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Facial Action Recognition Combining
Heterogeneous Features via Multi-Kernel Learning

Thibaud Senechal, Member, IEEE, Vincent Rapp, Member, IEEE,
Hanan Salam, Renaud Seguier, Kevin Bailly and Lionel Prevost.

Abstract—This paper presents our response to the first interna-
tional challenge on Facial Emotion Recognition and Analysis. We
propose to combine different types of features to automatically
detect Action Units in facial images. We use one multi-kernel
SVM for each Action Unit we want to detect. The first kernel
matrix is computed using Local Gabor Binary Pattern histograms
and a histogram intersection kernel. The second kernel matrix is
computed from AAM coefficients and an RBF kernel. During the
training step, we combine these two types of features using the
recently proposed SimpleMKL algorithm. SVM outputs are then
averaged to exploit temporal information in the sequence. To eval-
uate our system, we perform deep experimentations on several
key issues: influence of features and kernel function in histogram-
based SVM approaches, influence of spatially-independent in-
formation versus geometric local appearance information and
benefits of combining both, sensitivity to training data and
interest of temporal context adaptation. We also compare our
results to those of the other participants and try to explain
why our method had the best performance during the FERA
challenge.

Index Terms—Facial Action Unit, LGBP, AAM, Multi-kernel
learning, FERA challenge

I. INTRODUCTION

A current challenge in designing computerized environ-
ments is to place the human user at the core of the system.
It is argued that to truly achieve effective Human-Computer
Intelligent Interaction (HCII), there is a need for the computer
to be able to interact naturally with the user, similar to the way
human-human interaction takes place. Traditional computer
interfaces ignore user affective states, resulting in a large
loss of valuable information for the interaction process. To
recognize affective state, human-centered interfaces should in-
terpret non verbal behavior like voice, body gestures and facial
movements. Among all these topics, facial expression is the
most natural way for human beings to communicate emotions
and interact with other people. This can explain why Facial
Expression Recognition and Analysis (FERA) is an active
topic in the fields of pattern recognition, computer vision and
human-computer interface. Psychological research has shown
that facial expressions and head movements are social signals
helping information transfer between humans. Experiments in
[1] show the superiority of these clues over voice tone or
spoken word (representing respectively 55%, 38% and 7% of
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the total meaning). They are widely cited and criticized as
extremely weakly founded. Nevertheless, later studies [2], [3]
show that rapid facial movements convey information about
people affective states, moods and personality. They complete,
reinforce the verbal message and are sometimes used as the
sole channel for communicating messages [4]. Automated
analysis of such signals should increase the effectiveness of
Animated Conversational Agents (ACA) and assisting robots
[5]. It should also impact researches in social psychology and
psychopathology. Finally, by capturing the subtle movement
of human facial expression, it could increase the rendering
quality of ACA and bridge the ”uncanny valley”.

The original emotional taxonomy was defined in the early
70s by Ekman [6] as a set of six basic universal facial emo-
tions (anger, disgust, fear, happiness, sadness, and surprise).
These basic emotions can be combined to form complex
emotions. While this basic emotions theory is discrete, the
dimensional approach [7] is continuous. Emotion can vary
continuously in a two (or more) dimensional space formed
(at least) by the dimensions valence (positive/negative) and
arousal (calm/excited). Another standard way is to describe the
set of muscle movements that produce each facial expression.
These movements are called facial Action Units (AUs) and
the corresponding code is the so-called Facial Action Coding
System (FACS) [8]. These AUs are combined in order to create
the rules responsible for the formation of facial expressions as
proposed in [9]. Some scientific issues concerning expression
are: spontaneous versus posed expression recognition, speech
versus non-speech expression recognition, temporal expression
segmentation or modeling the dynamic of expression.

This paper mainly focuses on AU detection (though emotion
recognition is also discussed) on the GEMEP-FERA database
(described in the section I-A). It is interesting to compare this
database with standard databases like Cohn-Kanade database
or MMI database. The main difference with Cohn-Kanade
database is that emotion displayed by actors are much more
spontaneous and natural. Sequences do not begin on the neutral
state to end on the apex expressive state. Contrary to both
(Cohn-Kanade and MMI) databases, people are less posed (in
term of face pose) and emotion is more natural and sometime
more subtle and less caricatured. Moreover, the GEMEP-
FERA database includes speech therefore a greater variability
in the appearances of the lower face AUs. This is clearly one
step towards real word conditions but expression recognizer
must be able to deal with this increasing complexity. Simple
emotion recognizer based on a single set of geometric or
appearance features may fail here. This is why we propose
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to combine heterogeneous features in an original framework
(described in section I-B) to take advantages of both geometric
and appearance features. The analysis of challenge results
(section VI-E) shows we are right.

A. Challenge context and data
Many systems have been proposed in the literature, but they

all lack a common evaluation protocol. This contrasts with
more established problems in human behavior analysis from
video such as face detection and face recognition (like FRGC
[10] or FERET [11]). The Facial Expression and Analysis
challenge (FERA), organized in conjunction with the IEEE
International conference on Face and Gesture Recognition
2011, allows a fair comparison between systems vying for
the title of ”state of the art”. To do so, it uses a partition of
the GEMEP corpus [12], developed by the Geneva Emotion
Research Group (GERG) at the University of Geneva led
by Klaus Scherer. The challenge is divided in two sub-
challenges reflecting the main streams in facial expression
analysis: emotion detection and Action Unit detection. The
AU detection sub-challenge calls for researchers to attain the
highest possible F1-measure for 12 frequently occurring AU.
The GEMEP corpus consists of over 7000 audiovisual emotion
portrayals, representing 18 emotions portrayed by 10 actors. A
subset of the GEMEP corpus was annotated in terms of facial
expression using the FACS and used in the AU detection sub-
challenge.

