Structures, origin and evolution of various carbon phases in the ureilite Northwest Africa 4742 compared with laboratory-shocked graphite

C. Le Guillou, J.N. Rouzaud, L. Remuzat, Albert Jambon, Michèle Bourot-Denise

To cite this version:

HAL Id: hal-00687779
http://hal.upmc.fr/hal-00687779
Submitted on 20 Feb 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Structures, origin and evolution of various carbon phases in the ureilite Northwest Africa 4742 compared with laboratory-shocked graphite

C. Le Guillou a,*, J.N. Rouzaud a, L. Remusat b, A. Jambon c, M. Bourot-Denise b

a Laboratoire de géologie de l’ENS, Paris, UMR8538 CNRS-ENS, 24 rue Lhomond, 75231 Paris Cedex 5, France
b Laboratoire de Minéralogie et Cosmochimie du Muséum, UMR CNRS 7202, Muséum National d’Histoire Naturelle, CP 32, 57 rue Cuvier, 75231 Paris Cedex 05, France
c Université Pierre et Marie Curie, Paris 6 & IPGP, UMR7154, 4 Place Jussieu, 75005 Paris, France

Received 6 April 2009; accepted in revised form 12 March 2010; available online 22 April 2010

Abstract

Mineralogical structures of carbon phases within the ureilite North West Africa 4742, a recent find, are investigated at various scales by high-resolution transmission electron microscopy (HRTEM), Raman microspectrometry and X-ray diffraction. Ureilites are the most carbon-rich of all meteorites, containing up to 6 wt.% carbon. Diamond, graphite and so-called “amorphous carbon” are typically described, but their crystallographic relationships and respective thermal histories remain poorly constrained. We especially focus on the origin of “amorphous carbon” and graphite, as well as their relationship with diamond.

Two aliquots of carbon-bearing material were extracted: the insoluble organic matter (IOM) and the diamond fraction. We also compare the observed structures with those of laboratory-shocked graphite.

Polycrystalline diamond aggregates with mean coherent domains of about 40 nm are reported for the first time in a ureilite and TEM demonstrates that all carbon phases are crystallographically related at the nanometre scale.

Shock features show that diamond is produced from graphite through a martensitic transition. This observation demonstrates that graphite was present when the shock occurred and is consequently a precursor of diamond. The structure of what is commonly described as the “amorphous carbon” has been identified. It is not completely amorphous but only disordered and consists of nanometre-sized polyaromatic units surrounding the diamond. Comparison with laboratory-shocked graphite, partially transformed into diamond, indicates that the disordered carbon could be the product of diamond post-shock annealing.

As diamond is the carrier of noble gases, whereas graphite is noble gas free, graphite cannot be the sole diamond precursor. This implies a multiple-stage history. A first generation of diamond could have been synthesized from a noble gas rich precursor or environment by either a shock or a condensation process. Thermally-induced graphitization of chondritic-like organic matter could have produced the graphite, which was then transformed by shock processes into polycrystalline nanodiamond aggregates. The formation of the disordered carbon occurred by diamond post-shock back-transformation during post-shock heating. The noble gases in the first generation diamond could then be incorporated directly into the disordered carbon during the transformation.

1. INTRODUCTION

Ureilites are unique meteorites with a number of intriguing characteristics (Goodrich, 1992; Mittlefehldt et al., 1998; Goodrich et al., 2004, 2007). They are ultramafic
rocks generally thought to represent mantle residues, as is evident from their bulk compositions which exhibit depletions in incompatible elements. However, they exhibit thermochemical disequilibrium features and a variable oxygen isotopic composition which, unlike any other achondrite group, fall on a mass-independent fractionation line. One characteristic of ureilites is their high carbon content (from 2 to 6 wt.%; Grady et al., 1985) which occurs as diamond, lonsdaleite (hexagonal diamond), graphite and so-called “amorphous carbon” (Lipschultz, 1964; Frondel and Marvin, 1967; Vdovynkin, 1970; Göbel et al., 1978; Grady et al., 1985).

Three ureilite groups can be distinguished: the monomict group, the dimict group and the polymict group. The most recent petrogenetic models suggest that ureilites represent sampling at various depths of the mantle of a heterogeneous parent body which differentiated from a carbon-rich precursor. In a second stage, a shock event disrupted the parent body/bodies and part of the ejected material was re-accreted (Goodrich et al., 2004, 2007; Downes et al., 2008).

To date, carbon in ureilites has been mainly characterized by isotopic studies involving stepped combustion and/or pyrolysis of acid residues (Göbel et al., 1978; Ott et al., 1984, 1985, 1986; Grady et al., 1985; Grady and Pilinger, 1986, 1987, 1988; Russell et al., 1993; Murty et al., 1999; Raie et al., 2003a,b), but combined, multi-scale studies aimed at a complete carbon phases characterization are rare (Nakamura and Aoki, 2000; Valter et al., 2000; Hezel et al., 2008).

The first association of diamond and lonsdaleite (hexagonal symmetry, space group P6\(_3/mmc\), similar to graphite) was discovered in the Canyon Diablo iron meteorite and is ascribed to the solid-state transformation of graphite by dynamic shock-pressure (Heymann et al., 1966; Bundy and Kasper, 1967; Erskine and Nellis, 1992; Langenhorst et al., 1999). In the late 60’s, the same association was found in ureilites and was also interpreted as the result of shock (Lipschultz, 1964; Frondel and Marvin, 1967; Valter et al., 2000). The inferred mechanism is a martensitic transition, preserving the morphology of the initial graphite particle. Nevertheless, lonsdaleite can be synthesized experimentally under different conditions: by chemical vapor deposition (CVD; Bhargava et al., 1995), by detonation (Daulton et al., 1996), by shock loading (DeCarli, 1998; DeCarli et al., 2002), by uniaxial pressure on graphite (Yagi and Utsumi, 1992) or from graphite under hydrostatic pressure (Le Guillou et al., 2007) and is thus not a definitive shock indicator. In all these experiments, the nucleation rate of lonsdaleite is very high.

In ureilites, silicate mosaicism is frequent and indicates a shock stage S4 (Stöffler et al., 1991), and the associated pressure range (around 30 GPa) is compatible with the experimental minimum pressure required to produce diamond (Yagi and Utsumi, 1992; Yamada and Tanabe, 2002). Bischoff et al. (1999) established a positive correlation between shock stage and diamond fraction present among carbon material. Grund and Bischoff (1999) observed similar cathodoluminescence properties between terrestrial impact crater diamond and ureilite diamond. All these studies support the shock hypothesis for ureilite diamond formation.

