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On a voltage-conductance kinetic system for integrate&fire neural
networks

Benôıt Perthame∗† Delphine Salort‡

October 9, 2013

In memory of late Seiji UKAI, a pioneer in kinetic theory

Abstract

The voltage-conductance kinetic equation for integrate and fire neurons has been used in neu-
rosciences since a decade and describes the probability density of neurons in a network. It is used
when slow conductance receptors are activated and noticeable applications to the visual cortex have
been worked-out. In the simplest case, the derivation also uses the assumption of fully excitatory
and moderately all-to-all coupled networks; this is the situation we consider here.

We study properties of solutions of the kinetic equation for steady states and time evolution
and we prove several global a priori bounds both on the probability density and the firing rate
of the network. The main difficulties are related to the degeneracy of the diffusion resulting from
noise and to the quadratic aspect of the nonlinearity.

This result constitutes a paradox; the solutions of the kinetic model, of partially hyperbolic
nature, are globally bounded but it has been proved that the fully parabolic integrate and fire
equation (some kind of diffusion limit of the former) blows-up in finite time.

Mathematics Subject Classification : 35Q84; 62M45; 82C32; 92B20

Key-words : Integrate-and-fire networks; Voltage-conductance kinetic equation; Neural networks;
Fokker-Planck equation

1 Introduction

Nonlinear Partial Differential Equations arise naturally in the study of neural networks as the closure
for a large number of weakly connected neurons in a mean field limit. The complexity of the descrip-
tion of spikes by Hodgkin-Huxley system has lead many authors to use a simplified yet realistic version
called integrate and fire where firing of neurons is assumed when a potential threshold, denoted by
VF below, is achieved. When the network is described solely by the membrane potential v of neurons,
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the foundations are well established, from physical considerations, comparisons to experimental ob-
servations and mathematical theories [9, 7, 16, 15]. The nonlinearity arises through the total activity
of the network (number of spikes per unit of time) at two levels; it generates a current and also an in-
ternal noise. For an excitatory network, a recent result is that solutions may blow-up in finite time [10].

For slow post-synaptic receptors, it is necessary to include the dynamics of conductances [23] and
this induces to describe the neurons by the probability density p(v, g, t) to find neurons at time t with
a membrane potential v and a conductance g. This leads to kinetic equations which mathematical
structure is reminiscent from the classical Vlasov-Fokker-Planck equation for charged particles [17].
A class of such problems arising in neurosciences has been studied recently by probabilistic methods
[26, 20]. For networks, the derivation of a mean field equation has been proposed in the last decade
for Hodgkin-Huxley or FitzHugh-Nagumo models [3], and for integrate and fire models [12]. Another
direction, still giving rise to a kinetic equation, is to structure the system in voltage and current [8].
The models are derived from coupled excitatory neurons where the membrane potential of each neuron
is governed by a linear integrate and fire equation coupled with a conductance-based equation which
depends on the firing rate of all the neurons. For integrate and fire models, several studies have been
devoted to this kinetic equation as their derivations and applications in particular to the primary
visual cortex (V1) [11, 19], their numerical solution [22, 11]. However, this equation has never been
studied from a theoretical mathematical point of view. In particular the question of blow-up in finite
time is open in comparison with the purely parabolic case. This is our main motivation here; we are
going to establish a priori bounds which show that solutions are global.

These global bounds show a paradox; the kinetic model of hyperbolic nature admits global solutions
but the parabolic integrate and fire equation blows-up in finite time. This is similar to the Keller-Segel
system which has led to an important literature. The intuition explaining this contradiction is that
the times scales in the kinetic and drift-diffusion equations are not the same and the kinetic model is
established on a shorter time scale while blow-up occurs at a longer time scale.

The end of this paper is organized as follows. In the next section we present the kinetic model
and explain the difficulties to handle it theoretically. The third section is devoted to the stationary
state for the linear equation. We prove existence and uniqueness results and some regularity on the
solution (see Theorem 1). In section 4, we consider the nonlinear kinetic equation; we give some
criteria on the strength of synaptic coupling to classify the regimes where stationary states exist or
not (see Theorem 3). Section 5 is concerned with some a priori bounds which ensure that, as long as
the solution exists, the propagation of moments holds. Moreover, we obtain some a priori integrability
estimates on the total activity of the network. This allows us to prove in particular that for high
interconnections, the total firing rate cannot be bounded for large time and thus periodic solutions
cannot exist. The last section is devoted to prove some gain of regularity of the solution and some
higher integrability in Lq, q > 1 for the total activity of the network.

2 The voltage-conductance kinetic system

The voltage-conductance kinetic system is a nonlinear (2+1) dimensional kinetic Fokker-Plank equa-
tion which describes the probability density p(v, g, t) to find neurons at time t with a membrane
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potential v ∈ (0, VF ) and a conductance g > 0. It is written as

∂

∂t
p(v, g, t)+

∂

∂v

[(
− gLv + g(VE − v)

)
p(v, g, t)

]
+
∂

∂g

[
gin(t)− g

σE
p(v, g, t)

]
−a(t)
σE

∂2

∂g2
p(v, g, t) = 0, (1)

together with an initial data that satisfies

p0(v, g) ≥ 0,

∫ VF

0

∫ ∞

0
p0(v, g)dv dg = 1.

The nonlinear aspect comes from the term gin(t). To define it we first introduce

N(g, t) := [−gLVF + g(VE − VF )]p(VF , g, t) ≥ 0, N (t) :=

∫ +∞

0
N(g, t)dg, (2)

where N(g, t) represents the g-dependent firing rate. We then define the drift and diffusive coefficients
as follows

gin(t) = fEν(t) + SEN (t), (3)

a(t) =
1

2σE

(
f2Eν(t) +

S2
E

NE
N (t)

)
. (4)

The parameters that enter this equation have the following interpretations
• VE is the excitatory reversal potential,
• Firing occurs when the voltage reaches the threshold VF ,
• Reset is at VR and we consider that 0 = VR < VF < VE ,
• gL > 0 denotes the leak conductance,
• gin ≥ 0 is the conductance induced by input currents,
• N (t) ≥ 0 is the total firing rate (measures the activity of the network),
• a(t) = a(N ) > 0 represents the intensity of the synaptic noise,
• σE > 0 denotes the time decay constant of the excitatory conductance,
• SE ≥ 0 denotes the synaptic strength of network excitatory coupling,
• fE > 0 denotes the synaptic strength of the external input ν(t),
• NE provides the overall normalization of the coupling strength.

This kinetic equation (1) is physically derived in [12], [22] and assumes that fE and SE
fE

are small
enough.