B. Overview of the proposed method
Most of the existing approaches to detect AUs fall into three

categories depending on the type of feature used (see Section
II). The first, and oldest, category includes geometric feature-
based methods, the second includes appearance feature-based
methods while the last considers all the methods that use
both geometric and appearance features. As geometric and
appearance feature-based methods have their own advantages
and drawbacks, we decide, as participant, to combine both. We
use classical image coding schemes: Local Gabor Binary Pat-
tern (LGBP) histograms with shape and texture parameters of
an Active Appearance Model (AAM). LGBPs, introduced by
Zhang et al. [13] for face recognition, exploit multi-resolution
and multi-orientation links between pixels and are very robust
to illumination variations and misalignment. Moreover, the use
of histograms results in the loss of spatial information which
really depends on identity. One of the drawbacks would be
the inability to capture some subtle movements useful for
Action Unit detection. To deal with it, we decide to look for
another set of features that does not lack this information.
So, we choose to use the Active Appearance Model (AAM)
introduced by Cootes et al. [14]. An AAM is a statistical model
of the shape and grey-level appearance of the face which can
generalize to almost any valid example. AAMs can provide
important spatial information of key facial landmarks but are
dependent of an accurate matching of the model to the face
images.

To perform AU detection, we select Support Vector Ma-
chines (SVM) for their ability to find an optimal separat-
ing hyper-plane between the positive and negative samples

in binary classification problems. As both features (LGBP
histograms and AAM coefficients) are very different, we do
not concatenate them in a single vector. Instead of using
one single kernel function, we decide to use two different
kernels, one adapted to LGBP histograms and the other to
AAM coefficients. We combine these kernels in a multi-kernel
SVM framework [15]. Finally, to deal with temporal aspects of
action unit display, we post-process the classification outputs
using a filtering and a thresholding technique.

In addition to detailing the steps of the AUs detector con-
ception for the FERA challenge, this article tries to emphasize
with rigorous experiments, the benefit of combining features
and the AU labels compatibility between databases.

The paper is organized as follows. Section II provides
an overview of the related research. Section III describes
image coding and details LGBP histogram and AAM coef-
ficient calculation. Section IV explains classification process
to detect AUs in facial images and post-processing temporal
analysis. Section V details experiments to validate the choice
of LGBP histograms and the histogram intersection kernel.
Section VI reports AUs detection results on the GEMEP-
FERA test dataset. Section VII reports emotion recognition
results. Finally section VIII concludes the paper.

II. STATE OF THE ART

The general flowchart of automated facial expression anal-
ysis in video sequences consists of several steps. The first
step concerns face registration (including face detection and
landmarks localization). The second one is image coding. The
third one classifies frames as positive (a single AU, an AU
combination or an emotion has occurred) or negative. Finally,
the last step is the temporal analysis.

The objective of the face registration step is to normalize the
image. Some simple normalization methods remove in-plane
rotation and scaling according to the eyes localization, while
other approaches try to remove small 3D rigid head motion
using an affine transformation or a piece-wise affine warp
[16]. Whatever the methods are, image registration relies on
preliminary face detection and facial landmarks localization.
Face detection is usually based on the public OpenCV face
detector designed by Viola and Jones [17] that applies an
attentional cascade of boosted classifiers on image patches to
classify them as face or non-face. Recent improvements of
this algorithm are presented in [18]. Once the face is detected,
there are two main streams for facial landmark localization.
The first is based on a classification framework. Detections
can be performed using a GentleBoost classifier [19] or a
MK-SVM [20] to deal with multi-scale features. Simple prior
information on facial landmark relative positions is used to
avoid some outliers. The second approach directly aligns the
face by using some kind of deformable model. For example,
Koatsia and Pitas [21] exploit the Candide grid, Asthana et al.
[22] compare different AAM fitting algorithms and Saragih et
al. [23] use Constrained Local Models. Some approaches are
based on 3D face models. Wen and Huang [24] use a 3D face
tracker called Piecewise Bezier Volume Deformation Tracker
(PBVD) and Cohn et al. [25] apply a cylindrical head model to
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analyze brow AUs and head movements. The main drawback
of this approach is the necessity of labeling manually some
landmark points in the first sequence frame before warping
the model to fit these points.

Most of the existing approaches to detect either AUs or
emotions fall into three categories: those that use geometric
features, those that use appearance features and those that
combine both geometric and appearance features. For an
extensive overview of facial expression recognition, we invite
the reader to consult [26]

Geometric-based methods try to extract the shape of facial
components (eyes, mouth, nose, etc.) and the location of facial
salient points. Depending on the previous alignment step, these
can either be a set of fiducial points or a connected face mesh.
Previous works of Pantic and colleagues were based on the
first strategy. Typically, in [27], they track 20 facial feature
points along sequences. These points of interest are detected
automatically in the first frame and then, tracked by using a
particle filtering scheme that uses factorized likelihoods and
a combination of a rigid and a morphological model to track
the facial points. The AUs displayed are finally recognized by
SVMs trained on a subset of most informative spatio-temporal
features.

On the other hand, Cohen et al. [28] use a PBVD tracker
to follow the movement of 12 facial points in sequences
expressed in term of ”Motion units”. They use a Bayesian
classifier to deal with still images and Hidden Markov Models
(HMM) to recognize emotions in a video sequence. They also
propose a multi level HMM to combine temporal information
and automatically segment an arbitrary long video sequence.
Using the same tracking method, Sebe et al. [29] tested
and compared a wide range of classifiers from the machine
learning community including Bayesian networks, decision
trees, SVM, kNN, etc.

Appearance-based methods extract features that try to repre-
sent the facial texture including wrinkles, bulges and furrows.
An important part of these methods relies on extracting Gabor
Wavelets features especially to detect AU. These features have
been widely used due to their biological relevance, their ability
to encode edge and texture and their invariance to illumination.
Bartlett et al. [30] use these features with a GentleBoost-
SVM classifier, Bazzo and Lamar [31] with a neural network
and Tong et al. [32] with a Dynamic Bayesian Network to
exploit AU relationships and AU dynamics. Other features
successfully used in AU detection are the Haar-like features
with an adaboost classifier proposed by Whitehill and Omlin
[33] or the Independent Components combined with SVMs
by Chuang and Shih [34]. For the emotion recognition task,
Moore et al. [35] combine Local Gabor Binary Pattern (LGBP)
histograms with SVM and Fasel et al. [36] combine gray-
level intensity with a neural network classifier. The challenge
organizers provide a baseline method [37] where LBP are used
to encode images, Principal Component Analysis to reduce
features vector dimension and SVM classifier to provide either
AU or emotion scores, depending on the task.