Nevertheless, several cosmochemical characteristics of the carbon species are difficult to explain by shock processes alone and some authors have suggested a nebular condensation origin (such as CVD). First, some weakly shocked ureilites, e.g. Dar al Gani (DAG) 868, do contain diamond (Takeda et al., 2001). Secondly, noble gases are trapped in the diamond with elemental and isotopic compositions similar to “phase Q” or “P1” (Göbel et al., 1978), measured in chondritic insoluble organic matter (IOM) (Huss et al., 1996). This characteristic signature of the IOM of chondrites is acquired before the accretion of the chondritic parent bodies, suggesting a similar origin for ureilite diamond. Among ureilites, Lewis Cliff (LEW) 85328 shows a diamond noble gas concentration exceeding that of Orgueil IOM (Raie et al., 2003b), even though Orgueil is one of the most volatile-rich of all chondrites. It is difficult to understand how shock processing of IOM could produce diamond with noble gas concentrations higher than the precursor. Fukunaga et al. (1987) and then Matsuda et al. (1991, 1995) measured noble gas patterns from condensed and shocked analogues, and argued that the ureilite noble gas pattern was incompatible with shock fractionation, but was reproduced better by condensation.

Finally, Raie et al. (2003a) showed that the N-isotopic composition of diamond, graphite and amorphous carbon could not be explained by formation from a single precursor and also favored a nebular condensation origin.

As far as graphite is concerned, two different formation mechanisms could be invoked. CV chondrites have been proposed as potential precursor materials for ureilites (Goodrich, 2008) and the noble gas compositions between chondrites and ureilites are similar (Göbel et al., 1978). On possibility would then be the thermal graphitization of chondritic organic matter during an internal heating episode (Quirico et al., 2003; Bonal et al., 2006). A second hypothesis is a catalytic graphitization driven by iron, which has been invoked by Berkley and Jones (1982) and is known to be effective experimentally above 1000 °C (Huo et al., 2007; Lian et al., 2008).

The “amorphous carbon” material has been identified by its low combustion temperature (<500 °C) during stepped combustion experiments and has a specific noble gas and nitrogen isotopic signature (Raie et al., 2003a). Raie et al. (2003a) suggested a nebular origin on the basis of its N-isotopic signature, which does not show genetic relation with graphite and diamond. Importantly this phase has never been imaged with scanning electron microscopy (SEM) or transmission electron microscopy (TEM). To our knowledge, no formation mechanisms for this phase have previously been proposed in the literature.

Northwest Africa (NWA) 4742 exhibits unusually large diamond clusters included in an atypical silicate texture, consisting of a combination of pure olivine elastics and “olivine plus pyroxene mosaic matrix”. Its oxygen isotopic composition (\(\delta^{18}O = 4.71\%_\text{VP}^{18}O = 9.61\%_\text{VP}^{18}O\)) is extreme and falls on the upper right side of the ureilite trend (Franchi et al., 1997).
Whereas the origin of ureilite diamond has been extensively discussed in the literature, the origin of the other carbon phases and especially of the “amorphous carbon” material, which has never been imaged by TEM, is not constrained. Our approach sheds light on the nanometre scale structure of the various carbon solids and their possible genetic relationships. As diamond is assumed to be linked to shock processing, we compare the features observed in NWA 4742 with laboratory-shocked graphite, partially transformed into diamond. Detailed mechanisms of the shock processes are discussed with a special emphasis given to the “non-diamond” phases.

2. EXPERIMENTAL

2.1. Samples

2.1.1. Northwest Africa 4742

Northwest Africa (NWA) 4742 is a single stone of 376 g found in 2001. One polished section of about 1.5 cm2 was prepared for scanning electron microscopy and electron microprobe analysis. The presence of millimeter-sized carbon-rich areas bearing diamond prevented satisfactory polishing, resulting in an uneven surface.

A 600 mg piece of the rock was used for chemical separation of the carbonaceous phases and their characterization by XRD, Raman spectrometry and TEM. Some individual smaller fragments of the rock were also used for comparative Raman spectrometry measurements.

2.1.2. Chemical preparation of NWA 4742

About 600 mg of NWA 4742 were provided by the Muséum National d’Histoire Naturelle, Paris, France. The sample was crushed in an agate mortar and two residues were prepared. The powdered material was subjected to 4 cycles of HF (12 N)/HCl (1 N), (1:1 vol) and HCl (6 N) treatments. H$_2$BO$_3$ (0.9 N) was added in the last two HCl cycles to dissolve secondary fluorides. The aliquot was subsequently rinsed several times in water until pH rose above 7.

Four aliquots of the material, the laser power on the sample was kept constant and the shift of the band position or, worse, structural modification of the material, the laser power on the sample was kept lower than 2 mW.

Diamond has a face-centered cubic crystalline network of C–C bonds, forming tetrahedra. Each carbon atom has four bonds, sp3 hybridized. The Raman first-order F$_2$g phonon active mode at 1332 cm$^{-1}$ has a full width at half maximum of 1.65 cm$^{-1}$. Graphite and disordered carbons are mainly composed of sp2 hybridized atoms forming a Raman active network. The G band at 1580 cm$^{-1}$ is assigned to the E$_{2g}$ vibrational mode (stretching) of the aromatic plane (G). Other bands at about 1200 cm$^{-1}$ (D4), 1350 cm$^{-1}$ (D1), 1620 cm$^{-1}$ (D2) and around 1500 cm$^{-1}$ (D3), called defect bands (D), appear within disordered carbons only (Tuinstra and Köenig, 1970; Wopenka and Pasteris, 1993; Ferrari and Robertson, 2000; Sadezky et al., 2005). We used the areal ratio R = D1/(G + D1 + D2 + D3 + D4) and the full width at half maximum (FWHM) of the D1 band to parameterize the relative degree of structural order (Tuinstra and Köenig, 1970; Beyssac et al., 2002; Bonal et al., 2006). With increasing structural organization of the polyaromatic units, R and FWHM
decrease; this corresponds to the progressive loss of the defects, the growth of the polyaromatic units and finally the development of the crystallite size.

We used the WIRE software developed by Renishaw for the spectral fitting procedure. The baseline is a high-degree polynomial adjusted to the observed background shape. The bands are fitted with a combination of Gaussian and Lorentzian functions, the proportion of which is adjusted to each spectrum.

The spectra we report on the following figures are uncorrected raw spectra. The time and number of accumulations is variable among measurements, depending on the response of the different carbon materials.

2.2.5. High-resolution transmission electron microscopy (HRTEM)

We used a JEOL 2011 microscope operating at an acceleration voltage of 200 kV, equipped with an EDS system (PGT system IMIX-PC Si(Li) diode) and a CCD camera (GATAN system ORIUS SC100, 4008 × 2672 pixels). Magnifications in the range 400–800 kx were necessary to resolve the lattice fringes of graphite ($d_{002} = 0.3354$ nm), disordered carbon ($d_{002} > 0.35$ nm) and diamond ($d_{111} = 0.206$ nm). The sample powders were suspended in alcohol and a droplet was deposited on a lacy carbon film of a Cu TEM grid. All the high-resolution images of disordered carbon were obtained on particles edges located above the holes of the carbon film to avoid confusion between the quasi-amorphous carbon from the supporting film and the carbon from the sample.

