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CONVERGENCE ANALYSIS OF TWO NUMERICAL SCHEMES APPLIED TO A
NONLINEAR ELLIPTIC PROBLEM

CHRISTINE BERNARDI†, JAD DAKROUB†‡, GIHANE MANSOUR‡, FARAH RAFEI‡ AND TONI SAYAH‡.

Abstract. For a given nonlinear problem discretized by standard finite elements, we propose two iter-
ative schemes to solve the discrete problem. We prove the well-posedness of the corresponding problems
and their convergence. Next, we construct error indicators and prove optimal a posteriori estimates
where we treat separately the discretization and linearization errors. Some numerical experiments con-
firm the validity of the schemes and allow us to compare them.

1. Introduction

Let Ω be an open polygon in IR2, we consider the problem

−∆u+ λ|u|2pu = f in Ω, (1.1)

u = 0 on ∂Ω, (1.2)

where λ and p are two positive real numbers. The right-hand side f belongs to the dual space H−1(Ω)
of the Sobolev space H1

0 (Ω). The a posteriori error analysis of finite element approximations of the
present model problem has been studied by Bernardi, Dakroub, Mansour and Sayah, see [2]. In fact,
let Vh ⊂ H1

0 (Ω) be the P1 finite element space associated with a regular family of triangulations of
Ω, denoted by Th. Using P1 Lagrange finite elements, the discrete variational problem obtained by the
Galerkin method amounts to (from now on, we denote by (·, ·) the scalar product of L2(Ω))

Find uh ∈ Vh such that

∀vh ∈ Vh,
(
∇uh,∇vh

)
+ λ
(
|uh|2puh, vh

)
= 〈f, vh〉. (1.3)

In order to solve the discrete nonlinear problem (1.3), we introduced in [2] the following linear numerical
scheme, called fixed-point algorithm:

Find ui+1
h ∈ Vh such that

∀vh ∈ Vh,
(
∇ui+1

h ,∇vh
)

+ λ
(
|uih|2pui+1

h , vh
)

= 〈f, vh〉. (1.4)

This algorithm leads to a conditional convergence of the problem. In fact, the convergence of this
numerical schemes depends on the parameters λ, p and f . Furthermore, the a priori estimate of the
discrete variationel problem is presented in [2]. As well, the a posteriori analysis of the discretization is
performed but requires that the discrete solution belongs to a neighborhood of the exact solution u.

As a new contribution to the previous work that we have carried out recently on the a posteriori analysis
of the present nonlinear problem, see [2], we introduce in this paper two different convergent numerical
schemes to solve this problem. In fact, the main idea is to introduce a parameter α which can be controlled
in order to insure the convergence. Let u0

h be an initial guess, for i ≥ 0 we introduce the following two
algorithms:

May 22, 2015.
† CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France.
Sorbonne Universits, UPMC Univ Paris 06, UMR 7598, LJLI, F-75005, Paris, France.
‡ Unité de recherche EGFEM, Faculté des sciences, Université Saint-Joseph, Lebanon.
bernardi@ann.jussieu.fr, jad.dakroub@usj.edu.lb, gihane.mansour@usj.edu.lb, farah.rafei@net.usj.edu.lb,
toni.sayah@usj.edu.lb.

1



2 BERNARDI, DAKROUB, MANSOUR, RAFEI AND SAYAH

First numerical scheme.

Find ui+1
h ∈ Vh such that

∀vh ∈ Vh, α
(
ui+1
h − uih, vh

)
+
(
∇ui+1

h ,∇vh
)

+ λ
(
|uih|2pui+1

h , vh
)

= 〈f, vh〉, (1.5)

Second numerical scheme.

Find ui+1
h ∈ Vh such that

∀vh ∈ Vh, α
(
∇ui+1

h −∇uih,∇vh
)

+
(
∇ui+1

h ,∇vh
)

+ λ
(
|uih|2pui+1

h , vh
)

= 〈f, vh〉, (1.6)

For a parameter α bigger than a specific constant that depends on λ, p and the data f , problem (1.5) and
(1.6) always converge. Moreover, our objective is to derive an a posteriori error estimate distinguishing
linearization and discretization errors.

In practice, the present problem (1.1)− (1.2) is solved using an iterative method involving a linearization
process and approximated by the finite element method. Thus, two sources of error appear, namely
linearization and discretization. The main result in [2] is a two-sided bound of the error distinguishing
linearization and discretization errors in the context of an adaptive procedure. This type of analysis was
introduced by A.-L. Chaillou and M. Suri [3, 4] for a general class of problems characterized by strongly
monotone operators and developed by L. El Alaoui, A. Ern and M. Vohralík [5] for a class of second-
order monotone quasi-linear diffusion-type problems approximated by piecewise affine, continuous finite
elements. We wish to extend these results to the problem that we consider and prove optimal estimates.

The paper is organized as follows:

• Section 2 describes the model problem.
• Section 3 is devoted to the study of the convergence of the schemes.
• Section 4 provides the a posteriori estimates for both problems.
• Section 5 is devoted to the numerical results.

2. Preliminaries

In this section, we describe the variational formulation associated with the nonlinear problem (1.1)-(1.2)
and introduce and recall some corresponding properties which will be used later.
We denote by Lp(Ω) the space of measurable functions summable with power p, and for all v ∈ Lp(Ω),
the corresponding norm is defined by

‖ v ‖Lp(Ω)=

(∫
Ω

|v(x)|pdx
)1/p

.

In the case p = 2, we also denote this norm by ‖ · ‖0,Ω. Throughout this paper, we constantly use the
classical Sobolev space

H1(Ω) =

{
v ∈ L2(Ω);

∂v

∂x1
,
∂v

∂x2
∈ L2(Ω)

}
,

which is equipped respectively with the semi-norm and norm

|v|1,Ω =

(∫
Ω

(| ∂v
∂x1
|2 + | ∂v

∂x2
|2)dx

)1/2

and ‖ v ‖1,Ω=
(
||v||20,Ω + |v|21,Ω)

)1/2
.