Some appearance-based methods try to extract temporal
pattern inside sequences. A typical example is the optical flow
extraction [38]. Valstar et al. [39] encoded face motion into

Motion History Images . Recently, Koelstra et al. [40] use
dynamic Texture [41]. They extract motion representation and
derive motion orientation histogram descriptors in both the
spatial and temporal domain. Per AU, a combination of dis-
criminative, frame-based GentleBoost ensemble learners and
dynamic, generative HMM detects the presence of the AU and
its temporal segment. Zhao and Pietikinen [42] apply volume
Local Binary Patterns which are the temporal equivalent of
LBP. In [19], Bartlett and colleagues Computer Expression
recognition Toolbox (CERT) is extended to include temporal
information. They show that frame-by-frame classifier accu-
racy can be improved by checking temporal coherence along
the sequence.

Finally, some studies exploit both geometric and appearance
features. For example, Tian et al. [43] or Zhang and Ji [44]
use facial points or component shapes with features like crow-
feet winkles and nasal-labial furrows. Chew et al. [45] use a
CLM to track the face and features and encode appearance
using LBP. SVM are used to classify AUs. In [46], point
displacements are used in a rule-based approach to detect a
subset of AU while the others are detected using Gabor filters
and SVM classifiers.

III. FEATURES

A. LGPB histograms

In this section, we describe how we compute Local Gabor
Binary Patterns histograms from facial images (Fig. 1). To
pre-process data, we automatically detect eyes using our own
feature localizer [20]. Eyes localization is used to remove
variations in scale, position and in-plane rotation. We obtain
facial images with the same size pixels and eye centers
remaining at the same coordinates.

1) Gabor magnitude pictures: The Gabor magnitude pic-
tures are obtained by convolving facial images with Gabor
filters :

Gk(z) =
k2

σ2
e(−

k2

2σ2
z2)(eikz − e−σ2

2 ) (1)

Where k = kve
iφu is the characteristic wave vector. We use

three spatial frequencies kv = (π2 ,
π
4 ,

π
8 ) and six orientations

φu = (kπ6 , k ∈ {0 . . . 5}) for a total of 18 Gabor filters. As the
phase is very sensitive, only the magnitude is generally kept.
It results in 18 Gabor magnitude pictures.

2) Local Binary Pattern (LBP): The LBP operator was
first introduced by [47]. It codes each pixel of an image
by thresholding its 3 × 3 neighborhood by its value and
considering the result as a binary number. The LBP of a pixel
p (value fp) with a neighborhood {fk, k = 0...7} is defined
as:

LBP (pc) =

7∑
k=0

δ(fk − fp)2k (2)

where

δ(x) =

{
1 if x ≥ 0

0 if x < 0
(3)
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Fig. 1. Local Gabor Binary Pattern histograms computation.

3) Local Gabor Binary Pattern (LGBP): We apply the LBP
operator on the 18 Gabor magnitude pictures resulting in 18
LGBP-maps per facial image. This combination of the Local
Binary Pattern operator with Gabor wavelets exploits multi-
resolution and multi-orientation links between pixels. This has
been proven to be very robust to illumination changes and
misalignments [13].

4) Histogram sequences: Each area of the face contains
different useful information for AU detection. Thus, we choose
to divide the face into several areas and compute one histogram
per area. Such a process is generally applied in histogram-
based methods for object classification. We divide each facial
image into n× n non-overlapping regions in order to keep a
spatial information. The optimal value of n will be discuss in
section V-A.

h(k) =
∑
p

I(k ≤ fp < k + 1), k = 0 · · · 255 (4)

I(A) =

{
1 if A is true
0 if A is false

(5)

For each face i, we get one vector Hi by concatenating all
the histograms. Hi is the concatenation of 18×n2 histograms
computed on each region, orientation and spatial frequency
resulting in 256× 18× n2 features per facial image.

5) Histogram reduction method: Ojala et al.[47] showed
that a small subset of the patterns accounted for the majority
of the texture of images. They only keep the uniform patterns,
containing at most two bitwise transitions from 0 to 1 for a
circular binary string.

To reduce the number of bins per histogram, we choose a
slightly different approach. As we want the contribution of
all patterns, we decide to group the occurrence of different
patterns into the same bin. First, we only keep patterns be-
longing to a subgroup of the uniform patterns: the 26 uniform
patterns that have a pair number of ”1”. This subgroup has
been chosen because all the uniform patterns are close to one
bit to at least one pattern of this sub-group and the minimum
distance between two patterns of this subgroup is 2. Then,
all patterns are grouped with their closest neighbor within
these 26 patterns. When a pattern has more than one closest
neighbor, its contribution is equally divided between all its

neighbors. For example, one third of the bin number associated
to the pattern 0000 0001 is added to the bin represented by
the pattern 0000 0000, the bin represented by 0000 0011 and
the one represented by 1000 0001.

It finally results in 26 bins per histogram instead of 256
and a 26 × 18 × n2 bins histogram Hi coding the face. A
comparison between this approach and the classical histogram
reduction approaches is realized section V-C.

The advantages of reducing the histogram size is a faster
kernel matrix computation and having less time-consuming ex-
periments without degrading the performance of the detector.

B. 2.5D Active Appearance Model
To extract the AAM coefficients, we train two 2.5D

AAM [48] local models, one for the mouth and one for both
eyes. The reason behind taking two local models instead of
one global one for the whole face comes from the fact that
in such a system, the shapes and textures of the eyes are not
constrained by the correlation with the shape and texture of
the mouth, and thus, our local AAM’s are more precise than a
global one and more efficient in the detection of many forms
which is adequate to expression analysis. More precisely, if the
testing image doesn’t present the same correlation between the
eyes and the mouth as the ones present in the learning base,
based on our experiments, a global model will probably fail
to converge while the local one will not.

