C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Mathematical Methods in the Applied Sciences, vol.2, issue.9, pp.823-864, 1998.
DOI : 10.1017/S0308210500020023

M. Astorino and C. Grandmont, Convergence analysis of a projection semi-implicit coupling scheme for fluid???structure interaction problems, Numerische Mathematik, vol.96, issue.1, pp.721-767, 2010.
DOI : 10.1137/0729004

URL : https://hal.archives-ouvertes.fr/inria-00406493

C. B. `-egue, C. Conca, F. Murat, and O. Pironneau, LeséquationsLeséquations de Stokes et Navier-Stokes avec des conditions aux limites sur la pression, Nonlinear Partial Differential Equations and Applications,Colì ege de France Seminar, pp.179-264, 1988.

D. Boffi, N. Cavallini, and L. Gastaldi, The Finite Element Immersed Boundary Method with Distributed Lagrange Multiplier, SIAM Journal on Numerical Analysis, vol.53, issue.6, 2015.
DOI : 10.1137/140978399

D. Boffi and L. Gastaldi, A finite element approach to the immersed boundary method, Comput. Struct, vol.81, pp.8-11491, 2003.

J. M. Boland and R. Nicolaides, On the stability of bilinear-constant velocity-pressure finite elements, Numerische Mathematik, vol.20, issue.2, pp.219-222, 1984.
DOI : 10.1007/BF01410106

M. Boris, S. Cani´ccani´c, and M. Buka?, Fluid-Structure Interaction in Hemodynamics: Modelling, Analysis, and Numerical Simulation, Fluid-Structure Interaction and Biomedical Applications, Advances in Mathematical Fluid Mechanics, 2014.

K. Boukir, Y. Maday, B. Métivet, and E. Razafindrakoto, A high-order characteristics/finite element method for the incompressible Navier-Stokes equations, Internat. J. Numer. Meth. Fluids, issue.12, pp.251421-1454, 1997.

H. Brezis, M. Buka?, S. Cani´ccani´c, B. Muha, M. Buka?a et al., Stability of the kinematically coupled b-scheme for fluidstructure interaction problems in hemodynamics Fluid-Sstructure interaction in blood flow capturing non-zero longitudinal structure displacement, Analyse fonctionnelle: Théorie et Applications. Masson, pp.515-541, 1983.

P. Causin, J. F. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44, pp.42-44, 2005.
DOI : 10.1016/j.cma.2004.12.005

URL : https://hal.archives-ouvertes.fr/inria-00071499

J. Cebral, F. Mut, D. Sforza, R. Lohner, E. Scrivano et al., Clinical application of image-based CFD for cerebral aneurysms, International Journal for Numerical Methods in Biomedical Engineering, vol.22, issue.10, pp.977-992, 2011.
DOI : 10.1016/j.jbiomech.2008.04.035

T. Chacón-rebollo and R. Lewandowski, Mathematical and numerical foundations of turbulence models and applications
DOI : 10.1007/978-1-4939-0455-6

A. Chambolle, B. Desjardin, M. J. Esteban, and C. Grandmont, Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate, Journal of Mathematical Fluid Mechanics, vol.7, issue.3, pp.368-404, 2005.
DOI : 10.1007/s00021-004-0121-y

C. Chnafa, S. Mendez, and F. Nicoud, Image-based large-eddy simulation in a realistic left heart, Computers & Fluids, vol.94, pp.173-187, 2014.
DOI : 10.1016/j.compfluid.2014.01.030

URL : https://hal.archives-ouvertes.fr/hal-00943609

C. M. Colciago, S. Deparis, and A. Quarteroni, Comparisons between reduced order models and full 3D models for fluid???structure interaction problems in haemodynamics, Journal of Computational and Applied Mathematics, vol.265, pp.120-138, 2014.
DOI : 10.1016/j.cam.2013.09.049

C. Conca, F. Murat, and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions on the pressure, Japan J. Mathematics, vol.20, issue.2, 1994.

M. Dauge, Neumann and mixed problems on curvilinear polyhedra. Integral Equations Operator Theory, pp.227-261, 1992.
DOI : 10.1007/bf01204238

S. Deparis, M. A. Fernandez, and L. Formaggia, Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, ESAIM:M2AN, pp.601-616, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00705114

A. Dervieux, Fluid-Structure Interaction. Innovaive Technology, 2003.

T. Fanion, M. Fernandez, and P. L. Tallec, Deriving Adequate Formulations for Fluid-Structure Interaction Problems: from ALE to Transpiration, Revue Europ??enne des ??l??ments Finis, vol.43, issue.6-7, pp.681-708, 2000.
DOI : 10.1007/BF00913408

URL : https://hal.archives-ouvertes.fr/inria-00072774

C. Farhat, P. Geuzaine, and C. Grandmont, The discrete geometric conservation law and the non-linear stability of ALE schemes for solution of flow problems on moving grids, J. Comp. Phys, vol.174, issue.2, pp.664-694, 2001.