3. RESULTS

3.1. Petrologic study

The rock is a monomict breccia (Fig. 1) with abundant olivine clasts (no pyroxenes), several millimeters in size (about 20% of the section surface, as deduced from SEM image analysis), surrounded by a fine-grained matrix (about 75% of the section surface) that contains carbon clusters (about 5% of the section surface).

The clasts (homogeneous composition of $F_{a21} \pm 2$) are mosaicized with thin veinlets of iron oxide at subgrain boundaries (Fig. 1), at the scale of about 50 μm. Minor metal, high in Ni and associated with troilite, occurs inside the clasts. On their rims, clasts are invaded by pyroxene introduced at subgrain boundaries, and extending into the clasts for a few tens of micrometers (Fig. 2a).

Outside the clasts, a matrix with small equant crystals (about 50 μm) of both olivine ($F_{a21} \pm 2$) and pyroxene is cut by a number of irregular veinlets of sulfide and metal partly converted to oxide (Fig. 2a). Away from the clast rims, interstitial pyroxene (mainly augite, $E_{n40}F_{s30}W_{040}$; same Mg# as olivine) around olivine microcrysts is gradu-

![Fig. 1. SEM image (BSE) of the studied polished section of NWA 4742. The white dotted lines circle the olivine clasts (~20%) in order to distinguish them from the mosaized regions, which dominate the section (~75%). The black areas (~5%) correspond to the carbon clusters. Iron oxide weathering veins are ubiquitous.](image-url)
ally replaced by interstitial olivine around pyroxene micro-
crysrs. The pyroxene Ca content decreases with increasing
distance from the clast (from Wo\textsubscript{42} to Wo\textsubscript{10}). This texture
with regular and equant microcrysts can be termed poly-
crystalline mosaic. In veinlets in close contact with calcic
pyroxene, some rare calcium carbonates appear. They
could well be weathering products.

Plagioclase is absent. Within the polycrystalline mosaic,
some wide veins mainly filled by carbonaceous materials are
observed. The veins exhibit a significant porosity inter-
predcted as the result of fluid circulation, incomplete oxida-
tion of sulfide and metal and the irregular occurrence of
large carbon patches (up to several millimeters) connected
to one another by a fine array of thin veins (Fig. 1). The
reduction of olivine is revealed by its increasing Fo content
at the rims of the clasts. Reduction is not limited to clast
rims as it also affects olivine microcrysts in the polycrystal-
l ine mosaic, where the most Mg-rich olivine is present (up
to Fo\textsubscript{96}). Some less pronounced reduction occurs as well
in low-Ca pyroxene. In the reduced areas, metal grains with
low Ni content are found, in contrast with the metal from
the olivine clasts with high Ni contents.

To summarize, NWA 4742 differs from typical monom-
ict ureilites by its unusually large carbon clusters and its bi-
modal texture (clasts and polycrystalline mosaicized
matrix). At the scale of a few micrometers various types of
textures can be observed: stacked plates with a thickness
of about 10 µm broken at right angles at their ends
(Fig. 2b), or petal-like aggregated platelets <1 µm in thick-
ness (Fig. 2c) are observed. Sometimes some carbonaceous

crust with nanometric rugosity (Fig. 2d) lines the wall of
micro fractures.

3.2. X-Ray Diffraction

X-ray diffraction (Fig. 3) data from “HF/HCl residue”
indicate the presence of four structural types of carbon:
strongly disordered carbon, distorted graphite, cubic
nanodiamond and nano-lonsdaleite (Table 1). A broad peak
with a maximum corresponding to a d-spacing of 0.360 nm
(2θ = 24.7°) and a sharp one, centred at 0.337 nm
(2θ = 26.4°), indicate the co-existence of quasi-crystalline
graphite together with strongly disordered carbon (graphite

![Fig. 2. (a) Close up of Fig. 1 showing the pyroxene (dark grey) intruding the olivine clasts (light grey); (b) SE image of a diamond plate in a raw fragment of NWA4742; (c) SE image of curved graphite particle; (d) carbonaceous crust with nanometric rugosity coating the wall of microfractures.](image1)

![Fig. 3. X-ray diffraction diagram of the “HF/HCl residue”. The broad band corresponds to the presence of strongly disordered carbon. A tiny graphite peak (2θ = 26.4°) is superimposed. Nanodiamond and lonsdaleite are identified through their \(d_{111}\) (0.206 nm; 2θ = 43.9°) and \(d_{002}\) (0.218 nm; 2θ = 41.4°) peaks.](image2)
reference \(d_{002} \) value is 0.3354 nm). The presence of compressed graphite \((d_{002} < 0.3354)\) has been observed in some ureilites (Nakamuta and Aoki, 2000; Hezel et al., 2008) but was not detected in our sample.

The mean size of coherent diamond domains was estimated using Scherrer’s equation. The relation between the size \((s, \text{in nm})\) of the mean coherent domain and the FWHM \((\Delta d_002, \text{of the peak, in degree})\) of the 1 1 1 reflection at 0.206 nm \((2\theta = 43.9^\circ)\) is expressed by:

\[
s = \frac{\lambda}{\Delta d_002 \times \cos \theta \times K},
\]

where \(\lambda\) is the incident wavelength and \(K\) an experimental empirical form factor which is taken equal to 0.9 (Smith, 1989). The experimental width, measured on reference monocrystalline microdiamonds, is first subtracted. This formula yields an average crystalline coherent domain size of 40 nm, whereas SEM images show micrometer-sized particles. This implies that those particles are in fact polycrystalline aggregates of nanodiamonds. Nevertheless, such nanometre size is a lower limit because strain, observed in this sample (see HRTEM Section 3), may also account for part of the diffraction line broadening. However, the coherent domain size inferred by other methods (both Raman spectrometry and TEM, see following sections) is fully compatible with this XRD result.

Lonsdaleite, \((d_{002} = 0.218 \text{ nm}, 2\theta = 41.4^\circ)\), is revealed by a broad shoulder on the diamond peak \((d_{111} = 0.206 \text{ nm}, 2\theta = 43.9^\circ)\). Rietveld simulation (Fullprof software, Rodriguez-Carvajal, 2001) has been applied to estimate the relative proportions of crystalline phases (disordered carbons, particularly difficult to integrate, are excluded). The simulation indicates the presence of 85 wt.% diamond, together with 5 wt.% lonsdaleite and 10 wt.% graphite.