Our 2.5D AAM is constructed by:
• 3D landmarks of the facial images
• 2D textures of frontal view of the facial images, mapped

on the mean 3D shape.
1) AAM training: For the training phase, the mouth sub-

model is formed of 36 points which contain points from the
lower part of the face and from the nose shape. The eyes
sub-model contains both eyes and eyebrows with 5 landmarks
on the forehead which are estimated automatically from the
landmarks of the eyes resulting in 42 landmarks (Fig. 2).

To obtain results on the Cohn-Kanade and FERA databases,
we have trained a total of 466 expression and neutral images
from the Bosphorous 3D face database [49]. This suggests a
pure AAM generalization.

The training process of the 2.5D AAM is illustrated Fig. 3.
For both sub-models, shapes are normalized using procrustes
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Fig. 2. Landmarks for the eyes and mouth models.

analysis [50] and their means, called the mean shapes s̄, are
calculated. Principal Component Analysis (PCA) is performed
on these shapes which results in the shape parameters with
95% of the variation represented by them. Thus, the eyes and
mouth shapes can be synthesized by the equation:

si = s̄+ φs ∗ bs (6)

where the matrix φs contains the eigenvectors of variation in
shapes and bs are the shape parameters.

All the textures of the eyes and mouth regions in the face
images are warped (based on Delaunay triangulation) to the
obtained mean shapes to form shape free patches and thus,
their frontal views are extracted. Then, we calculate the mean
of these textures ḡ. Another Principal Component Analysis
(PCA) is performed on these textures to obtain the texture
parameters, similarly with 95% of the variation stored in them.
Hence, texture is synthesized by:

gi = ḡ + φg ∗ bg (7)

where φg contains eigenvectors of variation in textures and
bg are the texture parameters. Parameters bs and bg are then
combined by concatenation as b = [bsbg]

T and a final PCA is
performed to obtain the appearance parameters:

b = φc ∗ C (8)

where φc are the eigenvectors and C is the vector of the
appearance parameters, which represent the shape and texture
of the mouth or of the eyes of the facial image. Because
we have a large training set, we have retained only 80% of
the energy for the third PCA for both models. This has the
advantage of reducing the computation time.

This 2.5D AAM can be translated as well as rotated with
the help of the translational and rotational parameters forming
the pose vector given as:

P = [θpitch, θyaw, θroll, tx, ty, Scale]
T (9)

where θpitch corresponds to the face rotating around the x axis
(head shaken up and down), θyaw to the face rotating around
y axis (head turned to profile views) and θroll to the face
rotating around the z axis (head doing circular rotations). tx
and ty represent the translation parameters from the supposed
origin and Scale controls the magnification of the model.

2) AAM searching: In the searching phase, the C and P
parameters are varied to obtain an instance of the model
(image synthesized by the model). This instance is placed on
the face image to be segmented. The aim is to find the optimal
vector of parameters which is the one that minimizes the pixel
error E. E being the difference between the searched face
image I(C,P ) and the one synthesized by the model M(C):

E = ||I(C,P )−M(C)|| (10)

As an optimization scheme for determining the optimal
vector of parameters, we use two consecutive Newton gradient
descent algorithms. The difference between the two is that in
the first one the learning of the relationship between the error
and the displacement of the parameters is done offline during
the training phase as proposed by Cootes [14], while in the
second one we learn this relationship online. The obtained
parameters from the first optimization scheme are entered into
the second in order to refine the results. Figure 4 shows some
results of our AAM fitting.

Fig. 4. AAM local models results on some test images showing successful
eyes and mouth segmentation.

The disadvantage of a local model with respect to a global
one is that in a global model the amount of error becomes
relatively smaller in local areas having perturbations.

IV. CLASSIFIERS

To perform the AU recognition task, we have to make
several binary decisions. Hence, we chose to train one Support
Vector Machine (SVM) per AU. To train one SVM, all images
containing the specific AU are used as positive samples (target
class) and the other images are used as negatives (non-target
class).

We have trained our detector to recognize AU (except AU25
and AU26) during speech sections as well as non-speech
sections with the FERA sequences. Thus, the speech sections
are treated like others during the test phase.

A. Multi-kernels SVMs

Given training samples composed of LGBP histograms and
AAM coefficient vectors, xi = (Hi, Ci), associated with labels
yi (target or non-target), the classification function of the SVM
associates a score s to the new sample x = (H,C):

s =

(
m∑
i=1

αik(xi, x) + b

)
(11)
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Fig. 3. AAM training using 2.5D AAM.

With αi the dual representation of the hyperplane’s normal
vector [51]. k is the kernel function resulting from the dot
product in a transformed high-dimensional feature space.

In the case of multi-kernel SVM, the kernel k can be any
convex combination of semi-definite functions.

k(xi, x) =

K∑
j=1

βjkj with βj ≥ 0,

K∑
j=1

βj = 1 (12)

In our case, we have one kernel function per type of features.

k = β1kLGBP (Hi, H) + β2kAAM (Ci, C) (13)

Weights αi and βj are set to have an optimum hyperplane in
the feature space induced by k. This hyperplane separates posi-
tive and negative classes and maximizes the margin (minimum
distance of one sample to the hyperplane). This optimization
problem has proven to be jointly-convex in αi and βj [52],
therefore there is a unique global minimum, which can be
found efficiently.
β1 represents the weight accorded to the LGBP features

and β2 is the one for the AAM appearance vector. Thus,
using a learning database, the system is able to find the best
combination of these two types of features that maximizes the
margin.

This is a new way of using multi-kernel learning, instead
of combining different kinds of kernel functions (for example
Gaussian radial basis functions with polynomial functions), we
combine different features.

The AAMs modelling approach takes the localization of
the facial feature points into account and leads to a shape-
free texture less-dependent to identity. But one of the severe
drawbacks is the need of a good accuracy for the localization
of the facial feature points. The GEMEP-FERA database
contains large variations of expressions that sometimes lead
to inaccurate facial landmarks tracking. In such cases, multi-
kernel SVMs will decrease the importance given to AAM
coefficients.