In particular, we consider the following space

H1
0 (Ω) = {v ∈ H1(Ω), v|∂Ω

= 0},

and its dual space H−1(Ω). We recall the Sobolev imbeddings (see Adams [1], Chapter 3).

Lemma 2.1. For any domain Ω in IR2, for all j, 1 ≤ j < ∞, there exists a positive constant Sj such
that

∀v ∈ H1
0 (Ω), ‖ v ‖Lj(Ω)≤ Sj |v|1,Ω. (2.1)
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Remark 2.2. For domains Ω in IR3, inequality (2.1) with standard definition of H1
0 (Ω) remains valid

only for j ≤ 6, whence the interest of working in dimension d = 2.

Setting X = H1
0 (Ω), the model problem (1.1)-(1.2) admits the equivalent variational formulation:

Find u ∈ X such that

∀v ∈ X,
∫

Ω

∇u∇vdx +

∫
Ω

λ|u|2puvdx = 〈f, v〉, (2.2)

Theorem 2.3. [2] Problem (2.2) admits a unique solution u ∈ X.

We now introduce the following technical lemmas:

Lemma 2.4. Let a, b and p be three real numbers. We have the following relation∣∣|a|p − |b|p∣∣ ≤ p|a− b|(|a|p−1 + |b|p−1
)
.

Proof. The result follows from applying the mean value theorem to f(x) = xp with x > 0.

Lemma 2.5. For all x, y ∈ IR and p ∈ IR, we have

(|x|2px− |y|2py)(x− y) ≥ 0.

Remark 2.6. In the sequel, we denote by C, C ′,... generic constants that can vary from line to line but
are always independent of all discretization parameters.

3. Finite element discretization and convergence

In this section, we begin to collect some useful notation concerning the discrete setting and the a priori
estimate. Then, we show the convergence of the schemes (1.5) and (1.6).

Let (Th)h be a regular family of triangulations of Ω, in the sense that, for each h:
• The union of all elements of Th is equal to Ω.
• The intersection of two different elements of Th, if not empty, is a vertex or a whole edge of both
triangles.
• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed circle is smaller
than a constant independent of h.
As usual, h stands for the maximum of the diameters hK , K ∈ Th. Let Vh ⊂ H1

0 (Ω) be the Lagrange P`
finite element space associated with Th, more precisely

Vh =

{
vh ∈ H1

0 (Ω); ∀K ∈ Th, vh|K ∈ P`(K)

}
,

where P`(K) stands for the space of restrictions to K of polynomial functions of degree ≤ ` on IR2.

Remark 3.1. (Inverse inequality) There exists a constant SI > 0 such that for all vh ∈ Vh and K ∈ Th,
we have

|vh|1,K ≤ SIh−1
K ||vh||0,K . (3.1)

Theorem 3.2. [2] Let u be the solution of (2.2). Then, Problem (1.3) has a unique solution uh. Moreover,
if u ∈ H2(Ω), the followng estimate holds

‖ uh − u ‖1,Ω≤ Ch ‖ u ‖2,Ω .

In the following, we investigate the convergence of the schemes (1.5) and (1.6).

Theorem 3.3. Problem (1.5) admits a unique solution. Furthermore, if the initial value u0
h satisfies the

condition
||u0

h||0,Ω ≤ S2||f ||−1,Ω, (3.2)

then the solution of the problem (1.5) satisfies the estimates

||ui+1
h ||0,Ω ≤ S2||f ||−1,Ω and |ui+1

h |1,Ω ≤
√

1 + αS2
2 ||f ||−1,Ω. (3.3)
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Proof. It is readily checked that problem (1.5) has a unique solution as a consequence of the coercivity
of the bilinear form.
We consider the equation (1.5) with vh = ui+1

h and we obtain :
α

2
||ui+1

h ||
2
0,Ω −

α

2
||uih||20,Ω +

α

2
||ui+1

h − uih||20,Ω + |ui+1
h |

2
1,Ω + λ(|uih|2p ui+1

h , ui+1
h ) = (f, ui+1

h ).

By using the inequality

(f, ui+1
h ) ≤ 1

2
||f ||2−1,Ω +

1

2
|ui+1
h |

2
1,Ω,

we deduce the relation
α

2
||ui+1

h ||
2
0,Ω −

α

2
||uih||20,Ω +

α

2
||ui+1

h − uih||20,Ω +
1

2
|ui+1
h |

2
1,Ω + λ(|uih|2p ui+1

h , ui+1
h ) ≤ 1

2
||f ||2−1,Ω. (3.4)

We now prove the first estimate in (3.3) by induction on i. Starting with the relation (3.2), we suppose
that we have

||uih||0,Ω ≤ S2||f ||−1,Ω.

We are in one of the following two situations :

• We have ||ui+1
h ||0,Ω ≤ ||u

i
h||0,Ω. We obviously deduce the bound

||ui+1
h ||0,Ω ≤ S2||f ||−1,Ω

from the induction hypothesis.
• We have ||ui+1

h ||0,Ω ≥ ||u
i
h||0,Ω. The equation (3.4) gives

|ui+1
h |

2
1,Ω ≤ ||f ||2−1,Ω

and we deduce the inequality

||ui+1
h ||20,Ω ≤ S2

2 |ui+1
h |21,Ω

≤ S2
2 ||f ||2−1,Ω.

This gives the first part of (3.3). We now check the second part. We have from (3.4)

|ui+1
h |

2
1,Ω ≤ ||f ||2−1,Ω + α||uih||20,Ω ≤ (1 + αS2

2)||f ||2−1,Ω,

whence the desired result.