The intensity of the disordered carbon peak is high compared to the graphite intensity. Because the diffraction intensity of a non-crystalline material is lower than that of crystalline material, disordered carbon is probably a major component.

3.3. Raman microspectrometry

3.3.1. Purified diamond residue

Raman characterization of diamond on a piece of the ureilite as well as on “HF/HCl residue” powder is difficult for several reasons. First, diamond is embedded within other carbon materials and laser penetration in graphitic material is limited to a few hundred nanometres. At the wavelength of 514.5 nm, the Raman diffusion cross-section of graphitic carbons is at least 60 times higher than that of diamond (Ferrari and Robertson, 2000). In addition, the intensity of Raman diffusion is low because of the small size of the diamond crystallites \((\sim 40 \text{ nm})\). For these reasons, the signal of graphitic carbon generally hides the diamond signal.

In order to circumvent this problem, we took an aliquot of the “HF/HCl residue”, dissolved the sp\(^2\) graphitic carbon to produce the PDR and measured its Raman spectrum (Fig. 4). The spectra are characterized by: (i) a low intensity (compared to monocrystalline microdiamond), (ii) FWHM between 8 and 27 cm\(^{-1}\) (significantly higher than for reference micrometer-sized diamond monocrystals; \(\sim 5 \text{ cm}^{-1}\)) and a position at 1332 cm\(^{-1}\) (close to the diamond reference one, i.e. 1331 cm\(^{-1}\)). Fluorescence background is highly variable. Often, no diamond peak can be observed, because it is probably hidden below the fluorescence background.

Literature data on nanodiamonds \((<50 \text{ nm})\) indicate, with decreasing size, a progressive Raman shift towards lower wavenumbers \((1320 \text{ cm}^{-1} \text{ for } 5 \text{ nm crystallites})\), an increase of the FWHM and a decrease of the intensity (Yoshikawa et al., 1995; Zhao et al., 1998). In the PDR, the FWHM and the low intensity are consistent with a crystallite size of several tens of nanometres, but the position shift towards lower wavenumbers is not observed. The spectra presented by Miyamoto et al. (1988, 1993) and Karczemska et al. (2008) display the same characteristics. In contrast, Greshake et al. (1999) reported Raman spectra from the ureilite Hammadah Al Hamra 126 with a wide and shifted band \((1305 \text{ cm}^{-1})\) that they interpreted as nanodiamonds, possibly mixed with lonsdaleite. These characteristics have also been reported on diamonds from the Ries crater (Lapke et al., 2000). Hezel et al. (2008) reported scattered FWHM with an average value at 7 cm\(^{-1}\) but coupled with a slight shift towards low wavenumber, which is not the case in NWA 4742. This difference could originate from internal pressure preserved within diamond aggregates. Indeed, an upshift of the band due to compression (and observed here directly by TEM) could compensate the downshift due to the small grain size (Tan et al., 1998; Zhao et al., 1998; Mermoux et al., 2004).

3.3.2. Polished section and “HF/HCl residue”

The non-diamond carbon fraction of the “HF/HCl residue” shows a wide range of carbon structural order/disorder that can be investigated by comparing several spectral parameters: the D band width (FWHM-D) and the D band area relative to the sum of all other band areas, as described in the experimental section (Tuinstra and Köenig, 1970; Wopenka and Pasteris, 1993; Beyssac et al., 2002; Bonal et al., 2006).

All measurements performed on “rock fragments” indicate a close association of disordered carbon, distorted graphite and diamond within the same carbon veins.

<table>
<thead>
<tr>
<th>d_{002} (nm)</th>
<th>FWHM-D (cm(^{-1}))</th>
<th>R (range)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite</td>
<td>0.335</td>
<td>Band absent</td>
<td>0</td>
</tr>
<tr>
<td>Distorted-graphite</td>
<td>0.337</td>
<td>~58</td>
<td>0.05–0.5</td>
</tr>
<tr>
<td>Disordered carbon</td>
<td>0.36</td>
<td>>100</td>
<td>0.25–0.6</td>
</tr>
</tbody>
</table>
As far as the non-diamond carbons are concerned, two main different structural types are present, which mainly differ in their FWHM-D. Table 1 presents their principal characteristics. Typical spectra are shown on Fig. 5 and are clearly distinguishable. Fig. 6 is a plot of FWHM-D vs R ratio. The first group (called distorted graphite hereafter) has FWHM-D values ranging from 40 to 70 cm$^{-1}$ with average at 58 cm$^{-1}$. The other one (called disordered carbon) has its FWHM-D value widely scattered but always above 100 cm$^{-1}$. Both groups have variable R ratios.

The R ratio of the distorted graphite spectra varies between 0.05 and 0.5 with a mean value at 0.4. The scattering of the R ratio within this group is too large to be explained by a random orientation of the grains relative to the laser beam (Tan et al., 2001). Consequently, at least a component of the observed scattering may come from a variable degree of disorder of the graphite. This heterogeneity has also been reported by Kagi et al. (1991) from a Raman study of four Antarctic ureilites.

Apart from distorted graphite, highly disordered carbon (Fig. 5) has also been observed. Its Raman parameters are widely scattered (Fig. 6). The main features are a wide defect band (>100 cm$^{-1}$), a R ratio ranging from 0.25 to 0.60 and a broad E_{2g} mode upshifted in position by

Fig. 4. Raman spectra obtained on the “purified diamond residue” and compared to monocrystalline diamond for reference. The diamond band at 1331 cm$^{-1}$ is very small and has a broad and variable Full Width at Half Maximum. Intense Raman signal, typical of microdiamond, is not observed.

Fig. 5. Two typical Raman spectra measured in situ within the same carbon cluster on “raw rock fragment” (i.e. chemically untreated). All phases are present. However, diamond signal is hidden by graphitic carbon signal. The upper spectrum is typical of the “disordered carbon group”, the lower of the “distorted graphite group”. These spectra are also measured on the “HF/HCl residue”.
These features correspond to strongly disordered carbons with nanometre-sized polyaromatic layers, as revealed by the HRTEM images (see below). Nevertheless, they represent a population clearly distinguishable from the distorted graphite population.

Some spectra, recorded on fragments of the “HF/HCl residue”, as well as on PDR, are “signal depleted” or “Raman inactive” (Fig. 7b), whereas fluorescence is absent. A similar feature has been previously described by El Gorasy et al. (2001, 2003) on carbons from shocked gneiss of the Ries crater, Germany. They observe the same association of diamonds, graphite and disordered carbon. They measured the “Raman inactive” phase with X-ray synchrotron facilities, and assigned this signal to a “new”, transparent, ultra-hard carbon phase.