B. Kernel functions
In the section V, experimental results show that in

histogram-based AU recognition, LGBP histograms are well-
suited with the histogram intersection kernel:

KLGBP (Hi, Hj) =
∑
k

min(Hi(k), Hj(k)) (14)

For the AAM appearance vectors, we use the Radial Basis
Function (RBF) kernel :

KAAM (Ci, Cj) = e−
‖si−sj‖

2
2

2σ2 (15)

With σ a hyper-parameter we have to tune on a cross-
validation database.

C. Temporal filtering

To take temporal information into account, we apply, for
each AU, an average filter to the outputs of each SVM
classifier of successive frames. The size of the average filter
has been set to maximize the F1-measure reached on the
training database.

Fig. 5 shows results obtained on one sequence using this
approach. Table IV reports optimal filter size for each AU.

V. EXPERIMENTAL RESULTS WITH HISTOGRAM-BASED
APPROACHES.

In this section we report previous experiments [53] per-
formed on the Cohn-Kanade databases using a histogram-
based approach. These previous results led us to choose the
LGBP sequences and a histogram intersection kernel for the
FERA challenge. We report the area under the ROC curve
(2AFC) obtained in a leave-one-subject-out cross-validation
process for 16 AUs: 7 upper face AUs (1, 2, 4 ,5, 6, 7 and 9)
and 9 lower face AUs (11, 12, 15, 17, 20, 23, 24, 25 and 27).
We compare different types of histograms, different methods
to divide the image in blocks and different kernels used with
an SVM classifier.

A. Features

In Fig. 6, we compare the performance of different types
of histograms using the histogram intersection kernel. The
histograms computed from LBP maps and Gabor magnitude
pictures perform much better than gray level histograms. The
combination of both (LGBP) leads to the highest results.
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Fig. 5. Signed and thresholded SVM outputs on one sequence of the GEMEP-FERA database.
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Fig. 6. Results on the Cohn-Kanade database, using different types of
histograms with an SVM classifier and the histogram intersection kernel.

In Fig. 7, we compare the performance using different
methods to divide the 128×128 image in block(s). We divide
the image in n × n blocks, with n varying from 1 (full image,
dimension is 1 × 6 × 3 × 256 = 768) to 6 (36 blocks,
dimension is 36 × 6 × 3 × 256 = 165888). We can see that,
for n lower or equal to 4, accuracy increases with n, then, it
keeps quite stable. So we can say that 4x4 is a good trade of
between accuracy (detection rate) and speed (dimensionality).

B. Kernel functions

Fig. 8 shows results performed with LGBP histograms and
different kernels. For the polynomial and the RBF kernel,
different values of the polynomial order and the standard
deviation were tested. Experimental results are reported for
the best parameter value. Though it results in over-fitting, it
leads to lower performances than other kernels. Best results
are reached with the histogram intersection kernel. Compared
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Fig. 7. Results on the Cohn-Kanade database, using different methods to
divide the image in blocks.

to the linear kernel, the mean area under the ROC is increased
from 95.5% to 97.2% and 93.0% to 96.1% for upper and lower
AUs respectively. The RBF kernel leads to fair results but was
directly tuned on the database.

C. Histogram reduction

Tab I shows the effect of different histogram reduction
methods on the 2AFC performance. The 2AFC performance
is not deteriorated when reducing the histogram bins number
using the uniform patterns method or ours. However, our
method results in a smaller histogram size than the uniform
one. The rotational invariant patterns reduce the 2AFC score,
this shows that an inappropriate regroupment of bins can
decrease the performance of the AU detector.
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Fig. 8. Results on the Cohn-Kanade database, using LGBP histograms, an
SVM classifier and different types of kernels.

Type of reduction bins per 2AFC(%)
histogram upper lower

None 256 97.2 96.0
This work (cf. III-A5) 26 97.2 96.1

Uniform patterns 58 97.3 96.1
Rotational invariant patterns 28 95.8 92.9

Uniform rotational 9 95.7 92.6invariant patterns

TABLE I
2AFC ON THE COHN-KANADE DATABASE FOR DIFFERENT HISTOGRAM

REDUCTION METHODS.

VI. EXPERIMENTS ON THE GEMEP-FERA DATABASE

In this section we explain the training process of the
AUs detector and report experiments on the GEMEP-FERA
database. We used the training database of the challenge to
study two points: (1) the interest of the fusion of two different
types of features, (2) the use of different databases to recognize
AUs.

A. Setup

1) Performance measurement: The F1-measure has been
used to compare the participants’ results in the AU sub-
challenge. The F1-measure considers both the precision p and
the recall r of the test results to compute the score: p is the
number of correct detections divided by the number of all
returned detections and r is the number of correct detections
divided by the number of detections that should have been
returned. The F1-measure can be interpreted as a weighted
average of the precision and recall, where an F1-measure
reaches its best value at 1 and worst score at 0.

F = 2 · p · r
p+ r

(16)

To compute this measure, we need to threshold the outputs
of our SVM classifiers. This is the major drawback of this
measure, it is really dependent of the value of this threshold,

which explains why a naive system has performed better in
terms of F1-measure than the baseline method of the organizer
[37].

Hence, we chose to use a second measure that does not
need the thresholding of the SVM outputs: the area under
the ROC curve. By using the signed distance of each sample
to the SVM hyper-plan and varying a decision threshold, we
plot the hit rate (true positives) against the false alarm rate
(false positives). The area under this curve is equivalent to the
percentage of correct decisions in a 2-alternative forced choice
task (2AFC), in which the system must choose which of the
two images contains the target.

The 2AFC or area under the ROC curve is used to optimize
the part of the system leading to unsigned values (SVM slack
variable and the RBF kernel parameter). The F1-measure
is used only to optimize the part of the system converting
signed values to binary values (size of the average filter and
thresholds).

