Bernoulli variational problem and beyond

Abstract : The question of 'cutting the tail' of the solution of an elliptic equation arises naturally in several contexts and leads to a singular perturbation problem under the form of a strong cut-off. We consider both the PDE with a drift and the symmetric case where a variational problem can be stated. It is known that, in both cases, the same critical scale arises for the size of the singular perturbation. More interesting is that in both cases another critical parameter (of order one) arises that decides when the limiting behaviour is non-degenerate. We study both theoretically and numerically the values of this critical parameter and, in the symmetric case, ask if the variational solution leads to the same value as for the maximal solution of the PDE. Finally we propose a weak formulation of the limiting Bernoulli problem which incorporates both Dirichlet and Neumann boundary condition.
Type de document :
Article dans une revue
Archive for Rational Mechanics and Analysis, Springer Verlag, 2014, 212, pp.415-443. <10.1007/s00205-013-0707-8>
Liste complète des métadonnées


http://hal.upmc.fr/hal-00881760
Contributeur : Benoît Perthame <>
Soumis le : vendredi 8 novembre 2013 - 20:10:44
Dernière modification le : lundi 29 mai 2017 - 14:25:24
Document(s) archivé(s) le : lundi 10 février 2014 - 11:56:31

Fichier

ABP28.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexander Lorz, Peter Markowich, Benoît Perthame. Bernoulli variational problem and beyond. Archive for Rational Mechanics and Analysis, Springer Verlag, 2014, 212, pp.415-443. <10.1007/s00205-013-0707-8>. <hal-00881760>

Partager

Métriques

Consultations de
la notice

897

Téléchargements du document

633