Assumptions and notations. We assume that the external input rate ν(t) satisfies for all t ≥ 0

0 < νm ≤ ν(t) ≤ νM <∞. (5)

It is sometimes convenient to use notations for the fluxes in (1)

Jv(v, g) := (−gLv + g(VE − v)), Jg(g) := σ−1
E (gin(t)− g). (6)

Then, equation (1) can be rewritten as

∂

∂t
p(v, g, t) +

∂

∂v
[Jvp(v, g, t)] +

∂

∂g
[Jgp(v, g, t)] −

a(t)

σE

∂2

∂g2
p(v, g, t) = 0.
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Boundary conditions. We need to impose boundary conditions at v = 0, VF and g = 0,+∞.
To define the boundary conditions on v = 0 and v = VF , it is assumed that when a neuron reach the
threshold voltage VF , the voltage instantaneously resets to the value VR = 0, without refractory states
and that the conductance stays with the same value upon voltage reset. More precisely, if we set
gF = gLVF

VE−VF
, then, for g ≤ gF , the two fields Jv at v = 0, VF are in-coming and we use the Dirichlet

condition
p(0, g, t) = p(VF , g, t) = 0, for g ≤ gF . (7)

For g > gF , the field Jv is out-going at v = VF and in-going at v = 0. The model expresses that
neurons undergo a discharge at VF and are reset at VR = 0 which leads to write

gVEp(0, g, t) = [−gLVF + g(VE − VF )]p(VF , g, t) for g > gF . (8)

Notice however that this flux equality holds globally for all g ∈ (0,∞).
The boundary conditions at g = 0 and g = +∞ are simply zero flux conditions

(−g + gin)p(v, g, t) − a
∂

∂g
p(v, g, t) = 0, for g = 0, g = +∞. (9)

Those boundary conditions, when integrating the equation (1), imply the conservation property

∫ VF

0

∫ ∞

0
p(v, g, t)dv dg = 1 (10)

which is in accordance with the interpretation that the solution is a probability density (when the
initial data is).

Main difficulties. The kinetic equation (1) generalizes the Fokker-Planck-Kolmogorov equations for
network integrate and fire models (see [9, 10, 15] and references therein) which describe the dynamic
on the neurons only via their potential membrane. Hence, the theoretical study of equation (1) is a
priori more complicate than the Fokker-Planck equations. In particular, all the difficulties encountered
for the former arise also in our context in particular the possible blow-up in finite time.
A first difficulty is that the operator

∂

∂v

[(
− gLv + g(VE − v)

)
p(v, g, t)

]
+

1

σE

(
∂

∂g
[(gin(t)− g)p(v, g, t)] − a(t)

∂2

∂g2
p(v, g, t)

)

has a partial diffusion on the variable g only. A consequence is the difficulty to prove regularity for
the solution, even in the linear case (SE = 0) or for the stationary states (gin(t) = cst). However,
the hypoelliptic character ([25]) of the above operator added to the specificity of dimension 2+1 gives
us an opening to obtain some regularity. More precisely, for the stationary states (when they exist),
we prove some smoothness, in terms of derivatives, of the solution in both directions, which implies
that the stationary states live in some Lq space, q > 1. For the evolution equation, the strategy is
completely different, and we obtain some a priori estimates where the solution propagates the moments
well in Lq, q ≥ 1 (without proving smoothness in term of derivatives), by using multipliers adapted
to the above operator (see sections 3 and 6).
The second difficulty comes from the nonlinearity. It is driven by the average N (t) of the boundary
flux N(t, g), and it is difficult to prove bounds on these quantities. We obtain a priori estimates where
N is locally in Lq, q > 1 in time (see Theorem 7), assuming the initial data is sufficiently decreasing at
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infinity (typically a Gaussian in the variable g). This control of the firing rate points out the difference
between the dynamic of the kinetic equation and the integrate and fire equation structured only by the
potential, where blow-up of solutions arises, even for smooth initial data and weak interconnections.
This arises with an L1

loc bound on N (t) because a Dirac mass forms in finite time, see [10]. Moreover,
our a priori estimates on N (t) proved in Theorem 7 are a support to rigorously prove global existence
of solutions of equation (1), following the Lions-Aubin time compactness argument. Finally, let us
mention that the very intuitive result of convergence of the solution to the stationary states for
weak connections (numerically observed, see [11] and references therein) seems theoretically a difficult
question because of the degeneracy of the kinetic equation; in particular, convergence to the stationary
state in the case of weak interconnections can not be directly deduced by a perturbation argument
from our result in the linear case (see Theorem 2).

3 The steady state for the linear equation (SE = 0)

Our first goal is to study the stationary state associated to the linear equation (1), that is when gin
and a are two positive constants. The equation is then given by





∂
∂v

[(
− gLv + g(VE − v)

)
p(v, g)

]
+ ∂

∂g

[
gin−g
σE

p(v, g)
]
− a

σE

∂2

∂g2
p(v, g) = 0,

∫ ∞

0

∫ VF

0
p(v, g)dvdg = 1, p(v, g) ≥ 0,

(11)

with the boundary conditions(7), (8), (9).

The main difficulty is to prove some a priori regularity estimates on the solution in order to obtain
that the solution has a higher integrability than merely L1. Indeed, only partial regularity stems from
the diffusion in g but estimates in v come from the hypoelliptic character of this kinetic equation,
sharing thus many similarities with the kinetic Fokker-Planck equations which have been recently
studied by many specialists [5, 25, 1]. This structure will allow us to derive some Sobolev regularity
and, by variants around Sobolev injections, higher integrability than L1. However we do make use
explicitly of commutators in our approach. These estimates are the first step to prove existence of a
nontrivial and nonnegative solution of equation (11) by an approximation argument.

Our approach uses the Besov spaces, variants of the classical Sobolev spaces W s,p, defined as follows
(see for example [14], [2] and references therein)

Definition 1 Let Ω be a domain and let p ≥ 1, s ≥ 0. We set Ωh := {x ∈ Ω, x + h ∈ Ω} and we
define the Besov space

Bs,p
∞ (Ω) :=

{
f ∈ Lp(Ω); |f |Bs,p

∞ (Ω) := sup
h≤1

h−s ‖f(·+h)− f(· )‖Lp(Ωh) <∞
}
.

Here s can be interpreted as the regularity exponent (number of derivatives) and p as the Lp space to
measure the smoothness of the function under consideration.

We can now state our main theorem
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Theorem 1 There exists a unique nonnegative solution p of equation (11) with the following regular-
ities ∣∣(− gLv + g(VE − v)

)
p(v, g)

∣∣
B

1/2,1
∞ ((0,VF )×R+)

< +∞, (12)

‖p‖Lq((0,VF )×R+) < +∞, 1 ≤ q <
8

7
· (13)

Let us briefly explain the idea of the proof of Theorem 1. To prove the a priori estimates (12) and
(13), we first use the diffusive part of equation (11) and basics estimates on the solution. This allows
us, on the one hand to gain some regularity in the variable g for the function p and to prove some
regularity with respect to the variable v of the flux (−gLv + g(VE − v))p(v, g), but at the cost of low
regularity in the variable g. In the second step, we prove (12) by an interpolation argument. The third
step is devoted to the proof of (13). The difficulty is that the weight Jv = −gLv + g(VE − v) vanishes
and so we cannot directly apply the Sobolev injections. Finally, we prove existence and uniqueness of
the linear equation of (11) using the a priori estimates (12), (13).

3.1 Basic estimates on the stationary solution

Elementary manipulations give several useful basic estimates on solutions of equation (11). These are,
for some constants Z, K1 and K2 which we estimate later on,

∫ VF

0
p(v, g)dv = Z(gin)

−1 e−
1
a
(g−gin)

2/2, ∀g ≥ 0, with
√
2aπ ≥ Z(gin) ≥

√
aπ

2
, (14)

∫ ∞

0

∫ VF

0
e

g2

4a p(v, g)dvdg ≤ K1(gin), (15)

0 ≤
∫ +∞

0
[−gLv + g(VE − v)] p(v, g)dg := N ≤ K2(gin), ∀v ∈ [0, VF ], (16)

gin +

√
a

2π
e−

g2in
2a ≤

∫ ∞

0

∫ VF

0
gp(v, g)dvdg ≤ gin +

√
2a

π
e−

g2in
2a . (17)

The first estimate follows after integration of (11) in v which gives thanks to the zero flux condi-
tions (7) and (8) that

d

dg

((
gin − g

) ∫ VF

0
p(v, g)dv − a

d

dg

∫ VF

0
p(v, g)dv

)
= 0

and so, using the boundary condition (9), we obtain that

(
gin − g

) ∫ VF

0
p(v, g)dv − a

d

dg

∫ VF

0
p(v, g)dv = 0.