Theorem 3.4. Problem (1.6) admits a unique solution. Furthermore, if the initial value u0
h verify the

condition
|u0
h|1,Ω ≤ ||f ||−1,Ω, (3.5)

then the solution of Problem (1.6) satisfies the estimate

|ui+1
h |1,Ω ≤ ||f ||−1,Ω. (3.6)

Proof. We follow the same proof as for Theorem 3.3. It is readily checked that problem (1.6) has a
unique solution as a consequence of the coercivity of the bilinear form.
We consider the equation (1.6) with vh = ui+1

h and we obtain :
α

2
|ui+1
h |

2
1,Ω −

α

2
|uih|21,Ω +

α

2
|ui+1
h − uih|21,Ω + |ui+1

h |
2
1,Ω + λ(|uih|2p ui+1

h , ui+1
h ) = (f, ui+1

h ).

We deduce the relation
α

2
|ui+1
h |

2
1,Ω −

α

2
|uih|21,Ω +

α

2
|ui+1
h − uih|21,Ω +

1

2
|ui+1
h |

2
1,Ω + λ(|uih|2p ui+1

h , ui+1
h ) ≤ 1

2
||f ||2−1,Ω. (3.7)

We prove the relation (3.6) recursively. Starting with (3.5), we suppose that we have

|uih|1,Ω ≤ ||f ||−1,Ω.

We are in one of the following two situations :

• We have |ui+1
h |1,Ω ≤ |u

i
h|1,Ω. We deduce the bound

|ui+1
h |1,Ω ≤ ||f ||−1,Ω.
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• We have |ui+1
h |1,Ω ≥ |u

i
h|1,Ω. It follows from (3.7) that

|ui+1
h |

2
1,Ω ≤ ||f ||2−1,Ω.

We conclude the proof of the theorem.

Unfortunately the proof of the next result is much more technical.

Theorem 3.5. Assume that there exists β > 0 such that, for every element K ∈ Th, we have

hK ≥ βh,
(which means that the family of triangulations is uniformly regular). Under the assumptions of Theorem
3.3 and for

α > C2p2λ2h−4p (3.8)
where

C = 4S4S8S
2p−1
8(2p−1)

S2p
I

β2p
S2p

2 ||f ||
2p
−1,Ω,

the sequence of solutions (uih) of Problem (1.5) converges in H1
0 (Ω) to the solution uh of Problem (1.3).

Proof. We take the difference between the equations (1.5) and (1.3) with vh = ui+1
h − uh and we obtain

the equation
α

2
||ui+1

h − uh||20,Ω −
α

2
||uih − uh||20,Ω +

α

2
||ui+1

h − uih||20,Ω + |ui+1
h − uh|21,Ω

+λ(|uih|2pu
i+1
h − |uh|2puh, ui+1

h − uh) = 0.

The last term in the previous equation, denoted by T , can be decomposed as

T = λ((|uih|2p − |ui+1
h |

2p)ui+1
h , ui+1

h − uh) + λ(|ui+1
h |

2pui+1
h − |uh|2puh, ui+1

h − uh).

We denote by T1 and T2, respectively, the first and the second terms in the right-hand side of the last
equation. Using Lemma 2.5, we have T2 ≥ 0. Then we derive by using Lemma 2.4 (with p replaced by
2p)

α

2
||ui+1

h − uh||20,Ω −
α

2
||uih − uh||20,Ω +

α

2
||ui+1

h − uih||20,Ω + |ui+1
h − uh|21,Ω + T2 = −T1

≤ 2pλ

∫
Ω

(|ui+1
h |

2p−1 + |uih|2p−1)|ui+1
h − uih| |ui+1

h | |u
i+1
h − uh|dx

≤ 2pλ||ui+1
h − uih||0,Ω |||u

i+1
h |2p−1 + |uih|2p−1||L8(Ω) ||ui+1

h ||L8(Ω) ||ui+1
h − uh||L4(Ω)

≤ 2pλS4S8S
2p−1
8(2p−1)(|u

i+1
h |

2p−1
1,Ω + |uih|

2p−1
1,Ω )|ui+1

h |1,Ω||u
i+1
h − uih||0,Ω|u

i+1
h − uh|1,Ω

≤ 2pλS4S8S
2p−1
8(2p−1)

S2p
I

β2p
h−2p||ui+1

h ||
2p−1
0,Ω + ||uih||

2p−1
0,Ω ||u

i+1
h ||0,Ω||u

i+1
h − uih||0,Ω|ui+1

h − uh|1,Ω

≤ 4pλS4S8S
2p−1
8(2p−1)

S2p
I

β2p
S2p

2 h−2p||f ||2p−1,Ω||u
i+1
h − uih||0,Ω|ui+1

h − uh|1,Ω

We denote by C = 4S4S8S
2p−1
8(2p−1)

S2p
I

β2p
S2p

2 ||f ||
2p
−1,Ω, use the decomposition ab ≤ 1

2ε
a2 +

ε

2
b2, take ε =

1

Cpλh−2p
and obtain the following bound

α

2
||ui+1

h −uh||20,Ω−
α

2
||uih−uh||20,Ω +

α

2
||ui+1

h −uih||20,Ω +
1

2
|ui+1
h −uh|21,Ω +T2 ≤

C2p2λ2

2
h−4p||ui+1

h −uih||20,Ω.

We choice α > C2p2λ2h−4p, denote by C1 =
α− C2p2λ2h−4p

2
and obtain

α

2
||ui+1

h − uh||20,Ω −
α

2
||uih − uh||20,Ω + C1||ui+1

h − uih||20,Ω +
1

2
|ui+1
h − uh|21,Ω + T2 ≤ 0. (3.9)

We deduce that, for all i ≥ 1, we have (if ||uih − uh||0,Ω 6= 0)

||ui+1
h − uh||0,Ω < ||uih − uh||0,Ω,
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and we deduce the convergence of the sequence (ui+1
h − uh) in L2(Ω). By taking the limit of (3.9) we

deduce that |ui+1
h − uh|1,Ω converges to 0 and ui+1

h converges to uh in H1
0 (Ω).