M. A. Fernandez, J. Mullaert, and M. Vidrascu, Explicit Robin???Neumann schemes for the coupling of incompressible fluids with thin-walled structures, Computer Methods in Applied Mechanics and Engineering, vol.267, pp.566-593, 2013.
DOI : 10.1016/j.cma.2013.09.020

URL : https://hal.archives-ouvertes.fr/hal-00784903

L. Formaggia, J. F. Gerbeau, F. Nobile, and A. Quarteroni, On the coupling of 3D and 1D Navier???Stokes equations for flow problems in compliant vessels, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.6-7, pp.561-582, 2001.
DOI : 10.1016/S0045-7825(01)00302-4

URL : https://hal.archives-ouvertes.fr/inria-00072794

L. Formaggia, A. Moura, and F. Nobile, On the stability of the coupling of 3D and 1D fluidstructure interaction models for blood flow simulations, ESAIM:M2AN, pp.743-769, 2007.

L. Formaggia, A. Quarteroni, and A. Veneziani, Cardiovascular Mathematics. Modeling and simulation of the circulatory system, 2009.

P. Frey, medit 3.0, OpenGL-based scientific visualization software

V. Girault, Incompressible Finite Element Methods for Navier-Stokes Equations with Nonstandard Boundary Conditions in R 3, Mathematics of Computation, vol.51, issue.183, pp.55-74, 1988.
DOI : 10.2307/2008579

V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations: Theory and algorithms, 1986.
DOI : 10.1007/978-3-642-61623-5

O. Gonzalez and J. C. Simo, On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry, Computer Methods in Applied Mechanics and Engineering, vol.134, issue.3-4, pp.197-222, 1996.
DOI : 10.1016/0045-7825(96)01009-2

C. Grandmont, Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate, SIAM Journal on Mathematical Analysis, vol.40, issue.2, pp.716-737, 2008.
DOI : 10.1137/070699196

URL : https://hal.archives-ouvertes.fr/inria-00166319

G. Guidoboni, R. Glowinski, N. Cavallini, S. Lapin, and S. Canic, A kinematically coupled time-splitting scheme for fluid???structure interaction in blood flow, Applied Mathematics Letters, vol.22, issue.5, pp.684-688, 2009.
DOI : 10.1016/j.aml.2008.05.006

G. Guidoboni, M. Guidorzi, and M. Padula, Continuous Dependence on Initial Data in Fluid???Structure Motions, Journal of Mathematical Fluid Mechanics, vol.31, issue.1, pp.1-32, 2012.
DOI : 10.1070/IM1988v031n02ABEH001081

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with special applications to particulate media, 1983.
DOI : 10.1007/978-94-009-8352-6

F. Hecht, New development in freefem++, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.251-265, 2012.
DOI : 10.1515/jnum-2012-0013

URL : https://hal.archives-ouvertes.fr/hal-01476313

A. Hundertmark, M. Luká?ová, and S. Ne?asová, On the Weak Solution of the Fluid-Structure Interaction Problem for Shear-Dependent Fluids, Recent Developments of Mathematical Fluid Mechanics , Advances in Mathematical Fluid Mechanics, 2014.
DOI : 10.1007/978-3-0348-0939-9_16

L. Iapichino, A. Quarteroni, and G. Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks, Computer Methods in Applied Mechanics and Engineering, vol.221, issue.222, pp.221-22263, 2012.
DOI : 10.1016/j.cma.2012.02.005

H. K. Lee, M. Olshanskii, and L. Rebholz, On Error Analysis for the 3D Navier???Stokes Equations in Velocity-Vorticity-Helicity Form, SIAM Journal on Numerical Analysis, vol.49, issue.2, pp.711-732, 2011.
DOI : 10.1137/10080124X

P. Letallec and J. Mouro, Fluid structure interaction with large structural displacements, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.24-25, pp.3039-3067, 2001.
DOI : 10.1016/S0045-7825(00)00381-9

Y. Liu and Y. Mori, $L^p$ Convergence of the Immersed Boundary Method for Stationary Stokes Problems, SIAM Journal on Numerical Analysis, vol.52, issue.1, pp.496-514, 2014.
DOI : 10.1137/130911329