Hence, the solution of the above equation is a Maxwellian with (because gin ≥ 0)

√
2πa ≥ Z(gin) :=

∫ ∞

0
e−

(g−gin)2

2a dg ≥ Z(0) =

√
aπ

2
·

The inequality (15) is a direct consequence of (14).
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The inequality (17) is just a consequence of the integration in g, with weight g, of equation in (14)
whic gives

∫∞
0

∫ VF

0 gp(v, g)dvdg = gin + Z(gin)
−1
∫∞
0 (g − gin)e

−
(g−gin)2

2a dg

= gin + aZ(gin)
−1e−

g2in
2a .

It remains to use the bound Z(gin) in 14.

For the estimate (16), we integrate in g ∈ (0,∞) equation (11) to obtain

d

dv

[∫ +∞

0
(−gLv + g(VE − v))p(v, g)dg

]
= 0,

∫ +∞

0
(−gLv + g(VE − v))p(v, g)dg = N ∀v ∈ [0, VF ].

Integrating this equation between 0 and VF and using estimate (15), we obtain (16).

3.2 Gradient estimates in g

A second family of estimates follows from the diffusion in g. We are going to prove the

Lemma 1 The a priori estimates hold for solutions of the equation (11)

∫ VF

0

∫ ∞

0

∣∣∇g

√
p(v, g)

∣∣2dv dg ≤ K3(gin), (18)

with

K3(gin) = Z−1(gin)
1

2aσE

∫ +∞

0

(
gin − g

)2
e−

(g−gin)2

2a dg + gL + gin + aZ(gin)
−1e−

g2in
2a < +∞. (19)

Consequently, there is a constant C such that

∫ VF

0

∫ ∞

0
e

g2

8a |∇gp| dvdg ≤ C,

∫ VF

0

∫ ∞

0

∣∣∣∣
d

dv

(∫ +∞

g
p(v, g′)dg′

)∣∣∣∣ dv dg ≤ C. (20)

Proof of Lemma 1. We multiply the equation (11) by ln p and integrate. We find

−
∫ VF

0

∫ ∞

0

[(
− gLv + g(VE − v)

)∂p(v, g)
∂v

+
1

σE

((
gin − g

)∂p(v, g)
∂g

− a
|∇gp|2
p

)]

+

∫ ∞

0

(
− gLv + g(VE − v)

)
p(v, g) ln p

∣∣∣
VF

0
dg = 0.

We may integrate by parts again and find

∫ VF

0

∫ ∞

0

[
−
(
gL + g

)
p(v, g) +

1

σE
a
|∇gp|2
p

]
+

1

σE

∫ ∞

0

(
− gLv + g(VE − v)

)
p(v, g) ln p(v, g)

∣∣∣
VF

0
dg

−
∫ ∞

0

(
− gLv + g(VE − v)

)
p(v, g)

∣∣∣
VF

0
dg − 1

σE

∫ +∞

0

∫ VF

0

(
gin − g

)
∂gp(v, g) dgdv = 0.
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Using (15) and (16), with Z defined in equation (14), this is reduced to

a

σE

∫ VF

0

∫ ∞

0

|∇gp(v, g)|2
p(v, g)

dv dg +

∫ ∞

0

(
− gLv + g(VE − v)

)
p(v, g) ln p

∣∣∣
VF

0
dg = K3(gin). (21)

with K3(gin) given by (19).

On the other hand, we have

0 ≤
∫ ∞

0

(
− gLv + g(VE − v)

)
p(v, g) ln p

∣∣∣
VF

0
dg = ln

gVE
gVE − gVF − gLVF

∫ ∞

gF

N(g)dg ≤ K3(gin). (22)

Indeed, we notice that

∫ ∞

0

(
− gLv + g(VE − v)

)
p(v, g) ln p

∣∣∣
VF

0
dg =

∫ ∞

gF

N(g) ln
p(VF , g)

p(0, g)
dg

and the zero-flux condition (8) can be written as

gVE = [−gLVF + g(VE − VF )]
p(VF , g)

p(0, g)

so that
∫ ∞

0

(
− gLv + g(VE − v)

)
p(v, g) ln p

∣∣VF

0
dg =

∫ ∞

gF

N(g) ln
gVE

gVE − gVF − gLVF
dg ≥ 0

and (18) and (22) follow from (21).

The first estimate in (20) is just a combination of (18) writing ∇gp = 2
√
p∇g

√
p and using Cauchy-

Schwarz inequality

(∫ VF

0

∫ +∞

0
e

g2

8a |∇gp|dvdg
)2

≤ 4

(∫ VF

0

∫ +∞

0
|∇g

√
p|2dvdg

)(∫ VF

0

∫ +∞

0
e

g2

4a pdvdg

)
.

For the second, let g ∈ R
+. We integrate equation (11) between g and +∞ and, using the zero flux

condition at g = +∞, we obtain

∣∣∣∣
d

dv

(∫ +∞

g
(−gLv + g(VE − v))p(v, g′)dg′

)∣∣∣∣ ≤
1

σE
(|gin − g|p(v, g) + a|∂gp|) ,

which completes the proof of estimate (20) thanks to the integrability of the right hand side which is
already proved, and Lemma 1 follows. �

3.3 Besov regularity

We choose Ω = (0, VF )× (0,+∞) and let h := (h1, h2). To prove the Besov estimate (12), it is enough
to show that there exists a constant C independent of h such that

∫

Ωh

|φ(v + h1, g + h2)− φ(v, g)|dvdg ≤ C|h| 12 , φ := (−gLv + g(VE − v))p.

8



We use an interpolation method. The gain of regularity in the variable g given by estimate (18)
compensates the fact that the second estimate in (20) gives a gain of regularity in v only with loss of
one derivative in the variable g.

We begin with the translate in g. We first notice the following Lemma which is a simple consequence
of (15) and (20) and thus we do not prove it,

Lemma 2 Let p be the solution of equation (11). Then

φ(v, g) = (−gLv + g(VE − v))p ∈ L1
(
(0, VF );W

1,1(R+)
)
. (23)

From estimates (23), we deduce that there exists a constant C such that

∫ VF

0

∫ +∞

0
Ig+h2∈(0,+∞)|φ(v, g + h2)− φ(v, g)|dvdg ≤ C|h2| (24)

and thus ∫

Ωh

|φ(v + h1, g + h2)− φ(v + h1, g)|dvdg ≤ C|h2| ≤ C|h| 12 .

We write

φ(v + h1, g + h2)− φ(v, g) = φ(v + h1, g + h2)− φ(v + h1, g) + φ(v + h1, g)− φ(v, g).