Theorem 3.6. Under the assumptions of Theorem 3.4 and for

α >
(
4S2S4S8S

2p−1
8(2p−1)||f ||

2p
−1,Ω

)2
p2λ2, (3.10)

the sequence of solutions (uih) of Problem (1.6) converges in H1
0 (Ω) to the solution uh of Problem (1.3).

Proof. We take the difference between the equations (1.6) and (1.3) with vh = ui+1
h − uh and we obtain

the equation
α

2
|ui+1
h − uh|21,Ω −

α

2
|uih − uh|21,Ω +

α

2
|ui+1
h − uih|21,Ω + |ui+1

h − uh|21,Ω

+λ(|uih|2pu
i+1
h − |uh|2puh, ui+1

h − uh) = 0.

The last term in the previous equation, denoted by T , can be decomposed as

T = λ((|uih|2p − |ui+1
h |

2p)ui+1
h , ui+1

h − uh) + λ(|ui+1
h |

2pui+1
h − |uh|2puh, ui+1

h − uh).

We denote by T1 and T2 respectively the first and the second terms in the right-hand side of the last
equation. Using Lemma 2.5, we have T2 ≥ 0. Then we have by using Lemma 2.4

α

2
|ui+1
h − uh|21,Ω −

α

2
|uih − uh|21,Ω +

α

2
|ui+1
h − uih|21,Ω + |ui+1

h − uh|21,Ω + T2 = −T1

≤ 2pλ
(
(|ui+1

h |2p−1 + |uih|2p−1), |ui+1
h − uih| |u

i+1
h | |u

i+1
h − uh|

)
≤ 2pλ||ui+1

h − uih||0,Ω ||(|u
i+1
h |2p−1 + |uih|2p−1)||L8(Ω) ||ui+1

h ||L8(Ω) ||ui+1
h − uh||L4(Ω)

≤ 4pλS2S4S8S
2p−1
8(2p−1)||f ||

2p
−1,Ω|u

i+1
h − uih|1,Ω|u

i+1
h − uh|1,Ω.

We denote by C = 4S2S4S8S
2p−1
8(2p−1)||f ||

2p
−1,Ω, use the decomposition ab ≤ 1

2ε
a2 +

ε

2
b2, take ε =

1

Cpλ
and

obtain the following bound

α

2
|ui+1
h − uh|21,Ω −

α

2
|uih − uh|21,Ω +

α

2
|ui+1
h − uih|21,Ω +

1

2
|ui+1
h − uh|21,Ω + T2 ≤

C2p2λ2

2
|ui+1
h − uih|21,Ω.

We choose α > C2p2λ2, denote by C1 =
α− C2p2λ2

2
and obtain

α

2
|ui+1
h − uh|21,Ω −

α

2
|uih − uh|21,Ω + C1|ui+1

h − uih|21,Ω +
1

2
|ui+1
h − uh|21,Ω + T2 ≤ 0. (3.11)

We derive that, for all i ≥ 1, we have

|ui+1
h − uh|1,Ω < |uih − uh|1,Ω,

we obtain the convergence of the sequence (ui+1
h − uh) in H1(Ω) and, by taking the limit of (3.11) we

deduce that ui+1
h converges to uh in H1

0 (Ω).

Remark 3.7. The conditions (3.2) and (3.5) suppose that the initial values of the algorithms are small
related to the data f . We can always take u0

h = 0.

Remark 3.8. The previous two theorems bring to light a first difference between the two schemes (1.5)
and (1.6): in opposite to (1.5), the convergence of (1.6) is proved when α is larger than a constant
independent of h (and does not require the uniform regularity of the family of triangulations).

4. A posteriori error analysis

We start this section by introducing some additional notation which is needed for constructing and
analyzing the error indicators in the sequel.

For any triangle K ∈ Th we denote by E(K) and N (K) the set of its edges and vertices, respectively, and
we set

Eh =
⋃

K∈Th

E(K) and Nh =
⋃

K∈Th

N (K).
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With any edge e ∈ Eh we associate a unit vector n such that n is orthogonal to e. We split Eh and Nh in
the form

Eh = Eh,Ω ∪ Eh,∂Ω and Nh = Nh,Ω ∪Nh,∂Ω

where Eh,∂Ω is the set of edges in Eh that lie on ∂Ω and Eh,Ω = Eh \ Eh,∂Ω. The same goes for Nh,∂Ω.

Furthermore, for K ∈ Th and e ∈ Eh, let hK and he be their diameter and length, respectively. An
important tool in the construction of an upper bound for the total error is Clément’s interpolation operator
Rh with values in Vh. The operator Rh satisfies, for all v ∈ H1

0 (Ω), the following local approximation
properties (see R. Verfürth, [7], Chapter 1):

‖ v −Rhv ‖L2(K) ≤ ChK |v|1,∆K
,

‖ v −Rhv ‖L2(e) ≤ Ch
1/2
e |v|1,∆e

,

where ∆K and ∆e are the following sets:

∆K =
⋃ {

K ′ ∈ Th; K ′ ∩K 6= ∅
}

and ∆e =
⋃ {

K ′ ∈ Th; K ′ ∩ e 6= ∅
}
.

We now recall the following properties (see R. Verfürth, [7], Chapter 1):

Proposition 4.1. Let r be a positive integer. For all v ∈ Pr(K), the following properties hold

C ‖ v ‖L2(K) ≤ ‖ vψ1/2
K ‖L2(K) ≤ ‖ v ‖L2(K) , (4.1)

|v|1,K ≤ Ch−1
K ‖ v ‖L2(K) . (4.2)

where ψK is the triangle-bubble function (equal to the product of the barycentric coordinates associated
with the vertices of K).

We also introduce a lifting operator: For each K ∈ Th and any edge e of K, Le,K maps polynomials of
fixed degree on e vanishing on ∂e into polynomials on K vanishing on ∂K \ e and is constructed by affine
transformation from a fixed lifting operator on the reference triangle.

