M. Araña, J. Gavira, and E. Peña, Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction, Biomaterials, vol.35, issue.1, pp.143-51, 2014.
DOI : 10.1016/j.biomaterials.2013.09.083

H. Hamdi, A. Furuta, and V. Bellamy, Cell Delivery: Intramyocardial Injections or Epicardial Deposition? A Head-to-Head Comparison, The Annals of Thoracic Surgery, vol.87, issue.4, pp.1196-203, 2009.
DOI : 10.1016/j.athoracsur.2008.12.074

H. Hamdi, V. Planat-benard, and A. Bel, Epicardial adipose stem cell sheets results in greater post-infarction survival than intramyocardial injections, Cardiovascular Research, vol.91, issue.3, pp.483-491, 2011.
DOI : 10.1093/cvr/cvr099

M. Gaballa, J. Sunkomat, H. Thai, E. Morkin, G. Ewy et al., Grafting an Acellular 3-Dimensional Collagen Scaffold Onto a Non-transmural Infarcted Myocardium Induces Neo-angiogenesis and Reduces Cardiac Remodeling, The Journal of Heart and Lung Transplantation, vol.25, issue.8, pp.946-54, 2006.
DOI : 10.1016/j.healun.2006.04.008

M. Barsotti, F. F. Balbarini, A. , D. Stefano, and R. , Fibrin as a scaffold for cardiac tissue engineering, Biotechnology and Applied Biochemistry, vol.26, issue.3, pp.301-311, 2011.
DOI : 10.1002/bab.49

T. Rajangam and S. An, Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications, Int J Nanomedicine, vol.8, pp.3641-62, 2013.

J. Rousou, Use of Fibrin Sealants in Cardiovascular Surgery: A Systematic Review, Journal of Cardiac Surgery, vol.44, issue.3, pp.238-285, 2013.
DOI : 10.1111/jocs.12099

J. Leschik, S. Stefanovic, B. Brinon, and M. Pucéat, Cardiac commitment of primate embryonic stem cells, Nature Protocols, vol.6, issue.9, pp.1381-1388, 2008.
DOI : 10.1038/nprot.2008.116

URL : https://hal.archives-ouvertes.fr/inserm-00297337

V. Verma, K. Purnamawati, . Manasi, and W. Shim, Steering signal transduction pathway towards cardiac lineage from human pluripotent stem cells: A review, Cellular Signalling, vol.25, issue.5, pp.1096-107, 2013.
DOI : 10.1016/j.cellsig.2013.01.027

L. Vallier, A. M. Pedersen, and R. , Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells, Journal of Cell Science, vol.118, issue.19, pp.4495-509, 2005.
DOI : 10.1242/jcs.02553

A. Moretti, L. Caron, and A. Nakano, Multipotent Embryonic Isl1+ Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification, Cell, vol.127, issue.6, pp.1151-65, 2006.
DOI : 10.1016/j.cell.2006.10.029

P. Menasché, V. Vanneaux, and J. Fabreguettes, Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience, European Heart Journal, vol.36, issue.12, pp.10-1093, 2014.
DOI : 10.1093/eurheartj/ehu192

G. Blin, D. Nury, and S. Stefanovic, A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates, Journal of Clinical Investigation, vol.120, issue.4, pp.1125-1164, 2010.
DOI : 10.1172/JCI40120DS1

URL : https://hal.archives-ouvertes.fr/inserm-00451770

H. Hamdi, S. Boitard, and V. Planat-benard, Efficacy of epicardially delivered adipose stroma cell sheets in dilated cardiomyopathy, Cardiovascular Research, vol.99, issue.4, pp.640-647, 2013.
DOI : 10.1093/cvr/cvt149

J. Jacot, A. Mcculloch, and J. Omens, Substrate Stiffness Affects the Functional Maturation of Neonatal Rat Ventricular Myocytes, Biophysical Journal, vol.95, issue.7, pp.3479-87, 2008.
DOI : 10.1529/biophysj.107.124545

J. Nakamuta, M. Danoviz, and F. Marques, Cell Therapy Attenuates Cardiac Dysfunction Post Myocardial Infarction: Effect of Timing, Routes of Injection and a Fibrin Scaffold, PLoS ONE, vol.4, issue.6, p.6005, 2009.
DOI : 10.1371/journal.pone.0006005.s004

K. Christman, H. Fok, R. Sievers, Q. Fang, and R. Lee, Fibrin Glue Alone and Skeletal Myoblasts in a Fibrin Scaffold Preserve Cardiac Function after Myocardial Infarction, Tissue Engineering, vol.10, issue.3-4, pp.403-412, 2004.
DOI : 10.1089/107632704323061762

J. Liu, Q. Hu, and Z. Wang, Autologous stem cell transplantation for myocardial repair, AJP: Heart and Circulatory Physiology, vol.287, issue.2, pp.501-512, 2004.
DOI : 10.1152/ajpheart.00019.2004

L. Ye, P. Zhang, S. Duval, L. Su, Q. Xiong et al., Thymosin ??4 Increases the Potency of Transplanted Mesenchymal Stem Cells for Myocardial Repair, Circulation, vol.128, issue.11_suppl_1, pp.32-41, 2013.
DOI : 10.1161/CIRCULATIONAHA.112.000025

K. Kang, M. Coggins, C. Xiao, A. Rosenzweig, and J. Bischoff, Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats, Angiogenesis, vol.190, issue.3, pp.773-84, 2013.
DOI : 10.1007/s10456-013-9354-9

C. Sabatini, O. Sullivan, M. Valcour, J. Sears, W. Johnson et al., Effects of injectable anesthetic combinations on left ventricular function and cardiac morphology in Sprague-Dawley rats, J Am Assoc Lab Anim Sci, vol.52, pp.34-43, 2013.