So we are reduced to prove that
∫

Ωh

|φ(v + h1, g)− φ(v, g)|dvdg ≤ C|h| 12 . (25)

To estimate these v-translates, we first recall from (20) that there exists a constant C such that

∫ VF

0

∫ +∞

0
Iv+h1∈(0,VF )

∣∣∣∣
∫ +∞

g
φ(v + h1, w)− φ(v,w)dw

∣∣∣∣ dvdg ≤ C|h1|. (26)

We set H = |h1|
1
2 and write

φ(v+h1, g)−φ(v, g) =
1

H

∫ H

0

[
φ(v+h1, g)−φ(v+h1, g+s)+φ(v+h1, g+s)−φ(v, g+s)+φ(v, g+s)−φ(v, g)

]
ds

which gives the control
|φ(v + h1, g) − φ(v, g)| ≤ A(v, g) +B(v, g)

with

A(v, g) :=
1

H

∫ H

0
|φ(v + h1, g) − φ(v + h1, g + s)|ds + 1

H

∫ H

0
| − φ(v, g) + φ(v, g + s)|ds

B(v, g) :=
1

H

∣∣∣∣
∫ g+H

g
[φ(v + h1, w) − φ(v,w)]dw

∣∣∣∣ , w = g + s.

We first control the term B as follows

B(v, g) ≤ 1

H

(∣∣∣∣
∫ +∞

g+H
[φ(v + h1, w) − φ(v,w)]dw

∣∣∣∣ +
∣∣∣∣
∫ +∞

g
[φ(v + h1, w)− φ(v,w)]dw

∣∣∣∣
)
.

9



Applying inequality (26) to each term, we obtain that
∫

Ωh

B(v, g)dvdg ≤ 2C
|h1|
H

≤ 2C|h1|
1
2 .

Next, we control the term A. The Fubini Theorem and estimate (24) give

∫

Ωh

A(v, g)dvdg ≤ 2C
1

H

∫ H

0
sds ≤ CH ≤ C|h1|

1
2

which concludes the proof of estimate (12). �

3.4 Integrability with a singular weight

Sobolev injections with the Besov regularity (12) imply (see [24, 14] for instance)

(
− gLv + g(VE − v)

)
p(v, g) ∈ Lq ∀q, 1 ≤ q <

4

3
. (27)

The difficulty in proving estimate (13) is that the weight Jv(v, g) = −gLv + g(VE − v) vanishes on a
curve for 0 ≤ g ≤ gF and it remains to prove that for some G > gF we have

∫ G

0

∫ VF

0
pqdvdg < +∞. (28)

A preliminary step in this direction is the following Lemma related to the hypoelliptic character of
equation (11).

Lemma 3 For 0 ≤ α < 1, we have

∫ G

0

∫ VF

0

p(v, g)

|Jv(v, g)|α
dgdv ≤ C(α,G). (29)

Proof. Using that p vanishes for g = ∞, we have

p(v, g) = −2

∫ ∞

g
∇g

√
p(v, g′)

√
p(v, g′)dg′ ≤ 2

[∫ ∞

g

(
∇g

√
p(v, g′)

)2
dg′
∫ ∞

g
p(v, g′)dg′

]1/2
.

Therefore

∫ G

0

p(v, g)

|Jv(v, g)|α
dg ≤ 2

[∫ ∞

0

(
∇g

√
p(v, g′)

)2
dg′
∫ ∞

0
p(v, g′)dg′

]1/2 ∫ G

0

1

|Jv(v, g)|α
dg.

For the range of α under consideration, the last integral is bounded and thus, using the Cauchy-Schwarz
inequality we find

∫ VF

0

∫ G

0

p(v, g)

|Jv(v, g)|α
dgdv ≤ C(α,G)

∫ VF

0

[∫ ∞

0

(
∇g

√
p(v, g′)

)2
dg′
∫ ∞

0
p(v, g′)dg′

]1/2
dv

≤ C(α,G)

∫ VF

0

∫ ∞

0

(
∇g

√
p(v, g′)

)2
dg′dv

∫ VF

0

∫ ∞

0
p(v, g′)dg′dv.

�
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3.5 Proof of Lq integrability

We are already reduced to proving (28) for some G > gF . Take 1 ≤ q < 8/7, we have

∫ G

0

∫ VF

0
p(v, g)qdgdv =

∫ G
0

∫ VF

0 (Jα
v p)

q/2
(

p
|Jv|α

)q/2
dgdv

≤
(∫ G

0

∫ VF

0
(Jα

v p)
qr/2dgdv

)1/r
(∫ G

0

∫ VF

0

(
p

|Jv |α
)qr′/2

dgdv

)1/r′

after using Hölder’s inequality.

We choose qr′ = 2, that is qr = 2(r − 1), so that the last term is controled thanks to (29).

We claim that as long as qr
2 < 4

3 the first term is also controled for α close enough to 1 thanks to
(27). This is because we can use again Hölder’s inequality and write

∫ G

0

∫ VF

0
(Jα

v p)
qr/2dgdv ≤

(∫ G

0

∫ VF

0
(Jvp)

sqr/2dgdv

)1/s
(∫ G

0

∫ VF

0

1

J
(1−α)qrs′/2
v

dgdv

)1/s′

.

We may choose s > 1 such that we still have sqr/2 < 4/3 and thus use (27) to bound the first term
in the right hand side. On order to bound the second term, qrs′/2 is large but we may always choose
α close enough to 1 so that (1− α)qrs′/2 < 1.

It remains to compute the range of possible coefficients in view of these constraints; these are

qr = 2(r − 1),
qr

2
<

4

3
.

As announced, this gives 1 ≤ r < 7/3 and q < 8/7. �

3.6 Existence for the linear stationary equation

Here we sketch a path to prove existence but we do not go to the full details which would need another
paper.

With the bounds at hand, there are several ways to obtain existence of a steady state. A method
is to reduce the problem to a finite dimensional linear system with positivity and apply the Perron-
Frobenius theorem. This is equivalent to write a stable (positivity preserving) numerical discretization
for the equation (11).

To do so, it is usual to symmetrize the diffusive part of the equation, use the unknown

q(v, g) = e
(g−gin)2

2a p(v, g)

and take a bounded domain to obtain the following equation on q

∂

∂v

[
Jve

−
(g−gin)2

2a q(v, g)

]
− a

σE

∂

∂g

[
e−

(g−gin)2

2a
∂

∂g
q(v, g)

]
= 0, 0 ≤ v ≤ VF , 0 ≤ g ≤ R, (30)
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with the normalization
∫ VF

0

∫ R
0 e−

(g−gin)2

2a q(v, g)dvdg = 1 and the zero flux boundary conditions





q(0, g) = q(VF , g) = 0, for g ≤ gF ,

gVEq(0, g) = [−gLVF + g(VE − VF )]q(VF , g), for g > gF ,

∂
∂g q(v, g = 0) = ∂

∂g q(v, g = R) = 0, for 0 ≤ v ≤ VF ,

A first step is to obtain the same estimates as above for this problem and show that, as R → ∞ we
obtain the solution of (11).
The second step is to build a finite dimensional approximation of (11). This can be achieved by a

standard finite volume scheme (see for instance [6, 11]). It uses a discretization step h (which we take
the same in v and g to simplify), the discrete grid vi+ 1

2
= (i+ 1

2 )hVF , 0 ≤ i ≤ I with Ih = 1 and

gj+ 1
2
= (j + 1

2 )hR, 0 ≤ j ≤ I. The solution q is approximated by

h2VFR qi,j ≈
∫ v

i+1
2

v
i− 1

2

∫ g
i+1

2

g
i−1

2

q(v, g)dvdg.

