Effect of silicon content in steel and oxidation temperature on scale growth and morphology - Sorbonne Université Accéder directement au contenu
Article Dans Une Revue Materials Chemistry and Physics Année : 2014

Effect of silicon content in steel and oxidation temperature on scale growth and morphology

Résumé

The effect of high silicon content in steel, 1.6 wt.%Si and 3.2 wt.%Si, and high oxidation temperatures (850 e1200 C) on scale growth rate and morphology were investigated. The steels were oxidized in a 15% humid air with short isothermal oxidation times (15 min). The scale growth rate of the non-alloyed steel follows a parabolic law with time; it is an iron diffusion controlled oxidation. The presence of silicon delays scale growth by forming a silica SiO2 barrier layer at the scale/metal interface, this effect is more important for the steel containing 3.2 wt.%Si and induces a discontinuous scale. Silicon oxides are concentrated at the scale/metal interface; their morphology depends on the oxidation temperature. For temperatures lower than 950 C, silica is formed. Between 950 C and 1150 C, fayalite (Fe2SiO4) grains appear in the wüstite matrix close to the scale/metal interface. For temperatures higher than 1177 C, a fayaliteewüstite eutectic is formed; this molten phase favours iron diffusion leading to high scale growth. After cooling, a continuous fayalite layer with small wüstite grains is obtained at the scale/steel interface.
Fichier principal
Vignette du fichier
Post-print_P1402.pdf (1.47 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00943404 , version 1 (23-10-2014)

Identifiants

Citer

Amine Alaoui Mouayd, Alexey Koltsov, Eliane Sutter, Bernard Tribollet. Effect of silicon content in steel and oxidation temperature on scale growth and morphology. Materials Chemistry and Physics, 2014, 143, pp.996-1004. ⟨10.1016/j.matchemphys.2013.10.037⟩. ⟨hal-00943404⟩
623 Consultations
4078 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More