3.3.3. Laboratory shock-synthesized diamond

In order to understand the various Raman features described above, we performed measurements on the laboratory-shocked graphite. Only the sp2 fraction could be characterized because the diamond was not abundant enough to be detected with the 514.5 nm wavelength used.

The starting material (not shown), is natural graphite and only shows a G band. Fig. 8a displays two different spectra measured on the experimentally shocked graphite. They show a significant contribution from the D$_1$ band and are heterogeneous. To quantify these heterogeneities, more than 20 spectra have been fitted. As for NWA 4742, four or five bands were used (\sim1200, 1350, \sim1500, 1580 and 1620 cm$^{-1}$). Fig. 8b shows the relation between the
FWHM of the D band and the R ratio. The scattering of the R (between 0.3 and 0.5) and FWHM (between 73 and 113 cm$^{-1}$) values illustrates the structural heterogeneity of the sample, and demonstrates that a single shock on a homogeneous precursor can produce structural variability. As in NWA 4742, several measurements display similar FWHM (\sim80 cm$^{-1}$, higher than in NWA 4742) with variable R ratios. However, the laboratory-shocked sample only displays one population whereas NWA 4742 displays both ‘disordered carbon’ and ‘distorted graphite’ groups. These discrepancies could arise from the difference in pressure-temperature conditions and especially from the different cooling rate between experimental and NWA 4742 samples.

3.4. High-resolution transmission electron microscopy

3.4.1. Purified diamond residue

Dark-field TEM enables direct imaging of the coherent diamond domains. Scanning electron microscopy shows
only single diamond particles of various sizes, but dark-field TEM can help to refine the structural characteristics of the particles and especially to distinguish polycrystalline nanodiamonds from monocrystals.

Fig. 9a shows a bright-field image of a 400 nm large particle. In the corresponding dark-field image (Fig. 9b), the objective aperture was centred on a position where only the periodicity corresponding to a d-spacing of 0.115 nm contribute to the image. This periodicity has been identified as the 109 reflection of lonsdaleite (Ownby et al., 1992). The main information from this technique is that the whole grain does not diffract as a single coherent crystal. Whereas the particle shows sharp edges in bright-field mode, which may suggest a monocrystal, the dark-field images demonstrate that this grain is in fact an aggregate of individual domains.

This result has to be interpreted carefully; dark-field images cannot be obtained from the largest particles as they are too thick to be transparent to the electrons. However, the good agreement of TEM data with XRD and Raman measurements excludes the presence of dominant micrometric single crystals of diamond in NWA 4742.

To summarize, dark-field TEM images of diamonds (both cubic and hexagonal) demonstrate the systematic presence of polycrystalline aggregates, independent of the particle size, with coherent domains several tens of nanometres in size.

Using HRTEM, the smallest observed isolated diamonds display crystallite sizes of a few nanometres, the largest ones are smaller than 100 nm.

Fig. 10 illustrates the presence of frequently observed Bragg fringes in diamond, which are the result of slight lattice distortion. This feature results from interference errors depending on the reciprocal node length and relates to the coherent domain size. In this case (about 40 nm coherent domains), such fringes correspond to deformation angles of about 1°.

3.4.2. HF/HCl residue

Crystalline graphite (Fig. 11a), distorted graphite, and disordered carbons associated with nanodiamonds...
(Fig. 11b and c) are observed in the residue. As a complement to the “purified diamond residue” observations, the relations between diamonds and other carbon phases were investigated. Diamond aggregates appear frequently embedded within weakly organized turbostratic carbons at the nanometre scale (Fig. 11b and c).

The disordered carbon seems to present a structural continuum between amorphous-like carbon (mixture of sp² and sp³ bonds, responsible for the absence of periodic organization of carbon atoms) and small polyaromatic units, better organized at the nanometre scale, but still strongly disordered (largest polyaromatic layers limited to a few nanometres). This organization degree observed by TEM is compatible with the Raman spectra showing the highest FWHM-D.

Nanodiamonds sometimes occur in a disordered carbon matrix. The 0 0 2 fringes of the disordered carbon show no specific orientation relative to the diamond 1 1 1 fringes in Fig. 11b. Nevertheless, most of the time, polyaromatic layers are mostly parallel to the diamond grains surface (Fig. 11c), suggesting that there is a crystallographic orientation relationship between the atomic planes of these two carbon phases, i.e. a toptaxial growth. The number of stacked layers of the disordered carbon phase is variable, but never exceeds 10.

The degree of organization of this disordered carbon is variable. Fig. 11b illustrates an extreme situation where a single diamond crystallite is surrounded by a nearly amorphous carbon, which presents no noticeable geometric relationship with diamond. This material is not limited to a surface layer but completely surrounds the nanodiamond on a larger scale (~10–20 nm). These strongly disordered structures have also been reported by Langenhorst et al. (1999) together with diamond-graphite mixtures in the Popigai impact crater.

One interesting observation is reported in Fig. 12. It consists of a micrometer-sized particle made of diamonds included in distorted graphite (Fig. 12a). The electron diffraction pattern of this grain shows two small arcs corresponding to periodicities at about 0.35 nm (due to distorted graphite 0 0 2 planes) and two spots at 0.206 nm (due to the diamond 1 1 1 planes) oriented along the same direction. These two families of planes are the closest-packed atomic planes of graphite and diamond, respectively, and show parallel orientation. The crystallographic relationship is shown in detail in Fig. 12b (lattice-fringe mode). The latter shows the relationship between diamond (right side) and distorted graphite (left side). In contrast with our other observations, diamonds here are not coated by disordered carbon (Fig. 12c). In this case, the diamond is included in an organized structure. Furthermore, the polyaromatic units are located only along the 1 1 1 diamond planes (Fig. 12b) and do not entirely surround the crystal (Fig. 12c), a relationship which has been observed for ther-

![Fig. 12. Particle from the “HF/HCl residue”. Diamonds (circled in white) are included in distorted graphite (G, d_{002} = 0.335 nm) (a). The selected-area electron diffraction pattern demonstrates the parallelism between diamond 1 1 1 planes and distorted graphite 0 0 2 planes. The latter are not perfectly structured as indicated by the presence of a diffraction arcs rather than a spot. Enlargements of two specific regions are shown: boundary between diamond and distorted graphite (b), and diamond located on the extremity of the particle (c) and showing that distorted graphite does not fully surround diamond.](image-url)
mal graphitization of diamond (Butenko et al., 2000). Collectively this evidence clearly indicates the formation of diamond directly from graphite. Similar inclusion of diamond into graphite particles have been reported from the Novo Urei ureilite (Valter et al., 2000).