The finite dimensional problem is then written using an upwind discretization of the first order deriva-
tives and a centered scheme for the diffusion term, that is for 1 ≤ i, j ≤ I,

1

hVF

[
Ji+ 1

2
,jqi+ 1

2
,j − Ji− 1

2
,jqi− 1

2
,j

]
− a

h2R2σE

[
Mj+ 1

2
(qi,j+1 − qi,j)−Mj− 1

2
(qi,j − qi,j−1)

]
= 0, (31)

with

Mj+ 1
2
= e

−(g
j+1

2
−gin)

2/(2a)
, Ji+ 1

2
,j =

[
−gLvi+ 1

2
+ g(VE − vi+ 1

2
)
]
e−(gj−gin)

2/(2a),

qi+ 1
2
,j = qi,j if Ji+ 1

2
,j ≥ 0, = qi+1,j if Ji+ 1

2
,j ≤ 0.

The advantage of this approach is that the boundary conditions come naturally as qi,0 = qi,1 and
qi,I+1 = qi,I and define the endpoint terms on the diffusion approximation. Also it is easy to check
that for the j such that gj ≤ gF one should take (and needs to define) q 1

2
,j = 0 = qI+ 1

2
,j . And for the

j such that gj ≥ gF one takes J 1
2
,jq 1

2
,j = JI+ 1

2
,jqI+ 1

2
,j because q 1

2
,j is not defined but qI+ 1

2
,j = qI,j.

One readily checks that this problem corresponds to a matrix with positive diagonal and nonpositive
terms out of the diagonal. The diagonal is dominant but not strictly and 0 is the first eigenvalue with
a positive vector in its kernel. Again the lengthy calculation is to redo at the discrete level the above
estimates so as to prove bounds better than ℓ1 bounds and to pass to the limit as h→ 0.

3.7 Uniqueness of the linear stationary equation

Lemma 4 (Uniqueness) A nonnegative solution of equation (11) with the boundary conditions (7),
(8), (9) is unique.

Proof of Lemma 4. Let p1 and p2 be two nonnegative solutions of equation (11). We set

pm :=
p1 + p2

2
,

12



another nonnegative solution for which P := |p1−p2|2

pm
is well defined.

Then, the function P satisfies the relative entropy equality (see [21] pp 166–167)

pm
σE

(
∂g

|p1 − p2|
pm

)2

+ ∂v[(−gLv + g(VE − v))P ] +
1

σE

(
∂g[(−g + gin)P ]− a∂2gP

)
= 0.

As p1 and p2 satisfy the boundary condition (9), one readily checks that the no-flux condition also
holds

(−g + gin)P − a∂gP = 0 at g = 0, g = +∞.

In the same way, from (7), (8), we observe that P also satisfies them also

Jv(0, g)P (0, g) = Jv(VF , g)P (VF , g), ∀g ≥ 0.

We may now integrate the equation on P and use the boundary conditions (7), (8), (9) on P to
obtain ∫ +∞

0

∫ VF

0
pm

(
∂g

|p1 − p2|
pm

)2

dvdg = 0,

from which we deduce that p1−p2
pm

=: Q(v) is independent of g. Using that p1−p2 and P = Q(v)(p1−p2)
satisfy

∂v[(−gLv + g(VE − v))P ] +
1

σE

(
∂g[(−g + gin)P ]− a∂2gP

)
= 0,

it follows easily that Q is a constant and Lemma 4 is proved. �

3.8 Long time convergence to the steady state

As a consequence of our analysis of the steady state equation, we prove some long time behavior for
the solution of (1) in the linear case SE = 0. More precisely, we prove that the integral of the solution
with respect to the variable v, converges exponentially converges to the stationary state. Indeed, in the
linear case, after integrating in v, the stationary state is then an explicit Maxwellian (see section 3) and

we find that
∫ VF

0 p(v, g, t)dv is solution of a classical one dimensional Fokker-Planck equation. Hence,
we are able to use a generalized entropy method associated to a Poincaré inequality in the spirit of the
method describe in [21, 10]. These arguments are also used by [13, 18] for the study of Fokker-Planck
equations where blow-up is proved and where generalized entropy method with Poincaré inequality is
used. The following Theorem holds

Theorem 2 For a global solution of equation (1) with SE = 0, let

M(g) = Z(gin)
−1e−

(g−gin)2

2a and ϕ(g, t) :=

∫ VF

0
p(v, g, t)dv.

Then, there exists η > 0 such that

∫ +∞

0
M(g)

( ϕ
M

)2
(g, t)dg ≤ e−ηt

∫ +∞

0
M(g)

( ϕ
M

)2
(g, 0)dg.
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Proof of Theorem 2. Integrating equation (1) between 0 and VF , we find that ϕ is solution of the
equation

∂tϕ+
1

σE

(
∂

∂g
[(gin − g)ϕ] − a

∂2

∂g2
ϕ

)
= 0.

After classical computations (see for example book [21] pp166-167), we find that

d

dt

∫ +∞

0
M(g)

( ϕ
M

)2
dg ≤ − a

σE

∫ +∞

0
M(g)

(
∂g

( ϕ
M

))2
dg.

As M(g) is a Maxwellian with ∫ +∞

0
M(g)dg = 1,

we can apply Poincaré inequality (see [21] page 167, [10] and references therein) to obtain that there
exists a constant C > 0 such that

∫ +∞

0
M(g)

( ϕ
M

)2
dg ≤ C

∫ +∞

0
M(g)

(
∂g

( ϕ
M

))2
dg.

So, there exists a constant η > 0 such that

d

dt

∫ +∞

0
M(g)

( ϕ
M

)2
dg ≤ −η

∫ +∞

0
M(g)

( ϕ
M

)2
dg

and Theorem 2 follows thanks to the Gronwall lemma. �

4 Steady states for the nonlinear equation

Our analysis of the linear equation has immediate consequences on the nonlinear case. We still assume
that the external input rate ν > 0 is constant. Notice that, when deriving of the kinetic equation, this
corresponds to a network in which the input spikes follow a Poisson process.
We recall the g-dependent firing rate, the total firing rate, the input current and the noise are defined

as

N(g) := [−gLVF + g(VE − VF )]p(VF , g) ≥ 0, N :=

∫ ∞

0
N(g)dg, (32)

gin = fEν + SEN , a =
1

2σE

(
f2Eν +

S2
E

NE
N
)
. (33)

The aim of this section is to prove the following Theorem

Theorem 3 When the strength of interconnections SE is such that

VE
VF

SE < 1 (weakly connected network)

there exists at least one solution to (11), (32), (33) with the same regularity as in Theorem 1.
When the conditions hold

VE − VF
VF

SE > 1 and (VE − VF )fEν > V 2
F (strong connection, strong noise),

equation (11), (32), (33) does not have solutions.
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Proof of Theorem 3. We define the following function

N ≥ 0 7→ Ψ(N ) := VE

∫ +∞

0
g p(0, g)dg =

∫ ∞

0
N(g)dg ≥ 0 (34)

where p(v, g) is the solution of equation (11) with (33) for this given N . A solution to the nonlinear
problem is a fixed point of Ψ.

