tang 1 Nicolas Vauchelet 1, 2 Ibrahim Cheddadi 1 Irene Vignon-Clementel 3 Dirk Drasdo 1 Benoît Perthame 1, 2
1 BANG - Nonlinear Analysis for Biology and Geophysical flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt
3 REO - Numerical simulation of biological flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt, UPMC - Université Pierre et Marie Curie - Paris 6
Abstract : The recent biomechanical theory of cancer growth considers solid tumors as liquid-like materials comprising elastic components. In this fluid mechanical view, the expansion ability of a solid tumor into a host tissue is mainly driven by either the cell diffusion constant or the cell division rate, the latter depending either on the local cell density (contact inhibition), on mechanical stress in the tumor, or both. For the two by two degenerate parabolic/elliptic reaction-diffusion system that results from this modeling, we prove there are always traveling waves above a minimal speed and we analyse their shapes. They appear to be complex with composite shapes and discontinuities. Several small parameters allow for analytical solutions; in particular the incompressible cells limit is very singular and related to the Hele-Shaw equation. These singular traveling waves are recovered numerically.
Type de document :
Article dans une revue
Chinese Annals of Mathematics - Series B, Springer Verlag, 2013, 34B (2), pp.295-318. 〈10.1007/s11401-007-0001-x〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00685063
Contributeur : Benoît Perthame <>
Soumis le : jeudi 5 avril 2012 - 07:40:44
Dernière modification le : mardi 11 octobre 2016 - 15:16:24
Document(s) archivé(s) le : vendredi 6 juillet 2012 - 02:20:51

Fichier

tw_tumor_18.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Min Tang, Nicolas Vauchelet, Ibrahim Cheddadi, Irene Vignon-Clementel, Dirk Drasdo, et al.. Composite waves for a cell population system modelling tumor growth and invasion. Chinese Annals of Mathematics - Series B, Springer Verlag, 2013, 34B (2), pp.295-318. 〈10.1007/s11401-007-0001-x〉. 〈hal-00685063〉

Partager

Métriques

Consultations de la notice

651

Téléchargements de fichiers

483