2) Cross-Validation: For the experiments, the following
databases are used as training databases:

• The Cohn-Kanade database [54]: the last image (expres-
sion apex) of all the 486 sequences. It contains images
sequences of 97 university students ranging from ages of
18-30. The lighting conditions and context are relatively
uniform and the images include small in-plane and out-
plane head motion.

• The Bosphorus database [49]: around 500 images chosen
because they exhibit a combination of two AUs. The
lighting conditions and context are relatively uniform and
the images include small in-plane and out-plane head
motion.

• The GEMEP-FERA training dataset [12]: one frame
from every sequence for every AU combination present
resulting in 600 images.

The occurrence of each AU in these databases is reported
Tab. III.

We use all the GEMEP-FERA training dataset as a cross-
validation dataset to optimize the SVM slack-variable and, if
needed, the RBF kernel parameter. We realize a 7-fold subject
independent cross-validation. All the images of one subject
from the GEMEP-FERA training dataset are used as a test
set (around 800 images). Images of other subjects within the
600 selected from the GEMEP-FERA training dataset, and
eventually from other databases, are used as a training dataset.

After this cross-validation, to have 2AFC performances, we
train the SVM classifiers with the optimized parameters on
all the training dataset and apply them on the GEMEP-FERA
test dataset for which we do not have the AU labels. Then,
we send the signed outputs to the challenge organizers to have
the 2AFC score.

To have the F1-measure performance, we merge the results
of the 7-fold subject independent cross-validation. This leads
to an SVM output for each AU and for each frame of the
GEMEP-FERA training dataset. For each AU, we learn the
size of the average filter and the decision threshold that lead
to the best F1-measure. Using all these optimized parameters,
we retrain the classifiers on all images, apply them on the
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GEMEP-FERA test dataset and send the binary outputs to the
challenge organizers to have the F1-measure.

B. Features and fusion strategies evaluation

In this section, we train the system on the GEMEP-FERA
training dataset, and report the 2AFC score on the GEMEP-
FERA test dataset using different features and the fusion of
features. After sending our signed outputs, organizers sent
us 2AFC for each AU in 3 cases: person independent (test
subjects are not in the training database), person specific (test
subjects are in the training database) and overall. We report
in Tab. II overall results for each AU and the average for the
person specific, person independent and overall case.

Using only LGBP, we notice that we already have much bet-
ter results than the baseline proposed by the organizers (68.3%
against 62.8% overall). The two methods are really similar:
equivalent setup, same training database, same classifier, only
the features and the kernel function of the SVM are different.
This confirms the results presented in section V.

Using only the AAM appearance vector, we notice that we
have good results using the mouth AAM to detect the AUs
localized in the lower part of the face. Results are even better
than LGBP for the AUs 15, 17, 18, 25 and 26 (68.7% 67.1%
75.3% 69.6% and 67.5% against 63% 65.8% 70.4% 59.8% and
64.3% respectively). Results obtained for the upper part of the
face are obviously not of a big importance (close to a random
classifier’s response) using mouth information. Only the AU
6 is well detected, this is because this AU (cheek raiser) often
appears with the AU12 (the smile). With eyes AAM, results
are just slightly better than random classifiers (56.8% where
a random system does 50%). This can be explained by the
difficulty in fitting AAM with enough accuracy to detect AUs.
The eyebrows, for example, are difficult to localize, especially
when hair hides them.

Regarding the fusion, we notice that the eyes AAM does not
increase performances if coupled with LGBP histograms. But
the mouth AAM or both AAMs coupled with LGBPs lead
to the best results. Surprisingly, the detection of the upper
part face AUs is improved with the mouth AAM: 81.8%,
83.4%, 80.9% 71.0% for the AUs 1 2 6 and 7 respectively
against 78.8% 77.1% 77.0% and 68.5% with LGBP only. As
previously mentioned, the improvement for the AU 6 can be
explained by the fact that this AU is related to the AU 12.
However the improvement brought by the fusion for the other
AUs is more difficult to interpret. The multi-kernel classifier
may use the information given by the mouth AAM not to
directly detect these upper part AUs, but to have information
about the subject (for example, information about its identity,
skin type...) that can help the classifier to better analyze LGBP
features and increase the precision of the AUs detection using
these LGBP features. This shows the interest of combining
two types of different features.

Overall, the fusion of both AAMs with LGBP increases
experimental results for 7 over 12 AUs, the AUs 1 2 6 7 12
17 and 18.

Finally, if we compare results in the person specific and
person dependent cases, we notice that the fusion is better

than using only one feature type particularly in the person
specific case.

C. AU labels transfer between databases

To evaluate the compatibility of AU labels between
databases, we use the fusion of LGBP with AAM coefficients
and train the system using different learning databases. We
report in Tab. III experimental results on the GEMEP-FERA
test dataset. We proceed to several tests using different combi-
nations of the three different learning databases introduced in
VI-A2. An enhanced learning database leads to better results:
the system learned on the GEMEP-FERA and Cohn-Kanade
databases and the system learned on the GEMEP-FERA and
Bosphorus databases give better results than the system learned
only on the GEMEP-FERA database (75.0%, and 73.7%
respectively against 70.6%). However, adding the Bosphorus
database to a training dataset already composed of the CK and
the FERA decreases performances, as mixing databases may
introduce too large variability in the AUs representation.

Test being on the GEMEP-FERA database, results using
only the Cohn-Kanade and the Bosphorus databases are lower.
Nevertheless, this last result highlights the good generalization
ability of this framework.

Similar conclusions are reported in [19]. Without any re-
training on FERA dataset, raw performances reached a 2AFC
score of 72%. After retraining the whole system with all the
datasets (including FERA), it reaches 76%.

A deeper study of Tab.III leads to the following conclusions:
the first three trainings always include FERA database while
the fourth one (CK and Bosphorus) exclude it. So, a possible
explanation is that the greater variability induced by speech
has been learnt by the system in the first three cases, leading
to better generalizability on FERA test data. On the opposite,
the fourth system is not able to generalize on speech sequences
it has not seen during training.

D. Temporal filtering

To test the impact of the average filtering presented in
section IV-C, we use the framework combining LGBP and
AAM coefficients trained on the GEMEP-FERA and Cohn-
Kanade databases. We report in Tab. IV, the filter size for
each AU and the 2AFC scores using or not this filter.

