On the critical curves of the pinning and copolymer models in correlated Gaussian environment

Abstract : We investigate the disordered copolymer and pinning models, in the case of a correlated Gaussian environment with summable correlations, and when the return distribution of the underlying renewal process has a polynomial tail. As far as the copolymer model is concerned, we prove disorder relevance both in terms of critical points and critical exponents, in the case of non-negative correlations. When some of the correlations are negative, even the annealed model becomes non-trivial. Moreover, when the return distribution has a finite mean, we are able to compute the weak coupling limit of the critical curves for both models, with no restriction on the correlations other than summability. This generalizes the result of Berger, Caravenna, Poisat, Sun and Zygouras to the correlated case. Interestingly, in the copolymer model, the weak coupling limit of the critical curve turns out to be the maximum of two quantities: one generalizing the limit found in the IID case, the other one generalizing the so-called Monthus bound.
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2015, 20, pp.1-35. <10.1214/EJP.v20-3514>
Liste complète des métadonnées


http://hal.upmc.fr/hal-01214672
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : lundi 12 octobre 2015 - 17:47:29
Dernière modification le : lundi 29 mai 2017 - 14:22:11
Document(s) archivé(s) le : jeudi 27 avril 2017 - 00:09:04

Fichier

3514-22046-1-PB.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Quentin Berger, Julien Poisat. On the critical curves of the pinning and copolymer models in correlated Gaussian environment. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2015, 20, pp.1-35. <10.1214/EJP.v20-3514>. <hal-01214672>

Partager

Métriques

Consultations de
la notice

138

Téléchargements du document

73