Proposition 4.2. Let r be a positive integer. For all v ∈ Pr(e), we have the following property

C ‖ v ‖L2(e) ≤ ‖ vψ1/2
e ‖L2(e) ≤ ‖ v ‖L2(e) , (4.3)

where ψe is the bubble function on the edge e, and for all v ∈ Pr(e) vanishing on ∂e, we have

||Le,κv||L2(κ) + he|Le,κv|1,κ ≤ Ch
1/2
e ‖ v ‖L2(e) , (4.4)

where κ is a triangle of edge e.

Finally, we denote by [vh] the jump of vh across the common edge e of two adjacent elements K,K ′ ∈ Th.
We have now provided all prerequisites to establish an upper bound and lower bound for the total error.
Let ui+1

h and u be the solution of the iterative problem (1.5) or (1.6) and the continuous problem,
respectively. They satisfy the identity∫

Ω

∇(ui+1
h − u)∇vdx =

∫
Ω

∇ui+1
h ∇vdx + λ

∫
Ω

|u|2puvdx−
∫

Ω

fvdx. (4.5)

We now start the a posteriori analysis of our algorithms.

4.1. Algorithm (1.5).
In order to prove an upper bound of the error, we introduce an approximation fh of the data f which is
constant on each element K of Th. We first write the residual equation∫

Ω

∇u∇vdx + λ

∫
Ω

|u|2puvdx−
∫

Ω

∇ui+1
h ∇vdx− λ

∫
Ω

|uih|2pui+1
h vdx

=

∫
Ω

(f − fh)(v − vh)dx +
∑
K∈Th

{∫
K

(fh + ∆ui+1
h − λ|uih|2pui+1

h − α(ui+1
h − uih))(v − vh)dx

−1

2

∑
e∈E(K)

∫
e

[
∂ui+1

h

∂n
](v − vh)dτ

}
+ α

∑
K∈Th

∫
K

(ui+1
h − uih)vdx.

(4.6)
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By adding and subtracting λ
∫

Ω

|ui+1
h |

2pui+1
h vdx, we obtain∫

Ω

∇u∇vdx + λ

∫
Ω

|u|2puvdx−
∫

Ω

∇ui+1
h ∇vdx− λ

∫
Ω

|ui+1
h |

2pui+1
h vdx

=

∫
Ω

(f − fh)(v − vh)dx +
∑
K∈Th

{∫
K

(fh + ∆ui+1
h − λ|uih|2pui+1

h − α(ui+1
h − uih))(v − vh)dx

−1

2

∑
e∈E(K)

∫
e

[
∂ui+1

h

∂n
](v − vh)dτ

}
+ λ

∫
Ω

(
|uih|2p − |ui+1

h |
2p
)
ui+1
h vdx + α

∑
K∈Th

∫
K

(ui+1
h − uih)vdx.

(4.7)
We now define the local linearization indicator η(L)

K,i and the local discretization indicator η(D)
K,i at each

iteration i by:

η
(L)
K,i = ||ui+1

h − uih||1,K ,(
η

(D)
K,i

)2
= h2

K ‖ fh + ∆ui+1
h − λ|uih|2pu

i+1
h − α(ui+1

h − uih) ‖2L2(K) +
∑

e∈E(K)

he ‖ [
∂ui+1

h

∂n
] ‖2L2(e) .

We are in a position to state the first result of this section:

Theorem 4.3. Upper bound. Let ui+1
h and u be the solution of the iterative problem (1.5) and the exact

problem (2.2) respectively. We have the following a posteriori error estimate

|ui+1
h − u|1,Ω ≤ C

(( ∑
K∈Th

(
(
η

(D)
K,i

)2
+ h2

K ‖ f − fh ‖2L2(K))
)1/2

+
( ∑
K∈Th

(
η

(L)
K,i

)2)1/2)
.

Proof. We consider equation (4.7) with v = u− ui+1
h and we obtain∫

Ω

∇(u− ui+1
h )2dx + λ

∫
Ω

(|u|2pu− |ui+1
h |

2pui+1
h )(u− ui+1

h )dx

=
∑
K∈Th

∫
K

(f − fh)(v − vh)dx +
∑
K∈Th

{∫
K

(fh + ∆ui+1
h − λ|uih|2pui+1

h − α(ui+1
h − uih))(v − vh)dx

−1

2

∑
e∈E(K)

∫
e

[
∂ui+1

h

∂n
](v − vh)dτ

}
+ λ

∫
Ω

(
|uih|2p − |ui+1

h |
2p
)
ui+1
h vdx + α

∑
K∈Th

∫
K

(ui+1
h − uih)vdx.

(4.8)
Then we have by using Lemmas 2.4 and 2.5

|u− ui+1
h |21,Ω ≤

∑
K∈Th ||f − fh||L2(K)||v − vh||L2(K)

+
∑
K∈Th

(||fh + ∆ui+1
h − λ|uih|2pui+1

h − α(ui+1
h − uih)||L2(K)||v − vh||L2(K)

+
1

2

∑
e∈E(K)

||[
∂ui+1

h

∂n
]||L2(e)||v − vh||L2(e) + λ

∫
Ω

2p
∣∣uih − ui+1

h |
(
|uih|2p−1 + |ui+1

h |
2p−1)|ui+1

h ||v|dx

+α
∑
K∈Th

||ui+1
h − uih||L2(K)||v||L2(K)

We choose vh = Rhv, the image of v by the Clément operator and we obtain

|u− ui+1
h |21,Ω ≤ C

∑
K∈Th

hK ||f − fh||L2(K)|v|1,∆K

+
∑
K∈Th

(ChK ||fh + ∆ui+1
h − λ|uih|2pui+1

h − α(ui+1
h − uih)||L2(K)|v|1,∆K

+
C

2

∑
e∈E(K)

h
1
2
e ||[

∂ui+1
h

∂n
]||L2(e)|v|1,∆e)