We first prove some properties on Ψ which are a first step toward our goal

Lemma 5 Let Ψ defined as in (34). Then the following properties hold

(i) Ψ(0) is positive,

(ii) Ψ is continuous,

(iii)
− VF + (VE − VF )

(
gin +

√
a

2π
e−

g2in
2a

)
≤ VFΨ(N ) ≤ VE

(
gin +

√
2a

π
e−

g2in
2a

)
. (35)

Proof of Lemma 5. For the item (i), we prove that for N = 0, the solution p does not vanish
on the boundaries v = 0 or v = VF . Otherwise it would satisfy a 0 Dirichlet condition for which
the only solution vanishes everywhere. This can be seen thanks to the dual equation which has a
super-solution. A direct way to see this is to integrate by parts (11) against a weight Φ(v, g); if p
vanishes at v = 0 and v = VF we have

∫∞
0

∫ VF

0 p(v, g)
[
− ∂vΦ(v, g)Jv(v, g) +

(
g−fEν
σE

∂gΦ(v, g) − a
σE
∂2ggΦ(v, g)

])
dvdg

= a
σE

∫ VF

0 ∂gΦ(v, 0)p(v, 0)dv.

We choose the weight Φ = eλgeµv with λ > 0, µ > 0 and find

∫ ∞

0

∫ VF

0
p(v, g)Φ(v, g)

[
µ(gLv − g(VE − v)) +

1

σE
(λ(g − ν)− aλ2)

]
dvdg ≥ 0.

Therefore
∫ ∞

0

∫ VF

0
p(v, g)Φ(v, g)

[
µ(gLVF − g(VE − VF )) +

1

σE
(λ(g − ν)− aλ2)

]
dvdg ≥ 0.

We now take µ(VE − VF ) =
1
σE
λ and arrive to

∫ ∞

0

∫ VF

0
p(v, g)Φ(v, g)λ

[ gLVF
VE − VF

+
1

σE
(−ν − aλ)

]
dvdg ≥ 0.

For λ large enough, this means that p = 0 which contradicts the probability normalization.

Item (ii) is a consequence of uniqueness for solutions of (11). Indeed, let (Nk)k∈N a sequence which
converges to N and let (pk)k∈N be the unique solution of equation (11) with this input Nk. Let p̃k(g)
be the Maxwellian associated to pk given, according to (14), by

p̃k(g) :=

∫ VF

0
pk(v, g)dv = Z−1

k e
−

(g−gin)2

2ak .
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Because Zk and ak converge, p̃k converges strongly in L1(0,∞) to the maxwellian p̃ and thus
∫ +∞

0
p̃(g)dg = 1. (36)

On the other hand, we know that
∫ +∞

0

∫ VF

0
pk(v, g)dvdg = 1,

and we deduce with estimate (13) that, modulo a subsequence, pk converges weakly in Lq to a function
p such that ∫ +∞

0

∫ VF

0
p(v, g)dvdg = 1.

Passing to the limit in equation (11), we obtain that p is the normalized solution of (11) associated
to N which finishes the proof of continuity of Ψ.

For (iii), we write

VFΨ(N ) =

∫ VF

0

∫ ∞

0
[−gLv + g(VE − v)]p(v, g)dgdv

and so

−VF + (VE − VF )

∫ VF

0

∫ ∞

0
gp(v, g)dgdv ≤ VFΨ(N ) ≤ VE

∫ VF

0

∫ ∞

0
gp(v, g)dgdv.

We conclude estimate (35) with inequality (17) and the proof of Lemma 5 is complete. �

We now have the material to conclude the proof of Theorem 3. For weak interconnections, as
Ψ(0) > 0, and Ψ continuous (see Lemma 5), to prove existence of at least one steady state, it is
enough to know that there exists x ∈ R

+ such that

Ψ(x)− x < 0.

For this, we use the right hand side of estimate (35), the explicit formulas on a and gin and estimate
(35) on Ψ to obtain that there exists two constants C1 > 0 and C2 > 0 such that

Ψ(x)− x ≤ x

(
VE
VF

SE − 1

)
+ C1 + C2

√
x

and so, under the condition VE
VF
SE < 1, we conclude that

lim
x→+∞

Ψ(x)− x = −∞.

This proves the first point of Theorem 3.

For strong interconnections, using now the left hand side of estimate (35), we obtain that

Ψ(x)− x ≥ −VF +
VE − VF
VF

(
fEν + SEx+

√
a

2π
e−

g2in
2a

)
− x

which, with our strong connection and strong noise assumptions, implies that

Ψ(x)− x > 0

which means that there is no stationary solution and the proof of Theorem 3 is complete. �

16



5 Evolution equation: estimates on moments and on the firing rate

We begin our analysis of a priori estimates of the evolution equation (11) by showing that the solution
propagates several types of moments in g in L1. Moreover, we obtain a priori L1

loc bounds on the total
firing rate N (t) which on the one hand implies that, for high interconnections, the firing rate cannot
be bounded, for initial datas localized in high g and on the other hand are the first steps towards Lq

estimates, q > 1 which are performed in the next section. These estimates rely on the combination of
moments as follows.

5.1 Equations on the moments

For k ∈ N and we use the notations

ψ(t) :=

∫ VF

0
vp(v, g, t)dvdg, hk(t) :=

∫ VF

0

∫ +∞

0
gkp(v, g, t)dvdg, f(t) :=

∫ VF

0
p(v, 0, t)dv.

We recall that, p(t) being a probability density, we have

h1(t)
2 ≤ h2(t).

We assume that ∫ VF

0

∫ +∞

0
(1 + g)kp(v, g, 0)dvdg < +∞. (37)

Then, one readily checks the following differential relations

d

dt
ψ(t) = −gLψ(t)−

∫ VF

0

∫ +∞

0
gv p(v, g, t)dvdg + VEh1(t)− VFN (t), (38)

d

dt
h1(t) =

1

σE
[−h1(t) + gin(t) + a(t)f(t)], (39)

d

dt
h2(t) =

1

σE
[−2h2(t) + 2ginh1(t) + 2a(t)], (40)

and more generally for k ≥ 2,

d

dt
hk(t) =

1

σE
[−khk(t) + kginhk−1(t) + k(k − 1)a(t)hk−2(t)] (41)

These are obtained integrating equation (1) by parts after multiplying it respectively by the weights
v, g, g2 and gk for k ≥ 2.

In order to manipulate these relations, the difficulty is that neither f(t) nor N (t) are under control.
Our goal is first to explain how we can go around it.

5.2 Upper bounds on the moments hk

We now derive the a priori bounds which show that whatever the strength of interconnections, if the
initial data has k ≥ 2 moments, then so does the solution for all time. Moreover, if the strength of
interconnections SE is small enough, then we have a uniform bound h1 ∈ L∞(R+).
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It is convenient to define the two numbers λE > 0 and ωE ∈ R by

λEVF =
SE
σE

+
S2
E

2NEσE
, σEωE =

VE
VF

[
SE +

S2
E

2NE

]
− 1. (42)

Then, we can establish the controls

Theorem 4 Let k ≥ 2 and assume that the initial data satisfies (37). Then, there is a constant C
such that the following a priori estimates hold

h1(t) =

∫ VF

0

∫ +∞

0
gp(v, g, t)dvdg ≤ Cmax(1, eωE t), (43)

∫ t

0
N (s)ds ≤ C(1 + t)max(1, eωE t). (44)

Moreover, for all T > 0 there is a constant C(T ) such that

sup
t∈[0,T ]

∫ VF

0

∫ +∞

0
gkp(v, g, t)dvdg ≤ C(T ),

∫ T

0

∫ +∞

0
(1 + g)k−1N(g, t)dg ≤ C(T ). (45)

The regime ωE < 0 corresponds again to weak interconnections, i.e. SE small, however with a dif-
ferent definition than for steady states in section 4 which is sharper. Then, (43) and (44) give uniform
controls in L∞.