Almost crystalline grains of graphite are observed (Fig. 11a) but HRTEM also reveals distorted structure (Fig. 12b). The polyaromatic layers are wrinkled along the whole grain, and frequently disrupted. The distorted graphite population is, at the TEM observation scale, structurally heterogeneous and correspond to the group of Raman spectra having a mean FHWM value of ~58 cm\(^{-1}\) and scattered \(R\) ratio.

3.4.3. Laboratory shock-synthesized diamonds

Our HRTEM study reveals various carbon structures at the nanometre scale. Some are similar to those found in NWA 4742 carbon residue, and some differ. Unmodified crystalline graphite (Fig. 13a), distorted graphite (Fig. 13b), strongly disordered carbon together with nanodiamond (Fig. 13c) and carbon-coated diamonds (Fig. 13d) look similar to NWA 4742 material. As expected for a short time scale dynamic experiment, no growth occurs and the typical size of the diamond coherent domains is limited and comparable to that of NWA 4742, i.e. between 10 and 100 nm, approximately.

Some differences are observed, however. First, the diamond crystallites are not polycrystalline nor aggregated, but occur as individual crystals. Diamond inclusions within graphite were not observed. These two features may result from a lower shock degree in the experiment. Furthermore, the extent of material coating nanodiamonds is far larger than around NWA 4742 diamond.

Fig. 14 shows a diamond core surrounded by \(sp^2\) “onion-like” structure. This nanostructure is typical of annealed nanodiamonds (Butenko et al., 2000), transformed into concentric particles rather than into lamellar ones.

![Fig. 14. High-resolution images from the shocked graphite sample partially transformed into diamond. Diamond core (1 1 1 planes are apparent) coated by continuous 0 0 2 carbon layers interpreted as the partial back-transformation of nanodiamonds formed during the shock.](image-url)
because of the nanodiamond critical size. Such rims are usually interpreted as post-shock thermally back-transformed nanodiamonds (Morris, 1980; Butenko et al., 2000).

The main characteristic shock features observed in the laboratory-shocked graphite are the preservation of some graphite grains, the decrease of the ordering of other grains (undulations, breaking of the graphene plane, partial amorphization), a small diamond crystallite size and coatings on the diamonds.

4. DISCUSSION

In the first part, we discuss the crystallographic structure of diamonds in the ureilite NWA4742 and the nature of its precursor (graphite rather than disordered organic matter). Then, the degree of structural ordering of the distorted graphite and the associations of diamond with disordered carbon are compared to laboratory shock experiments. These data are critical to understanding the relationships between disordered carbon, distorted graphite and diamond, and to better constrain the noble gas reservoirs in ureilites. We propose a scenario for genesis and evolution of NWA 4742 carbon components, based on their crystallographic phase relations.

4.1. Diamond precursor and structure

TEM suggests that at least some polycrystalline aggregates of nanodiamond and lonsdaleite (average coherent domain size of about 40 nm) in NWA 4742 were formed by shock through a solid-state transformation of graphite. A CVD origin, although not completely ruled out, cannot be the sole formation mechanism.

4.1.1. Diamond originating from graphite

The particle in Fig. 12 shows that graphite is the precursor for (at least) some diamonds. This particle is made of diamonds included within distorted graphite (Fig. 12a) and their respective closest-packed planes (1 1 1 for diamond and 0 0 2 for graphite) show parallel orientations (Fig. 12a and b). Such a particle has also been reported from the Novo Urei ureilite (Valter et al., 2000). At this point, there are two possibilities to explain this association: the formation of diamond from graphite or the formation of graphite from previously formed diamonds.

Literature data (Butenko et al., 2000; Le Guillou et al., 2009), together with our experimental work (Fig. 14), show that graphitization of diamond produces continuous surface layers of graphene around diamond grains. In NWA 4742, the distorted graphite is made of graphene layers which: (i) do not entirely coat the diamond crystals, (ii) are present only along the 1 1 1 diamond planes. These observations favor a direct, but incomplete, transformation of graphite into diamond, likely by a shock-induced martensitic mechanism (Morris, 1980; Yagi and Utsumi, 1992). This mechanism minimizes the atomic displacements and thus preserves the morphology of the graphite precursor particle. It is also known to yield lonsdaleite (observed in NWA 4742) in addition to cubic diamond. In this case, the distorted graphite is not the result of diamond graphitization (secondary graphite) but rather the distorted remnants of the graphite precursor.

Another argument for the graphite to diamond transformation relies on the work of El Goresy et al. (2001). They described a super-hard carbon phase from the Ries crater gneiss which was “Raman inactive” and was, along with lonsdaleite, attributed to the shock transformation of graphite. We also detected “Raman inactive” particles in our purified diamond residue, showing no fluorescence and no Raman contribution (Fig. 7b). This similarity supports the shock origin.

4.1.2. Crystal size, aggregation, deformation and lonsdaleite

Based on XRD and dark field mode TEM imaging, we demonstrate that diamonds in NWA 4742 are polycrystalline aggregates rather than monocrystals. The size of the aggregates can be micrometers (Fig. 2b), but the coherent monocrystalline domains are smaller than 100 nm, with an average size deduced from XRD of about 40 nm. Bragg fringes, originating from slightly strained crystal lattices, are frequently observed. Pressure is required to account for this deformation and is also known to produce polycrystalline diamonds of nanometre size, as well as lonsdaleite (He et al., 2002). The latter has a hexagonal symmetry (space group P63/mmc) similar to graphite. Those minerals are crystallographically anisotropic in contrast to cubic diamond.

In the last 20 years, various techniques based on “isotropic” formation conditions have been elaborated for diamond synthesis such as: Chemical Vapour Deposition with various methods and substrates (Setaka, 1987, 1989; Frenklach et al., 1989, 1991; Bachmann et al., 1991; De Barros and Vandenbulcke, 2000; Vandenbulcke et al., 2009), electron irradiation of carbon onions (Banhart, 1997), CH₄ dissociation at high pressure (Benedetti et al., 1999) or decomposition of silicon carbides (Gogotsi et al., 2001). As far as the mechanical constraints are concerned, those synthesis methods are all “isotropic” and produce cubic diamond rather than lonsdaleite, which is not observed in these experiments. In contrast, products synthesised by “anisotropic methods” like shock waves in a gas phase or mechanical shock loading on various precursors (DeCarli and Jamieson, 1961; Bundy and Kasper, 1967; Morris, 1980; Erskine and Nellis, 1992; Yamada and Tanabe, 2002) contain lonsdaleite. Anisotropy seems to be a requisite for lonsdaleite synthesis.

However, the synthesis method is not the only control; the precursor anisotropy itself also has to be considered. Under high hydrostatic pressure, the hexagonal diamond polymorph can be produced from graphite (strongly anisotropic), but not from amorphous isotropic carbon (Le Guillou et al., 2007). This is due to the structural anisotropy of the precursor itself. To summarize, every time lonsdaleite is produced, anisotropy must be involved, arising from the precursor or from external forces. In NWA 4742, lonsdaleite obviously results from shock transformation, and condensation mechanisms appear very unlikely.