+λ

∫
Ω

2p
∣∣uih − ui+1

h |
(
|uih|2p−1 + |ui+1

h |
2p−1)|ui+1

h ||v|dx + α
∑
K∈Th

||ui+1
h − uih||L2(K)||v||L2(K)
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We begin by bounding the second term of the right-hand side of the last inequality and we obtain by
using Theorem 3.3

λ

∫
Ω

2p
∣∣uih − ui+1

h |
(
|uih|2p−1 + |ui+1

h |
2p−1)|ui+1

h ||v|dx

≤ 2λp|| |uih|2p−1 + |ui+1
h |2p−1||L8(Ω)

∣∣|uih − ui+1
h ||L8(Ω)||ui+1

h ||L4(Ω)||v||L2(Ω)

≤ 2λpS2S4S8

(
|| |uih|2p−1||L8(Ω) + || |ui+1

h |2p−1||L8(Ω)

)
|uih − u

i+1
h |1,Ω|u

i+1
h |1,Ω|v|1,Ω

≤ 2λpS2S4S8S
2p−1
8(2p−1)(|u

i
h|

2p−1
1,Ω + |ui+1

h |
2p−1
1,Ω )

∣∣uih − ui+1
h |1,Ω|u

i+1
h |1,Ω|v|1,Ω

≤ 4λp(1 + αS2
2)pS2S4S8S

2p−1
8(2p−1)||f ||

2p
−1,Ω

∣∣uih − ui+1
h |1,Ω|v|1,Ω.

Let S = 4λp(1 + αS2
2)pS2S4S8S

2p−1
8(2p−1)||f ||

2p
−1,Ω, then we have

|u− ui+1
h |21,Ω ≤ C

∑
K∈Th

hK ||f − fh||L2(K)|v|1,∆K

+
∑
K∈Th

(ChK ||fh + ∆ui+1
h − λ|uih|2pui+1

h − α(ui+1
h − uih)||L2(K)|v|1,∆K

+
C

2

∑
e∈E(K)

h
1
2
e ||[

∂ui+1
h

∂n
]||L2(e)|v|1,∆e

)

+S|uih − ui+1
h |1,Ω|v|1,Ω + α

∑
K∈Th

||ui+1
h − uih||L2(K)||v||L2(K).

By using the formula ab ≤ 1

2ε
a2 +

ε

2
b2, we obtain

|u− ui+1
h |21,Ω ≤

Cε1

2

∑
K∈Th

h2
K ||f − fh||2L2(K) +

C1

2ε1

∑
K∈Th

|v|21,K

+
Cε2

2

∑
K∈Th

h2
K ||fh + ∆ui+1

h − λ|uih|2pui+1
h − α(ui+1

h − uih)||2L2(K) +
C2

2ε2

∑
K∈Th

|v|21,K

+
Cε3

4

∑
K∈Th

∑
E∈E(K)

hE ||[
∂ui+1

h

∂n
]||2L2(E) +

C3

4ε3

∑
K∈Th

|v|21,K

+
Sε4

2

∑
K∈Th

||uih − ui+1
h ||

2
1,K +

S

2ε4

∑
K∈Th

|v|21,K

+
αε5

2

∑
K∈Th

||ui+1
h − uih||21,K +

α

2ε5
||v||2L2(Ω)

We choose ε1 = 8C1, ε2 = 8C2, ε3 = 4C3, ε4 = 8S et ε5 = 8αS2
2 to obtain

|u− ui+1
h |21,Ω ≤ C

( ∑
K∈Th

h2
K ||f − fh||2L2(K) +

∑
K∈Th

∑
e∈E(K)

he||[
∂ui+1

h

∂n
]||2L2(e)

+
∑
K∈Th

h2
K ||fh + ∆ui+1

h − λ|uih|2pui+1
h − α(ui+1

h − uih)||2L2(K)

+
∑
K∈Th

||uih − ui+1
h ||

2
1,K +

∑
K∈Th

||ui+1
h − uih||21,K

)
+

5

16
|v|21,Ω,

and then

|ui+1
h − u|1,Ω ≤ C((

∑
K∈Th

(
(
η

(D)
K,i

)2
+ h2

K ||f − fh||2L2(K)))
1
2 + (

∑
K∈Th

(
η

(L)
K,i

)2
)

1
2 ).

We conclude the proof of the theorem.
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We address now the efficiency of the previous indicators.

Theorem 4.4. Lower bound. For each K ∈ Th, there holds

η
(L)
K,i ≤ ‖ uih − u ‖1,K + ‖ ui+1

h − u ‖1,K ,
η

(D)
K,i ≤ C

∑
κ⊂ωK

(
||u− ui+1

h ||1,κ + η
(L)
κ,i + hκ ‖ f − fh ‖L2(κ)

)
,

where ωK is the union of the triangles sharing at least one edge with K.

Proof. The estimation of the linearization indicator follows easily from the triangle inequality by intro-
ducing u in η(L)

K,i. We now estimate the discretization indicator η(D)
K,i . We proceed in two steps:

(i) We start by adding and subtracting λ
∫

Ω

|ui+1
h |

2pui+1
h vdx in (4.6). Taking vh = 0, we derive

∑
K∈Th

∫
K

(fh + ∆ui+1
h − λ|uih|2pui+1

h − α(ui+1
h − uih))vdx

=

∫
Ω

∇(u− ui+1
h )∇vdx−

∑
K∈Th

∫
K

(f − fh)vdx

+
1

2

∑
K∈Th

∑
e∈E(K)

∫
e

[
∂ui+1

h

∂n
]vdτ + λ

∫
Ω

(|u|2pu− |ui+1
h |

2pui+1
h )vdx

+λ

∫
Ω

ui+1
h (|ui+1

h |
2p − |uih|2p)vdx− α

∑
K∈Th

∫
K

(ui+1
h − uih)vdx.