R. Norris, H. White, D. Cross, C. Wild, and R. Whitlock, Prognosis after recovery from myocardial infarction: the relative importance of cardiac dilatation and coronary stenoses, European Heart Journal, vol.13, issue.12, pp.1611-1619, 1992.
DOI : 10.1093/oxfordjournals.eurheartj.a060113

F. Tan, C. Moravec, and J. Li, The gene expression fingerprint of human heart failure, Proceedings of the National Academy of Sciences, vol.99, issue.17, pp.11387-92, 2002.
DOI : 10.1073/pnas.162370099

G. Gibbons, C. Liew, and M. Goodarzi, Genetic Markers: Progress and Potential for Cardiovascular Disease, Circulation, vol.109, issue.25_suppl_1, pp.47-58, 2004.
DOI : 10.1161/01.CIR.0000133440.86427.26

W. Stansfield, N. Andersen, R. Tang, . Phd, and C. Selzman, Periostin Is a Novel Factor in Cardiac Remodeling After Experimental and Clinical Unloading of the Failing Heart, The Annals of Thoracic Surgery, vol.88, issue.6, pp.1916-1937, 2009.
DOI : 10.1016/j.athoracsur.2009.07.038

K. Christman, A. Vardanian, Q. Fang, R. Sievers, H. Fok et al., Injectable Fibrin Scaffold Improves Cell Transplant Survival, Reduces Infarct Expansion, and Induces Neovasculature Formation in Ischemic Myocardium, Journal of the American College of Cardiology, vol.44, issue.3, pp.654-60, 2004.
DOI : 10.1016/j.jacc.2004.04.040

J. Ryu, I. Kim, and S. Cho, Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium, Biomaterials, vol.26, issue.3, pp.319-345, 2005.
DOI : 10.1016/j.biomaterials.2004.02.058

J. Vallée, M. Hauwel, and M. Lepetit-coiffé, Embryonic Stem Cell-Based Cardiopatches Improve Cardiac Function in Infarcted Rats, STEM CELLS Translational Medicine, vol.378, issue.3, pp.248-60, 2012.
DOI : 10.5966/sctm.2011-0028

Q. Xiong, K. Hill, and Q. Li, A Fibrin Patch-Based Enhanced Delivery of Human Embryonic Stem Cell-Derived Vascular Cell Transplantation in a Porcine Model of Postinfarction Left Ventricular Remodeling, STEM CELLS, vol.121, issue.2, pp.367-75, 2011.
DOI : 10.1002/stem.580

C. Gerard, M. Forest, G. Beauregard, D. Skuk, and J. Tremblay, Fibrin Gel Improves the Survival of Transplanted Myoblasts, Cell Transplantation, vol.21, issue.1, pp.127-164, 2012.
DOI : 10.3727/096368911X576018

T. Schneider, F. Osl, T. Friess, H. Stockinger, and W. Scheuer, Quantification of human Alu sequences by real-time PCR ? an improved method to measure therapeutic efficacy of antimetastatic drugs in human xenotransplants, Clinical and Experimental Metastasis, vol.19, issue.7, pp.571-582, 2002.
DOI : 10.1023/A:1020992411420

R. Levit, N. Landázuri, and E. Phelps, Cellular Encapsulation Enhances Cardiac Repair, Journal of the American Heart Association, vol.2, issue.5, p.367, 2013.
DOI : 10.1161/JAHA.113.000367

J. Wendel, L. Ye, P. Zhang, R. Tranquillo, and J. Zhang, Functional Consequences of a Tissue-Engineered Myocardial Patch for Cardiac Repair in a Rat Infarct Model, Tissue Engineering Part A, vol.20, issue.7-8, pp.1325-1360, 2014.
DOI : 10.1089/ten.tea.2013.0312

L. Chen, Y. Wang, and Y. Pan, Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury, Biochemical and Biophysical Research Communications, vol.431, issue.3, pp.566-71, 2013.
DOI : 10.1016/j.bbrc.2013.01.015

A. Ibrahim, K. Cheng, and E. Marban, Exosomes as Critical Agents of Cardiac Regeneration Triggered by Cell Therapy, Stem Cell Reports, vol.2, issue.5, pp.606-625, 2014.
DOI : 10.1016/j.stemcr.2014.04.006

C. Mummery, J. Zhang, E. Ng, D. Elliott, A. Elefanty et al., Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells to Cardiomyocytes: A Methods Overview, Circulation Research, vol.111, issue.3, pp.344-58, 2012.
DOI : 10.1161/CIRCRESAHA.110.227512

W. Levy, D. Mozaffarian, and D. Linker, The Seattle Heart Failure Model: Prediction of Survival in Heart Failure, Circulation, vol.113, issue.11, pp.1424-1457, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.584102