Some diamond and lonsdaleite crystals in NWA 4742 formed from graphite by shock-induced transformation, but this conclusion is not completely satisfying as it does not explain all the noble gas data obtained on various urei-
lites. Formation of diamond by other mechanisms is certainly required to explain the noble gas data.

First, previous works showed that diamond is the main carrier of noble gases, whereas graphite is almost free of noble gas (Göbel et al., 1978; Rai et al., 2003a,b). It seems impossible to produce “diamond containing noble gases” from a noble gas depleted precursor. Furthermore, Matsuda et al. (1995) demonstrated that isotopic fractionation during transformation of diamond into graphite was unable to explain the actual noble gas signature in ureilite.

To reconcile these apparent contradictions, we suggest the existence of two diamond populations. The first one would contain noble gases. It could be synthesized by shock on a noble gas rich material (possibly on the chondritic-like carbon of the ureilite parent body), or prior to accretion in the solar nebula, for instance by condensation as proposed by Fukunaga et al. (1987). The second population of diamond could be formed by a later shock on graphite.

Interestingly, polycrystalline aggregates of diamond and lonsdaleite can also be formed by shock on already existing (monocrystalline) diamond (He et al., 2002). As the difference between cubic and hexagonal forms simply relies on the stacking sequence (ABC vs AB), lonsdaleite occurs as an intercalated stacking sequence produced by shock on cubic diamond. In our hypothesis, new diamonds are formed from graphite, but a first generation (which would contain noble gases) could also be simultaneously modified. Consequently, a late shock on previously formed diamonds mixed with graphite would explain the observed features: diamond inclusions in distorted graphite, lonsdaleite, polycrystalline diamond aggregates and Bragg fringes.

4.2. Distorted graphite, structure and origin

CV chondrites have already been considered as potential precursors for ureilite material as a whole (Goodrich, 2008). In chondrites, insoluble organic matter is the main carbon component and has a noble gas composition close to ureilite carbon phases (Göbel et al., 1978). Thus, graphite itself may result from the sluggish thermal graphitization process of organic matter, during asteroidal metamorphism, with or without the help of a metal catalyst (Berkley and Jones, 1982). These mechanisms are studied extensively in terrestrial rocks (maturation and graphitization during diagenesis and metamorphism; Jehlicka and Rouzaud, 1990; Oh et al., 1991; Wopenka and Pasteris, 1993; Beyssac et al., 2002) and experimental materials (Huo et al., 2007; Lian et al., 2008) and can thus be evaluated.

Presolar graphites have been reported in chondrites (Croat et al., 2004) and were probably formed by condensation but they are not a significant carbon source and will not be considered.

In NWA 4742, we observe a population of distorted graphite with structural heterogeneities, from well crystallised graphite to more or less distorted crystals. The abundance of this material is quite low compared to diamond (~10 wt.%) as deduced from XRD Rietveld analysis.

Scattering of the R Raman ratio between 0.05 and 0.55 is significant (Fig. 6, first group, FWHM ~58 cm$^{-1}$) but the FWHM is constant within this carbon population. Structural variability of carbon has already been reported by Kagi et al. (1991) in four Antarctic ureilites (Raman spectrometry study) and by Smith et al. (2001) from stepped combustion experiments. The latter interpreted the broad temperature range of combustion to variable carbon structures in the sample. Our detailed characterization by Raman and HRTEM enables an improved understanding of those features.

As temperature increases, the carbon structural organization progressively and irreversibly improves (growth and stacking improvement of the graphene planes, occurrence of tri-periodic order). In terrestrial rocks (Jehlicka and Rouzaud, 1990; Oh et al., 1991; Wopenka and Pasteris, 1993; Beyssac et al., 2002), as well as in chondrites of different metamorphic grades (Quirico et al., 2003; Bonal et al., 2006, 2007), progressive re-organization of organic matter leads to a decrease of the R ratio, but this evolution occurs together with a decrease of the FWHM of the D band. The type of heterogeneity we observe here is unlikely to be due to such processes. In contrast, and as shown by the Raman spectral analysis of the shock experiment, heterogeneous “loss of crystallinity” of graphite occurs during a single shock event. Shock can then be a simple mechanism that explains both the Raman and HRTEM observations in NWA 4742.

If the heterogeneity of the distorted graphite really arises from shock effect, the degree of structural organization of the carbon material before the shock should be indicated by the lowest R ratio (R ~0.1), which corresponds to almost crystalline graphite with limited grain size (smaller than the Raman beam size). About 600 °C is necessary in metamorphic terrestrial rocks to reach this graphitization stage (Beyssac et al., 2002). As timescales of terrestrial and asteroidal parent body metamorphism are similar, this temperature estimation is reliable. Indeed, the timescale of asteroidal metamorphism is mostly controlled by the 26Al decay, whose half-life is ~7.105 years, and models predict that the metamorphic peak should last ~1 Myr for a small asteroid (radius ~20 km) up to ~100 Myr for a 200 km radius asteroid (Bennett and McSween, 1996). Consequently, graphitization could be achieved at temperature lower than silicate partial melting temperatures, and short-timescale (shock-melting for instance) metal-induced catalytic graphitization, although possible, is not required. In a recent petrogenetic model of ureilites, Goodrich et al. (2004) consider that disruption of the parent body by the shock event occurs while the asteroid, in the course of differentiation (internal heating), is still hot. In this scenario, graphitization of organic matter would be achieved prior to the shock that caused breakup of the ureilite parent body. The presence of primitive chondritic organic matter as a precursor for graphite is thus consistent with this hypothesis.

The thermal expansion of graphite is one order of magnitude higher than that of diamond. This property could explain why graphite has lost its noble gases during metamorphic events. In contrast, if an early diamond generation was present, it could have retained its noble gases.
4.3. Association of diamond with disordered carbon

If graphite is the product of thermal transformation of organic matter remnants of disordered carbon should have disappeared. Consequently, the formation episode of disordered carbon in NWA 4742 must postdate this thermal event. One of our main results is that the component which was previously called “amorphous carbon” in the literature, and whose nature was unknown until now, has now been imaged directly by TEM. It is renamed here disordered carbon since such carbons are never \emph{stricto sensu} amorphous, because they systematically show nanometre-sized polyaromatic structures. A good agreement exists between the HRTEM observations and the Raman spectra of the “disordered carbon group”. This material is intimately and systematically associated with diamonds. As discussed earlier, this material coats the diamond and aromatic layers are often oriented parallel to the grain surface (Fig. 11c), indicating a topotaxial growth.