We notice that the average filter significantly increases the
2AFC for all AUs.

E. Comparison on the test dataset with other methods

For the challenge, we did not know these previous results
computed on the GEMEP-FERA test dataset and so we could
not use them to tune our system (for example by choosing the
best databases combination to train each AU). We chose to use
a fusion of LGBP and both AAMs coefficients and we trained
the classifiers with the GEMEP-FERA, CK and Bosphorus
databases for the AUs 1 2 4 12 15 17 and the GEMEP-FERA
and CK databases for the other AUs. We chose not to use the
Bosphorus database for the AUs that are not present in this
database. The F1 scores obtained this way during the challenge



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

LBP LGBP eyes AAM mouth AAM both AAMs LGBP + LGBP + LGBP +
(baseline) eyes AAM mouth AAM both AAMs

upper AU

AU1 79.0 78.8 60.5 54.4 62.3 77.6 81.8 80.3
AU2 76.7 77.1 57.4 51.3 57.4 57.0 83.4 82.7
AU4 52.6 62.9 62.0 56.4 59.3 62.4 61.3 58.5
AU6 65.7 77.0 56.4 75.8 80.9 79.3 80.9 81.0
AU7 55.6 68.5 67.8 54.3 54.4 72.5 71.0 71.2

lower AU

AU10 59.7 51.9 43.2 56.3 51.9 49.9 52.7 52.1
AU12 72.4 79.9 63.9 69.9 79.5 81.7 82.3 82.2
AU15 56.3 63.0 58.3 68.7 71.2 67.1 59.6 61.4
AU17 64.6 65.8 51.9 67.1 66.3 67.2 72.5 70.7
AU18 61.0 70.4 51.9 75.3 75.8 54.8 79.0 78.5
AU25 59.3 59.8 55.6 69.6 63.6 56.0 63.5 65.6
AU26 50.0 64.3 57.0 67.5 58.6 58.7 64.8 62.9

Avg person-specific 63.1 67.8 57.4 63.6 65.5 65.5 71.6 71.5
Avg person-independent 61.1 68.0 57.4 65.3 66.1 65.9 69.5 69.0

Avg overall 62.8 68.3 56.8 63.9 65.1 65.3 71.1 70.6

TABLE II
2AFC SCORES ON THE GEMEP-FERA TEST DATASET USING LGBP, EYES AAM COEFFICIENTS, MOUTH AAM COEFFICIENTS, CONCATENATION OF THE

EYES AAM COEFFICIENTS AND THE MOUTH AAM COEFFICIENTS AND THE FUSION OF LGBP WITH AAM COEFFICIENTS.

Number of samples Training databases
FERA CK Bos FERA FERA + CK FERA + Bos FERA + CK + Bos CK + Bos

upper AU

AU1 202 143 46 80.3 86.4 77.5 81.2 63.7
AU2 206 96 105 82.7 89.4 87.7 89.0 79.2
AU4 169 155 105 58.5 66.7 64.9 64.2 51.1
AU6 192 111 1 81.0 82.9 81.9 82.6 74.9
AU7 237 108 1 71.2 74.7 71.5 72.6 61.7

lower AU

AU10 250 12 0 52.1 53.1 53.2 53.3 56.0
AU12 317 113 108 82.2 85.1 84.6 84.7 81.1
AU15 125 74 55 61.4 67.4 68.9 65.3 58.7
AU17 144 157 71 70.7 72.9 74.4 71.1 59.9
AU18 65 43 0 78.5 80.5 81.2 79.2 64.1
AU25 111 294 0 65.6 72.6 68.9 71.2 74.8
AU26 62 38 0 62.9 68.3 69.5 73.5 70.7

Avg person-specific 71.5 75.4 74.1 74.9 68.3
Avg person-independent 69.0 74.7 73.9 74.0 64.1

Avg overall 70.6 75.0 73.7 74.0 66.3

TABLE III
NUMBER OF SAMPLES IN EACH DATABASE AND 2AFC SCORES ON THE GEMEP-FERA TEST DATASET USING DIFFERENT TRAINING DATABASES.

Filter size No filtering Average filtering

upper AU

AU1 7 86.4 88.9
AU2 7 89.4 91.4
AU4 5 66.7 68.0
AU6 7 82.9 84.9
AU7 5 74.7 76.1

lower AU

AU10 7 53.1 53.7
AU12 7 85.1 86.3
AU15 7 67.4 70.0
AU17 3 72.9 74.7
AU18 3 80.5 81.9
AU25 5 72.6 73.6
AU26 5 68.3 71.2

Avg person-specific 75.4 77.0
Avg person-independent 74.7 76.6

Avg overall 75.0 76.7

TABLE IV
FILTER SIZE (NUMBER OF SUCCESSIVE FRAMES TAKEN INTO ACCOUNT)

AND 2AFC SCORES ON THE GEMEP-FERA TEST DATASET USING OR
NOT AN AVERAGE FILTER ON THE SVM OUTPUTS.

0	
   10	
   20	
   30	
   40	
   50	
   60	
   70	
  

Baseline	
  

MIT-­‐Cambridge	
  

QUT	
  

KIT	
  

UCSD	
  

This	
  work	
  

Person	
  Specific	
  

Person	
  independent	
  

Fig. 9. FERA challenge official F1 results of all participants. UCSD:
University of San Diego [19]. KIT: Karlsruhe Institute of Technology. QUT:
Queensland University of Technology [45]. MIT-Cambride : Massachusetts
Institute of Technology and University of Cambridge [46].

and those of all participants are reported in Fig. 9. The system
described in this article outperformed all other systems in the
person independent and in the person specific case.