Proof of Theorem 4. The estimates (43) and (44) come together by a combinations of the relations
in section 5.1.
Firstly, we multiply equation (39) by h1 and subtract it to equation (40). We find that

d
dt

h2−h2
1

2 = 1
σE

[
−(h2 − h21) + a(t)− a(t)f(t)h1(t)

]

≤ − 2
σE

h2−h2
1

2 − a(t)f(t)h1(t)
σE

+
f2
EνM
2σE

+
S2
E

2σENE
N (t).

The last line is a consequence of formula (4) on a and of assumption (5).
Secondly, we define the function G(h) = (h−1)+. Using respectively that G′(h) ≤ h, hG′(h) ≥ G(h)

and G′(h) ≤ 1, we have from (39)

d
dtG(h1) = 1

σE
[G′(h1)a(t)f −G′(h1)h1 + gin(t)G

′(h1))

≤ 1
σE

[h1(t)a(t)f(t)−G(h1) + gin(t)]

≤ 1
σE

[h1(t)a(t)f(t)−G(h1) + f2νM + SEN (t)] .

The last line is a consequence of the definition of gin in (3) and of assumption (5).

Thirdly, equation (38) gives

d

dt
ψ(t) ≤ VEh1 − VFN (t) ≤ VEG(h1)− VFN (t) + VE.
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We can form the combination of three nonnegative quantities

k(t) :=
h2 − h21

2
+G(h1) + λEψ

which satisfies
d

dt
k(t) ≤ − 2

σE

h2 − h21
2

+ ωEG(h1) + C. (46)

We continue our proof differently in the cases when ωE ≥ 0 or ωE < 0.

• Case when ωE ≥ 0. Because 0 ≤ ψ ≤ VF , using (46) there is a constant C such that

d

dt
k(t) ≤ ωEk(t) + C. (47)

We can use the Gronwall lemma and obtain

k(t) ≤ CeωEt

which gives (43). For (44), we integrate equation (38) on 0 ≤ ψ(t) ≤ VF to obtain that (the case
ωE = 0 is treated to the expense of a factor 1 + t)

∫ t

0
N (s)ds ≤ ψ(0) + VE

∫ t

0
h1(s)ds ≤ C(1 + t)eωEt.

• Case where ωE < 0. Then, ωE ≥ − 2
σE

. Hence, we can use again equation (46) to conclude that (47)
still holds true and thus k(t) ≤ C. This concludes the proof of the bounds (43) and (44).

We now come to (45). The first estimate on hk is a consequence of equation (41) when iterating on
k, after integration in time and using estimates (43) and (44).
To prove the second bound, we multiply equation (1) by vgk and find that

d
dt

∫ VF

0

∫ +∞
0 vgkp dvdg = −VF

∫ +∞
0 N(g, t)gkdg +

∫ VF

0

∫ +∞
0 gk(−gLv + g(VE − v))p(v, g)dvdg

+k
∫ VF

0

∫ +∞
0 gk−1(−g + gin)p(v, g, t)dvdg + ak(k − 1)

∫ VF

0

∫ +∞
0

∫ VF

0 gk−2p(v, g, t)dvdg.

Integrating the above equation, estimate (44) and because we have already proved that hk+1 is locally
bounded, we deduce that for all T > 0

∫ T

0

∫ +∞

0
(1 + g)k−1N(g, t)dg ≤ C(T )

which ends the proof of Theorem 4. �

5.3 Exponential growth on the moments for strong interconnections

For high interconnections we can prove that the previous results are somehow sharp. Indeed, the
first moment of the solution as well as the total firing rate N (t) grow exponentially. This implies in
particular that we cannot have periodic dynamic on the firing rate and that necessary the firing rate
is not in L∞(R+). The following theorem gives a precise condition on the coefficients
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Theorem 5 Assume that the condition

ζ :=
1

σE

(
SE(VE − VF )

VF
− 1

)
> 0

holds. If h1(0) is big enough, there exists a constant C such that the following a priori estimates hold

h1(t) ≥ Ceζt

and for t big enough ∫ t

0
N (s)ds ≥ Ceζt.

Proof of Theorem 5. From equations (38) on ψ and (39) on h1 we infer that

d

dt
ψ ≥ (VE − VF )h1 − gLψ − VFN (t)

d

dt
h1 ≥

1

σE
(gin(t)− h1) .

To eliminate N (t), we multiply equation on ψ by b = SE
VF σE

, use formula (3) for gin and assumption
(5); we find that there is a constant C > 0 such that

d

dt
(bψ + h1) ≥

[
b(VE − VF )−

1

σE

]
(bψ + h1)− C = ζ(bψ + h1)−C.

We obtain that

(bψ + h1)(t) ≥
[
(bψ + h1)(0) −

C

ζ

]
eζt +

C

ζ
.

Since ψ is bounded, we obtain the lower bound on h1 just taking an initial data such that

(bψ + h1)(0) >
C

ζ
.

To conclude the estimate on N (t), we come back to the equation on ψ and use this lower bound on
h1. �

6 Integrability for the evolution equation and bounds on the firing
rate

Our next task is to obtain a priori estimates where higher integrability is propagated by the evolution
equation. As a consequence we obtain that the firing rate N belongs locally to Lebesgue Lq spaces
for some q > 1 thus discarding a blow-up scenario as in [10].

6.1 Entropy inequality

Using the L1 control of gin that has been proved, we can obtain an entropy bound for the solution to
the evolution equation
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Theorem 6 Assume that the initial data is such that

∫ VF

0

∫ +∞

0

[
| ln(p(v, g, 0))| + g2 + 1

]
p(v, g, 0)dvdg <∞.

Then, for all T > 0, the solution of equation (1) satisfies the following a priori estimates

supt∈[0,T ]

∫ VF

0

∫ +∞
0 | ln(p)|p(v, g, t)dvdg +

∫ T
0

∫∞
gF
N(g, s) ln gVE

gVE−gVF−gLVF
dgds

+ 1
σE

∫ T
0

∫ VF

0

∫ +∞
0 a(s)

|∇gp|2

p dvdgds ≤ C(T ).

Proof of Theorem 6. We multiply equation (1) by ln(p) and integrate to find that

d
dt

∫ VF

0

∫ +∞
0 ln(p)p(v, g, t)dvdg = −

∫ VF

0

∫∞
0

[
−
(
gL + g

)
p(v, g, t) + 1

σE
a
|∇gp|2

p

]

− 1
σE

∫∞
0

(
− gLv + g(VE − v)

)
p) ln p

∣∣∣
VF

0
dg +

∫∞
0

(
− gLv + g(VE − v)

)
p
∣∣∣
VF

0
dg

+ 1
σE

∫ +∞
0

∫ VF

0

(
gin − g

)
∂gp dgdv.

Therefore, applying boundary conditions (7) and (8), we deduce that

d
dt

∫ VF

0

∫ +∞
0 ln(p)p(v, g, t)dvdg +

∫∞
gF
N(g, t) ln gVE

gVE−gVF−gLVF
dg +

∫ VF

0

∫ +∞
0

a
σE

|∇gp|2

p

≤
∫ VF

0

∫∞
0

(
gL + g

)
p(v, g, t) + 1

σE

∫ +∞
0

∫ VF

0

(
gin − g

)
∂gp dgdv.