Two possibilities exist to explain the disordered carbon association with diamond: (1) partial graphitization of diamond by extended heating, (2) destabilization of diamond by post-shock annealing.

4.3.1. Solid-state partial graphitization of diamond by internal heating?

Diamond is not stable at low pressure and would be expected to undergo graphitization during internal heating of the parent body and for timescales corresponding to 26Al decay. Experimental results (Butenko et al., 2000) have shown that graphitized diamond displays continuous, aromatic layers coating the external part of the diamond. In our sample, this characteristic is not generally observed. Instead, coating layers are discontinuous around the diamond and show structural variability, from almost amorphous material to imperfectly stacked layers of 1–2 nm length. Raman spectra further confirm this heterogeneity through the FWHM scattering of the defect band. A long internal heating episode is thus unlikely to explain the association of diamond and disordered carbon in NWA4742.

4.3.2. Post-shock annealing and comparison to laboratory analogues

In contrast, coating structures are observed in the laboratory-shocked analogues (Fig. 13d), where short graphene layers surround the diamond. During a shock, the thermal wave propagates more slowly than the mechanical wave. Depending on the material and the shock-pressure conditions, the associated temperature induces more or less back-transformation of diamond (Morris, 1980; Erskine and Nellis, 1992). These disordered structures have already been reported by Langenhorst et al. (1999) together with diamond-graphite mixtures in the Popigai impact crater. When nanodiamonds are completely back-transformed to graphitic material, they form onion-like structures as illustrated in Fig. 14. The various observed structures and transformation degrees are attributed to material and shock wave propagation heterogeneities, which yield heterogeneous heat dissipation and diamond transformation rates.

Fig. 15. Schematic diagram summarizing the various mechanistic paths of the solid-state transformation of graphite to diamond as deduced from literature data and from our Raman and TEM observations. Path 1 implies that at least partial amorphization of the graphite precursor is necessary to reconstruct cubic diamond. An intermediate situation leads to nanodiamonds included in strongly disordered carbon. Path 2 represents the martensitic transition from graphite to lonsdaleite and/or diamond. Both paths yield a sp3 coating on the diamond surface, formed during post-shock annealing.
Heterogeneous redox conditions within the sample during the shock could also be invoked.

Fig. 15 is a tentative sketch representing the different paths of diamond formation occurring during shock events, based on literature data and on our TEM observations of experimental products. Graphite can be directly transformed into diamond (cubic and/or hexagonal) by a martensitic transformation mechanism (Morris, 1980; Erskine and Nellis, 1992; Yagi and Utsumi, 1992), but this mechanism (path 2) alone cannot explain all the observations. Another mechanism also has to be considered where graphite could first lose its crystallinity to various degrees (path 1) as a transitional step in the transformation to diamond.

Indeed, experimental and NWA 4742 samples show diamonds embedded within strongly disordered carbon whose graphene layers are not parallel to the diamond surface (cf. Figs. 13c and 11b). This situation can be interpreted as an incomplete transformation of graphite into diamond and corresponds to path 1 in Fig. 15. In this case, partial amorphization would be a pre-requisite for cubic diamond nucleation (Yamada et al., 1999; Yamada and Tanabe, 2002) as also suggested for static high-pressure conversion of graphite into diamonds (Onodera and Irie, 1991; Le Guillou et al., 2007). This transformation mechanism is reconstructive.

This transformation pathway could be comparable to the high pressure experiments of Mao et al. (2003), where an intermediate phase is revealed in the course of the transformation of graphite into diamond. To obtain this intermediate phase, some of the sp2 bonds are changed into sp3 bonds while the graphite crystallographic structure is preserved. Such an unstable intermediate structure, if attained during the impact event, could yield strongly disordered carbon after the release of the shock stress.

Depending on the shock conditions, the two transformation paths could occur. In NWA 4742, the observations favor a combination of the two mechanisms. In every case, disordered carbon coatings around diamond clearly result from the post-shock annealing of diamond. For these reasons, we interpret the disordered carbon in NWA 4742 as a shock product, obtained by: (i) a partial and variable loss of structure of graphite, (ii) diamond back-transformation during post-shock annealing.

This could also be consistent for other ureilites, as strongly disordered carbon is the secondary carrier of noble gases, showing signatures close to diamond. The crystallographic relation between diamond and the disordered carbon demonstrated in this study explains these similarities.

5. CONCLUSION

We conclude from Raman microspectrometry (characterization at the micrometer scale) and HRTEM (characterization at the nanometer scale) observations of the various carbon phases in NWA 4742 and laboratory-shocked analogues that: (1) genetic relationships between diamond, distorted graphite and disordered carbon are common and can be explained by a late shock event; (2) at least part of (but probably not all) the diamond is directly formed from a graphite precursor, and not from strongly disordered material, for example organic matter; (3) organic-matter graphitization during internal heating (due to 26Al decay for example) is a possible mechanism for graphite formation.

We demonstrate that, in NWA 4742, there is obviously a genetic link between phases at various scales and the associated nitrogen and noble gas signature should now be discussed in the light of these observations.

We suggest a three-stage generation history for NWA 4742 carbon material.

In a first event, diamond with noble gases would be produced from an undetermined precursor (possibly chondritic organic matter?) or environment (CVD-like hydrocarbon condensation). Shock or condensation origins are both plausible. If chondritic-like organics were the precursors of ureilites carbon, the graphitization of organic matter could be achieved during a post-accretion thermal event on the ureilite parent body at temperature lower than silicates melting temperatures. During the silicate melting episode, both diamond and graphite would be present together with CO/CO$_2$ fluids. Finally, in a later stage, a shock event large enough to produce diamond from graphite is proposed. This shock event would be responsible for the poly-crystallinity of the diamond component and the genesis of the disordered carbon by shock-induced thermal back-transformation. This scenario would explain the noble gas content of the disordered carbon.

It is difficult at this point to link these episodes with the existing petrogenetic model of ureilites, and especially with the melting/smelting episodes. Nevertheless, the study of the various carbon phases identified in this work in other ureilites with various petrologic characteristics could help to unravel the genesis of these intriguing meteorites further.

ACKNOWLEDGMENTS

We are warmly thankful to Jun-Ichi Matsuda for providing the experimental shocked graphite samples. Nathaniel Findling from the Ecole Normale Superieure in Paris is acknowledged for both acquiring and processing the X-ray Diffraction data and Omar Boudouma (University Pierre and Marie Curie) is acknowledged for performing SEM imaging. Adrian Brearley and Christian Chopin are acknowledged for reading the manuscript and providing useful corrections. Finally, we also want to thank C. Smith and D. Hezel for detailed and constructive reviews, as well as the associate editor C. Koeberl for encouraging comments.

REFERENCES

Associate editor: Christian Koeber