A synthesis of the different results presented in this article
and a comparison of the different methods of each participant
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Participants Type Features Classifiers Learning database F1 2AFC
1-Baseline[37] A, F LBP histograms + PCA SVM G 0.45 0.63
2-Baltrusaitis et al.[46] G+A, T Tracked landmark + Gabor filters Rule based + SVM G 0.46
3-Chew et al.[45] G, T Constrained Local Models SVM G+CK 0.51
4a-Wu et al.[19] A, F Gabor filters AdaBoost + SVM G + CK + MMI + pr 0.55 0.72
4b A, C Gabor filters AdaBoost + SVM G + CK + MMI + pr 0.58 0.76
5a-This work A, F LGBP histogram SVM G 0.68
5b G+A, F AAM SVM G 0.65
5c G+A, F LGBP histogram + AAM MKL SVM G + CK + Bos 0.75
5d G+A, C LGBP histogram + AAM MKL SVM G + CK + Bos 0.62 0.77

TABLE V
PARTICIPANT SUMMARY TABLE EXPOSINGNG THE DIFFERENT TYPES OF APPROACHES - G/A : GEOMETRIC/APPEARANCE. F/T/C :

FRAME-BY-FRAME/TRACKING/CONTEXT. G/CK/MMI/BOS/PR : GEMEP-FERA, COHN-KANADE, MMI, BOSPHORUS AND PRIVATE DATABASE.

is summarized in Tab. V.
First, let us compare purely appearance-based approaches.

Participant 1 used LBP histograms (reduced by PCA) and
SVM with RBF kernel, 5a used LGBP histogram and SVM
with histogram intersection kernel. The increasing accuracy
(from 62.8 to 68.3) can easily be explained by a slight
superiority of Gabor encoding (also reported in [19]) over
LBP and, last but not least, a kernel function well-suited to the
feature it has to deal with. Participant 3 should be compared
with participant 5 second experiment (5b). The first uses CLM,
the second one, AAM. They take advantages of both geomet-
rical and local appearance information. Unfortunately, as the
training dataset and the performance measure are different,
we cannot fairly compare results. Anyway, these experiments
show lower accuracy than previous purely appearance-based
methods. These results are only outperformed when participant
5 in his third experiment (5c) combines spatial-independent
appearance features (LGBP) with geometric and local ap-
pearance information (AAM) with the help of Multi-Kernel
SVMs. Finally, we can notice that taking into account the
temporal sequence context improve overall accuracy as shown
in Participant 4 experiments (from 72.3 to 75.8) as well as
participant 5 fourth experiment (from 75.0% to 76.7%).

VII. EMOTION RECOGNITION RESULTS

In this section, we also evaluate our framework for emotion
detection which corresponds to the second task of the FERA
challenge. The objective is to assess the relevance of our
framework to deal with a different kind of data. In fact,
information of the emotion is more spread over the entire face
and it involves a higher level of interpretation.

The objective of emotion detection task is to label each
sequence with one of the five discrete emotion classes: Anger,
Fear, Joy, Relief and Sadness. This task differs from the pre-
vious task in that the decision is made for the entire sequence,
contrary to the previous frame by frame AU detection. In
addition, this classification problem corresponds to a 5-class
forced choice problem. So, we have to slightly adapt our
framework in order to match these constraints. We adopt a
straightforward strategy similar to that proposed by [37]. For
the training step, we consider that all images of a sequence
are equally informative. So we keep one quarter of the images
uniformly distributed over the sequence in order to train our
one-against-all multi-class SVM. During testing, we apply our

50# 55# 60# 65# 70# 75# 80# 85# 90#

UCL#
ANU#

UCSD/CERT#
KIT#

UIUC/UMC#
This#work#

UC#Riverside#

Fig. 10. Comparison of our method emotion classification rate with results
of the FERA emotion sub-challenge.

detector on every frame of the sequence and the emotion label
which occurred in the largest number of frame is assigned to
the sequence.

Classification rates we obtained for the emotion detection
sub-challenge are reported in table VI. The overall results are
compared with those obtained by the participants of the FERA
emotion sub-challenge and shown in Fig. 10. We can notice
that our method obtains the second best result for this task.

PI PS Overall
Anger 92.9 100 96.3
Fear 46.7 90.0 64.0
Joy 95.0 100 96.8

Relief 75.0 100 84.6
Sadness 60.0 100 76.0

Avg. 73.9 98.0 83.5

TABLE VI
CLASSIFICATION RATES FOR EMOTION RECOGNITION ON THE TEST SET

FOR OUR METHOD. PERFORMANCE IS SHOWN FOR THE PERSON
INDEPENDENT (PI), PERSON SPECIFIC (PS) AND OVERALL PARTITION.

VIII. CONCLUSION

We have proposed here an original framework to perform
action unit detection. We combine spatial-independent feature
extraction (LGBP histograms) and statistical spatial shape and
texture information (AAM coefficients). To deal with these two
kinds of information and take the best of both, we propose
to use advanced learning machine algorithms. Multi-kernel
SVMs can help in selecting the most accurate information as
each kernel function is weighted depending on this latter.
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Experimental results in person-independent and person-
specific setups show that LGBP histograms perform better
than AAM. We had difficulties in fitting AAMs on expressive
faces with enough accuracy to detect AUs, specifically in the
upper part of the face. But even with inaccurate AAMs, the
combination of features increases the area under the ROC
curve of 9 over 12 AUs. Experiments using different learning
databases show the limited compatibility of AU labels between
databases.

Finally, F1 results obtained with this system were the
best among all participants showing the good performance of
the chosen approach. This success can be explained by the
following points:

• The good overall generalization ability of LGBP his-
tograms coupled with an intersection histogram kernel.

• The use of multi-kernel learning to fuse features.
• The optimization of the 2AFC score first and then the F1

measure during the cross-validation process.
• The use of several training databases. Even if our choice

was not optimal, as using only the FERA-GEMEP
database and the Cohn-Kanade database would have led
us to better results.

But overall results remain insufficient, some AUs are de-
tected with an accuracy just slightly better than their detection
with a random system. There is still room for improvement.
Like most of the participants, we detect AUs frame by frame,
using static classifiers. To exploit the temporal component of
the sequences, we only use an average filter on the SVM
outputs. We believe that experimental results could be signifi-
cantly increased by finding segments in a sequence containing
the start and the end of the AU.
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