M. Lukacova-medvidov, G. Rusnakov, and A. Hundertmark-zauskov, Kinematic splitting algorithm for fluid???structure interaction in hemodynamics, Computer Methods in Applied Mechanics and Engineering, vol.265, issue.1, pp.83-106, 2013.
DOI : 10.1016/j.cma.2013.05.025

A. Manzoni, A. Quarteroni, and G. Rozza, Shape optimization for viscous flows by reduced basis methods and free-form deformation, International Journal for Numerical Methods in Fluids, vol.25, issue.2, pp.646-712, 2012.
DOI : 10.1016/S0828-282X(09)70486-6

URL : https://infoscience.epfl.ch/record/168967/files/Manzoni_Quarteroni_Rozza_IJNMF_submit_REVISED_Black.pdf

F. Nobile and C. Vergara, An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions, SIAM Journal on Scientific Computing, vol.30, issue.2, pp.731-763, 2008.
DOI : 10.1137/060678439

G. Pedrizzetti and K. Perktold, Cardiovasuclar fluid dynamics, Springer CISM Courses, 2003.

K. Perktold and G. Rappitsch, Mathematical modelling of local arterial flow and vessel mechanics, Computational Methods for Fluid-Structure Interaction, pp.230-245, 1994.

C. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, vol.25, issue.3, pp.220-252, 1977.
DOI : 10.1016/0021-9991(77)90100-0

C. Peskin, The immersed boundary method, Acta Numerica, vol.11, pp.479-517, 2002.

C. Peskin and D. Mcqueen, A three-dimensional computational method for blood flow in the heart I. Immersed elastic fibers in a viscous incompressible fluid, Journal of Computational Physics, vol.81, issue.2, pp.372-405, 1989.
DOI : 10.1016/0021-9991(89)90213-1

K. G. Pichon and O. Pironneau, Pressure boundary conditions for blood flows. submitted to http

O. Pironneau, On optimum profiles in Stokes flow, Journal of Fluid Mechanics, vol.none, issue.01, pp.117-128, 1973.
DOI : 10.1017/S002211207300145X

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations, Numerische Mathematik, vol.March, issue.3, pp.309-312, 1982.
DOI : 10.1007/BF01396435

O. Pironneau, Finite Element Methods for Fluids, 1989.

O. Pironneau, Computational Issues for Optimal Shape Design in Hemodynamics
DOI : 10.1007/978-3-319-23564-6_1

URL : https://hal.archives-ouvertes.fr/hal-01003240

O. Pironneau and M. Tabata, Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type, International Journal for Numerical Methods in Fluids, vol.18, issue.10-12, pp.1240-1253, 2010.
DOI : 10.1137/1.9780898719208

A. Quaini, Algorithms for fluid-structure interaction problems arising in hemodynamics, 2009.

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs. A.M.S, vol.49, 1997.
DOI : 10.1090/surv/049

Z. Si, Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier???Stokes problems, Numerical Algorithms, vol.172, issue.2, pp.271-300, 2012.
DOI : 10.1006/jcph.2001.6847

J. Simon, Compact sets in the space L p (0, T ; B) Annali, pp.65-96, 1987.

J. Simon, Equations de Navier-Stokes, 2003.

C. A. Taylor, T. A. Fonte, and J. K. Min, Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve, Journal of the American College of Cardiology, vol.61, issue.22, pp.612233-2241, 2013.
DOI : 10.1016/j.jacc.2012.11.083

M. Thiriet, Biomathematical and Biomechanical Modelling of the Circulatory and Ventilatory Systems Control of Cell Fate in the Circulatory and Ventilatory Systems, Mathematical & Biological Modelling, vol.2, 2011.

D. Trimarchi, M. Vidrascu, D. Taunton, S. Turnock, and D. Chapelle, Wrinkle development analysis in thin sail-like structures using MITC shell finite elements, Finite Elements in Analysis and Design, vol.64, pp.48-64, 2013.
DOI : 10.1016/j.finel.2012.09.005

URL : https://hal.archives-ouvertes.fr/hal-00733994

F. Usabiaga, J. Bell, R. Buscalioni, A. Donev, T. Fai et al., Staggered schemes for fluctuating hydrodynamics, Multiscale Model Sim, vol.10, pp.1369-1408, 2012.

I. Vignon-clementel, A. Figueroa, K. Jansen, and C. A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.29-32, pp.3776-3796, 2006.
DOI : 10.1016/j.cma.2005.04.014