We may integrate by parts the last term and find 1
σE

− gin
∫ VF

0 p(v, 0, t)dv. Then, using estimate
(44) of Theorem 4, we deduce that

∫ VF

0

∫ +∞
0 ln(p)p(v, g, T )dvdg +

∫ T
0

∫∞
gF
N(g, t) ln gVE

gVE−gVF−gLVF
+ 1

σE

∫ T
0

∫ VF

0

∫ +∞
0 a(t)

|∇gp|2

p

+
∫ T
0

∫ VF

0 gin(t)p(v, 0, t)dv ≤
∫ VF

0

∫ +∞
0 ln(p)p(v, g, 0)dvdg + C(T ).

A standard argument allows us to recover the absolute value in the logarithm. We write

∫ VF

0

∫ +∞
0 | ln(p)|p(v, g, t)dvdg =

∫
p ln(p)dvdg − 2

∫
p≤1 p ln(p)dvdg.

≤
∫
p ln(p)dvdg + C

∫
p≤1 p

1
2 .

It remains to notice that

∫ VF

0

∫ +∞

0
p

1
2dvdg ≤

∫ VF

0

∫ +∞

0
(1 + g)2p(v, g, t)dvdg +

∫ VF

0

∫ +∞

0
(1 + g)−2dvdg

and to apply the property of propagation of moments of Theorem 4. This concludes the bound of
Theorem 6. �
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6.2 Gain of integrability for the total firing

We can improve Theorem 4 and obtain bounds on Lq norms, q ≥ 2. More precisely, we prove that,
if the initial data belongs to Lq for q ≥ 2, then so does the solution. Moreover the propagation of
moments holds in Lq. This allows us to control the firing rate in Lq, q ≥ 2 assuming the initial data
sufficiently decreasing at infinity. This is stated in the following theorem

Theorem 7 Let ℓ ≥ 0, q ≥ 2, and assume that the initial data is such that

∫ VF

0

∫ +∞

0
(1 + g)ℓ+q−1pq(v, g, 0)dvdg < +∞ and

∫ VF

0

∫ +∞

0
(1 + g)2p(v, g, 0)dvdg < +∞.

Then, for all T > 0, the following a priori estimates hold

sup
t∈[0,T ]

∫ VF

0

∫ +∞

0
(1 + g)ℓ+q−1pq(v, g, t)dvdg < +∞, (48)

∫ T

0

∫ VF

0

∫ +∞

0
a(t)(1 + gℓ(−gLv + g(VE − v))+)

q−1(∂gp)
2(v, g, t)pq−2dvdgdt < +∞. (49)

Assume that ℓ > 1 + q
q′ where 1

q +
1
q′ = 1. Then, for all T > 0,

∫ T

0
N q(t)dt < +∞. (50)

Proof of Theorem 7. We begin with the estimates (48) and (49). Let q ≥ 2 and ℓ ≥ 0. We define
the function

K(v, g) := 1 + gℓ(−gLv + g(VE − v))q−1
+ .

We multiply equation (1) by K(v, g)pq−1, integrate in v and g, use that ∂gK(v, 0) = 0, to find after
integration by parts that

1

q

d

dt

∫ VF

0

∫ +∞
0 K(v, g)pq(v, g, t)dvdg = −1

q

∫ +∞
0 N(t, g)(pq−1(t, VF , g)− pq−1(t, 0, g))dg

+
∫ VF

0

∫ +∞
0 R(v, g, t)pq(v, g, t)dvdg − (q − 1) a

σE

∫ VF

0

∫ +∞
0 K(v, g)(∂gp)

2pq−2dvdg (51)

− a
σE

∫ VF

0

∫ +∞
0 ∂gp∂gKp

q−1dvdg − (q−1)gin
qσE

∫ VF

0 K(v, 0)pq(t, v, 0)dv

where

R(v, g, t) :=
q − 1

q
(gL + g) +

(−g + gin)

σE
∂gK +

1

σEq
∂g[(−g + gin)K].

Using the boundary conditions on p, we obtain that

−
∫ +∞

0
N(t, g)(pq−1(t, VF , g)− pq−1(t, 0, g)) ≤ 0.

Moreover, as q ≥ 2, there exists a constant C such that

R(v, g, t) ≤ C(1 + gin(t))(1 + g)q−1+ℓ.
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To control the term ∫ VF

0

∫ +∞

0
a∂gp∂gKp

q−1dvdg,

we apply the inequality ab ≤ εa2 + 1
εb

2with a = ∂gpp
q−2
2 , b = p

q
2 with ε > 0 small small enough such

that

ε∂gK <
q − 1

2
K.

We deduce that, for some constant C, we have

d

dt

∫ VF

0

∫ +∞

0
K(v, g)pq(v, g, t)dvdg ≤ C(1 + gin(t))

∫ VF

0

∫ +∞

0
(1 + g)q−1+ℓpq(v, g, t)dvdg

−a(q − 1)

2σE

∫ VF

0

∫ +∞

0
K(v, g)(∂gp)

2pq−2dvdg.

But there exist two positive constants C1, C2 such that

C1(1 + g)q−1+ℓ ≤ K(v, g) ≤ C2(1 + g)q−1+ℓ.

Using that gin ∈ L1
loc (see estimate (45) of Theorem 4), we deduce estimate (48) and (49) of Theorem 7.

Let us now prove estimate (50). This is a direct consequence of the following Lemma

Lemma 6 Let ℓ ≥ 0 and q ≥ 2. Assume that the initial data is such that

∫ VF

0

∫ +∞

0
(1 + g)ℓ+qpq(0, v, g)dvdg < +∞ and

∫ VF

0

∫ +∞

0
(1 + g)2p(0, v, g)dvdg < +∞.

Then, ∫ T

0

∫ +∞

0
(1 + g)ℓN(t, g)qdgdt < +∞.

Indeed, let us assume for the moment that Lemma 6 holds and let us finish the proof of Theorem 7.
We have, using Hölder inequalities, for all α such that αq′ > 1, that

∫ T

0

(∫ +∞

0
N(t, g)dg

)q

dt ≤
∫ T

0

(∫ +∞

0
(1 + g)αqN q(t, g)dg

)(
1

(1 + g)αq′
dg

) q
q′

dt

and so ∫ T

0

(∫ +∞

0
N(t, g)dg

)q

dt ≤ C

∫ T

0

∫ +∞

0
(1 + g)αqN q(t, g)dgdt.

Taking ℓ > q
q′ and using Lemma 6, we obtain Theorem 7. �

Proof of Lemma 6. We multiply equation (1) by G(v, g)pq−1 where

G(v, g) := v(1 + g)ℓ(−gLv + g(VE − v))q−1
+

to find after integration by parts that there exists a constant C such that

d

dt

∫ VF

0

∫ +∞

0
G(v, g)pqdvdg ≤ −VF

q

∫ +∞

0
(1+g)ℓN q(t, g)dg+C(1+gin(t))

∫ VF

0

∫ +∞

0
(1+g)q+ℓpqdvdg
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−
∫ VF

0

∫ +∞

0
∂gG∂gpp

q−1dvdg.

Integrate the above equation in time and using estimates (48) and (49), we obtain Lemma 6. �
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