(4.9)

We choose v = vK such that

vK =

{
(fh + ∆ui+1

h − λ|uih|2pu
i+1
h − α(ui+1

h − uih))ψK in K
0 in Ω \K

where ψK is the triangle-bubble function.

Using Cauchy-Schwarz inequality, (2.1), (4.1) and (4.2) we obtain

‖ fh + ∆ui+1
h − λ|uih|2pu

i+1
h − α(ui+1

h − uih) ‖2L2(K)

≤ (1 + λC ‖ f ‖2p−1,Ω) ‖ u− ui+1
h ‖1,K |vK |1,K+ ‖ f − fh ‖L2(K)‖ vK ‖L2(K)

+λC ‖ uih − u
i+1
h ‖1,K |vK |1,K + α||ui+1

h − uih||L2(K)||vK ||L2(K).

Therefore, we derive the following estimate of the first term of the local discretization estimator η(D)
K,i

hK ‖ fh + ∆ui+1
h − λ|uih|2pu

i+1
h − α(ui+1

h − uih) ‖L2(K)

≤ C(‖ u− ui+1
h ‖1,K +hK ‖ f − fh ‖L2(K)) + C ′η

(L)
K,i.

(4.10)

(ii) Now we estimate the second term of η(D)
K,i . Similarly, using (4.9) we infer

1

2

∑
K∈Th

∑
e∈E(K)

∫
e

[
∂ui+1

h

∂n
]v dτ =

∫
Ω

∇(ui+1
h − u)∇vdx

+
∑
K∈Th

∫
K

(fh + ∆ui+1
h − λ|uih|2pui+1

h − α(ui+1
h − uih))vdx +

∫
Ω

(f − fh)vdx

−λ
∫

Ω

(|ui+1
h |

2pui+1
h − |uih|2pui+1

h )vdx− λ
∫

Ω

(|u|2pu− |ui+1
h |

2pui+1
h )vdx + α

∑
K∈Th

∫
K

(ui+1
h − uih)vdx.

(4.11)
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We choose v = ve such that

ve =

 Le,κ

([
∂ui+1

h

∂n

]
ψe

)
κ ∈ {K,K ′}

0 in Ω \ (K ∪K ′)

where ψe is the edge-bubble function, K ′ denotes the other element of Th that share e with K (the
operator Le,K was introduced above Proposition 4.2).

Using Cauchy-Schwarz inequality, (2.1), (4.3) and (4.4) we derive

h1/2
e ‖

[∂ui+1
h

∂n

]
‖2L2(e)≤ (1 + λC ‖ f ‖2p−1,Ω) ‖ u− ui+1

h ‖1,K∪K′‖ ve ‖L2(e)

+he ‖ f − fh ‖L2(K∪K′)‖ ve ‖L2(e) +he ‖ fh + ∆ui+1
h − λ|uih|2pui+1

h − α(ui+1
h − uih) ‖L2(K∪K′)‖ ve ‖L2(e)

+C ′(eta
(L)
K,ß + η

(L)
K′,i)||ve||L2(e).

(4.12)
Collecting the two bounds above leads to the following estimation

η
(D)
K,i ≤ C

∑
κ⊂ωK

(
||u− ui+1

h ||1,κ + η
(L)
κ,i + hκ ‖ f − fh ‖L2(κ)

)
These estimates of the local linearization and discretization indicators are fully optimal.

4.2. Algorithm (1.6). The same calculation is followed as before but in (4.6) and (4.7) we have

α
∑
K∈Th

∫
K

∇(ui+1
h − uih)∇v instead of α

∑
K∈Th

∫
K

(ui+1
h − uih)v. We are led to define the modified dis-

cretization error indicator η̄(D)
K,i by(

η̄
(D)
K,i )

2 = h2
K ||fh + ∆ui+1

h − λ|uih|2pu
i+1
h + α∆(ui+1

h − uih)||2L2(K)

+
∑

e∈E(K)

he||[
∂ui+1

h

∂n
− α

∂(ui+1
h − uih)

∂n
]||2L2(e).

The rest of the calculation is similar. We skip the proofs since they are exactly the same as for Theorems
4.3 and 4.4.

Theorem 4.5. Upper bound. Let ui+1
h and u be the solution of the iterative problem (1.6) and the exact

problem (2.2) respectively. We have the following a posteriori error estimate

|ui+1
h − u|1,Ω ≤ C

(( ∑
K∈Th

(
(
η̄

(D)
K,i

)2
+ h2

K ‖ f − fh ‖2L2(K))
)1/2

+
( ∑
K∈Th

(
η

(L)
K,i

)2)1/2)
.

Theorem 4.6. Lower bound. For each K ∈ Th, there holds

η
(L)
K,i ≤ ‖ uih − u ‖1,K + ‖ ui+1

h − u ‖1,K ,
η̄

(D)
K,i ≤ C

∑
κ⊂ωK

(
||u− ui+1

h ||1,κ + η
(L)
κ,i + hκ ‖ f − fh ‖L2(κ)

)
,

where ωK is the union of the triangles sharing at least one edge with K.

5. Numerical results

In this section, we present numerical experiments for our nonlinear problem. These simulations have been
performed using the code FreeFem++ due to F. Hecht and O. Pironneau, see [6]. For all the numerical
investigations and for simplicity, we use the finite element of degree ` = 1.



12 BERNARDI, DAKROUB, MANSOUR, RAFEI AND SAYAH

5.1. A priori estimation. We consider the domain Ω =] − 1, 1[2, each edge is divided into N equal
segments so that Ω is divided into N2 equal squares and finally into 2N2 equal traingles . We consider
the theoretical solution u = e−5(x2+y2).

For the convergence, we use the classical stopping criterion errL ≤ 10−5, where errL is defined by

errL =
|ui+1
h − uih|1,Ω
|ui+1
h |1,Ω

.

We consider λ = 10, p = 50 and N = 50. Table 1 shows the error

Err =
|uih − u|1,Ω
|u|1,Ω

,

which describes the convergence of the algorithms (1.5) and (1.6) with respect of α. We remark that the
algorithm (1.5) converges for α ≥ 21.82 and the algorithm (1.6) converges for α ≥ 0.77.
In order to compare our algorithms (1.5) and (1.6) with (1.4), Table 2 shows the convergence for N = 50

α 0.01 0.5 0.76 0.77 1 10
Algo (1.5) div div div div div div
Algo (1.6) div div div 0.0581902 0.0581908 0.0581905

α 20 21.81 21.82 22 50 100
Algo (1.5) div div 0.0581906 0.0581904 0.0581897 0.0581886
Algo (1.6) 0.0581906 0.0581907 0.0581907 0.0581907 0.0581919 0.0581973

Table 1. Convergence of algorithms (1.5) and (1.6) with respect of α.

and a fixed α = 22 in our algorithms. In fact, for big values of λ and p, the algorithm (1.4) diverges. We
mention that for λ and p where (1.5) and (1.6) diverge, we must take a bigger values of α to obtain the
convergence. Figure 1 shows in logarithmic scale the error Err with respect to h (algorithm 1.5 in the left

λ = 1 λ = 2 λ = 5 λ = 5 λ = 10
p = 1 p = 10 p = 10 p = 50 p = 10

Algo (1.4) 0.0581392 0.0580725 div div div
Algo (1.5) 0.0580467 0.058072 0.0581392 0.0581284 0.0582106
Algo (1.6) 0.0580458 0.0580717 0.0581399 0.0581292 0.0582111

λ = 10 λ = 10 λ = 50 λ = 100 λ = 100
p = 50 p = 100 p = 50 p = 50 p = 100

Algo (1.4) div div div div div
Algo (1.5) 0.0581904 0.0581759 div div div
Algo (1.6) 0.0581907 0.0581764 0.0582894 0.0583124 0.0582956

Table 2. Comparison of the convergence of algorithms (1.5), (1.6) (for α = 22) with (1.4).

and algorithm 1.6 in the right). The slope of the error corresponding to (1.5) and (1.6) are respectively
0.92 and 0.96, which validates Theorem 3.2.
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Figure 1. A priori error with respect of h = 1/N : left (algo 1.5) and right (algo 1.6).

5.2. A posteriori analysis. In this section, we test our a posteriori error estimates on our model prob-
lem. We consider the same domain Ω with the theoretical solution now given by u = e−100(x2+y2). and
we choose λ = 10 and p = 50.

In [2] and for the adaptive strategy, we define the global indicators (introduced in [5]):

η
(D)
i =

( ∑
K∈Th

(
η

(D)
K,i

)2)1/2

and η
(L)
i =

( ∑
K∈Th

(
η

(L)
K,i

)2)1/2

,

and we introduce two kinds of stopping criteria :

η
(L)
i ≤ 10−5 Classical stopping criterion , (5.1)

and
η

(L)
i ≤ γη(D)

i New stopping criterion , (5.2)
where γ is a parameter which balances the discretization and linearization errors. We studied in [2] the
comparison between these two types of stopping criterion and we showed the efficiency of the new one
which is considered in this paper with γ = 0.001.

For our numerical investigations, we follow the algorithm described in [2]. The evolution of the meshes
with the new stopping criterion looks like the figures 3 and 4 in [2]. We note that for λ = 10 and p = 50,
the algorithm (1.4) diverges.

Figure 2 gives a comparison in logarithmic scale of the error between the uniform and adaptive methods
using the algorithms (1.5) and (1.6) with respect of the number of vertices. We can easily see that the
algorithms (1.5) and (1.6) give comparable results but the adaptive method is more powerful than the
uniform one.

Table 3 shows comparisons, for approximatively the same precision, of the CPU time between the algo-
rithm (1.5) and (1.6) with respect of α. We remark that algorithm (1.5) is faster than (1.6).

In order to have an idea of the constant on the upper bound in theorem 4.3, Table 4 shows the repartition
of the error Err and the sum of the indicators

errI =
((η

(D)
i )2 + (η

(L)
i )2)1/2

|u|1,Ω
' η

(D)
i

|u|1,Ω
,

during the refinement level and after the convergence on each one. Even if the errors regularly decrease
(for instance from 1 to 0.14 for errI) with respect to the number of adaptive refinement levels which is
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Figure 2. Error versus number of vertices in logarithmic scale for adaptive and uniform
methods with algorithms (1.5) and (1.6).

α 22 30 40 50
Algo (1.5) time=5.186 s time=4.952 s time=5.505 s time=5.51 s

error=0.0487858 error=0.0484306 error=0.048256 error=0.0478781
Algo (1.6) time=56.625 s time=59.499 s time=66.231 s time=61.268 s

error=0.0475732 error=0.0486143 error=0.0469877 error=0.0494427
Table 3. Comparison of the precision and the CPU time between the algorithm (1.5)
and (1.6) with respect of α.

Itn Err errI C =
errI
Err

1 0.426417 1.31249 3.07796
2 0.169927 0.524469 3.08644
3 0.138091 0.372655 2.69862
4 0.093948 0.278664 2.96615
5 0.0806374 0.222064 2.75386
6 0.063787 0.186245 2.91979
7 0.0583991 0.160167 2.74262
8 0.049479 0.14235 2.87698

Itn Err errI C =
errI
Err

1 0.443195 1.29673 2.92587
2 0.175596 0.536429 3.05491
3 0.143715 0.38263 2.66242
4 0.0959932 0.290036 3.02142
5 0.0848493 0.229053 2.69953
6 0.0643159 0.191061 2.97066
7 0.0577646 0.157273 2.72265
8 0.0474228 0.137726 2.90422

Table 4. Repartition of errors and indicators during the refinement levels (Itn) : Left
(algorithm (1.5)) and right (algorithm (1.6)).

consistent with adapted mesh method, the constant remains stable and can be approximated by 2.85.
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