X. Aranguren, X. Agirre, M. Beerens, G. Coppiello, M. Uriz et al., Unraveling a novel transcription factor code determining the human arterial-specific endothelial cell signature, Blood, vol.122, issue.24, pp.3982-3992, 2013.
DOI : 10.1182/blood-2013-02-483255

N. Baeyens, M. Mulligan-kehoe, F. Corti, D. Simon, T. Ross et al., Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling, Proceedings of the National Academy of Sciences, vol.111, issue.48, pp.17308-17313, 2014.
DOI : 10.1073/pnas.1413725111

B. Berk, Atheroprotective Signaling Mechanisms Activated by Steady Laminar Flow in Endothelial Cells, Circulation, vol.117, issue.8, pp.1082-1089, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.720730

S. Boito, P. Struijk, N. Ursem, T. Stijnen, and J. Wladimiroff, Umbilical venous volume flow in the normally developing and growth-restricted human fetus, Ultrasound in Obstetrics and Gynecology, vol.19, issue.80, pp.344-349, 2002.
DOI : 10.1046/j.1469-0705.2002.00671.x

M. Bond, R. Fabunmi, A. Baker, and A. Newby, Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-??B, FEBS Letters, vol.296, issue.1, pp.29-34, 1998.
DOI : 10.1016/S0014-5793(98)01034-5

J. Bussmann and S. Schulte-merker, Rapid BAC selection for tol2-mediated transgenesis in zebrafish, Development, vol.138, issue.19, pp.4327-4332, 2011.
DOI : 10.1242/dev.068080

J. Bussmann, S. Wolfe, and A. Siekmann, Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling, Development, vol.138, issue.9, pp.1717-1726, 2011.
DOI : 10.1242/dev.059881

C. Calvo, R. Fontaine, J. Soueid, T. Tammela, T. Makinen et al., Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis, Genes & Development, vol.25, issue.8, pp.831-844, 2011.
DOI : 10.1101/gad.615311

W. Cannon, Organization for physiological homeostasis, Physiological Reviews, vol.9, pp.399-431, 1929.

L. Cardamone and J. Humphrey, Arterial growth and remodelling is driven by hemodynamics. Modeling of physiological flows, pp.187-203, 2012.

Y. Castier, B. Ramkhelawon, S. Riou, A. Tedgui, and S. Lehoux, Role of NF-kappaB in flow-induced vascular remodeling, Antioxidants & Redox Signaling, vol.11, 2009.

R. Christensen, V. Baer, E. Gerday, M. Sheffield, D. Richards et al., Whole-blood viscosity in the neonate: effects of gestational age, hematocrit, mean corpuscular volume and umbilical cord milking, Journal of Perinatology, vol.36, issue.1, pp.16-21, 2014.
DOI : 10.1038/jp.2013.112

B. Coon and N. Baeyens, Intra-membrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex, Journal of Cell Biology, 2015.

P. Corti, S. Young, C. Chen, M. Patrick, E. Rochon et al., Interaction between alk1 and blood flow in the development of arteriovenous malformations, Development, vol.138, issue.8, pp.1573-1582, 2011.
DOI : 10.1242/dev.060467

L. Covassin, J. Villefranc, M. Kacergis, B. Weinstein, and N. Lawson, Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish, Proceedings of the National Academy of Sciences, vol.103, issue.17, pp.6554-6559, 2006.
DOI : 10.1073/pnas.0506886103

J. Dixon, S. Greiner, A. Gashev, G. Cote, J. Moore et al., Lymph Flow, Shear Stress, and Lymphocyte Velocity in Rat Mesenteric Prenodal Lymphatics, Microcirculation, vol.13, issue.7, pp.597-610, 2006.
DOI : 10.1080/10739680600893909

J. Dolan, H. Meng, S. Singh, R. Paluch, and J. Kolega, High Fluid Shear Stress and Spatial Shear Stress Gradients Affect Endothelial Proliferation, Survival, and Alignment, Annals of Biomedical Engineering, vol.53, issue.Pt 15, pp.1620-1631, 2011.
DOI : 10.1007/s10439-011-0267-8

J. Dolan, F. Sim, H. Meng, and J. Kolega, Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling, AJP: Cell Physiology, vol.302, issue.8, pp.1109-1118, 2011.
DOI : 10.1152/ajpcell.00369.2011

D. Dumont, L. Jussila, J. Taipale, A. Lymboussaki, T. Mustonen et al., Cardiovascular Failure in Mouse Embryos Deficient in VEGF Receptor-3, Science, vol.282, issue.5390, pp.946-949, 1998.
DOI : 10.1126/science.282.5390.946

S. Dupuis-girod, S. Bailly, and H. Plauchu, Hereditary hemorrhagic telangiectasia: from molecular biology to patient care, Journal of Thrombosis and Haemostasis, vol.30, issue.3 Pt 1, pp.1447-1456, 2010.
DOI : 10.1111/j.1538-7836.2010.03860.x

D. Godin, E. Ivan, C. Johnson, R. Magid, and Z. Galis, Remodeling of Carotid Artery Is Associated With Increased Expression of Matrix Metalloproteinases in Mouse Blood Flow Cessation Model, Circulation, vol.102, issue.23, pp.2861-2866, 2000.
DOI : 10.1161/01.CIR.102.23.2861

W. Gu, T. Brännstrbrännstr¨brännström, W. Jiang, A. Bergh, and P. Wester, Vascular endothelial growth factor-A and -C protein upregulation and early angiogenesis in a rat photothrombotic ring stroke model with spontaneous reperfusion, Acta Neuropathologica, vol.102, pp.216-226, 2001.

P. Haiko, T. Makinen, S. Keskitalo, J. Taipale, M. Karkkainen et al., Deletion of Vascular Endothelial Growth Factor C (VEGF-C) and VEGF-D Is Not Equivalent to VEGF Receptor 3 Deletion in Mouse Embryos, Molecular and Cellular Biology, vol.28, issue.15, pp.4843-4850, 2008.
DOI : 10.1128/MCB.02214-07

M. Heil and W. Schaper, Influence of Mechanical, Cellular, and Molecular Factors on Collateral Artery Growth (Arteriogenesis), Circulation Research, vol.95, issue.5, pp.449-458, 2004.
DOI : 10.1161/01.RES.0000141145.78900.44

M. Herwig, M. ¨. Uller, K. , M. Uller, and A. , Endothelial VE-cadherin expression in human lungs, Pathology - Research and Practice, vol.204, issue.10, pp.725-730, 2008.
DOI : 10.1016/j.prp.2008.04.014

A. Kaipainen, J. Korhonen, T. Mustonen, V. Van-hinsbergh, G. Fang et al., Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development., Proceedings of the National Academy of Sciences, vol.92, issue.8, pp.3566-3570, 1995.
DOI : 10.1073/pnas.92.8.3566

A. Kamiya, R. Bukhari, and T. Togawa, Adaptive regulation of wall shear stress optimizing vascular tree function, Bulletin of Mathematical Biology, vol.74, issue.1, pp.127-137, 1984.
DOI : 10.1007/BF02463726

A. Kamiya and T. Togawa, Adaptive regulation of wall shear stress to flow change in the canine carotid artery, The American Journal of Physiology, vol.239, pp.14-21, 1980.

T. Kiserud and S. Rasmussen, How repeat measurements affect the mean diameter of the umbilical vein and the ductus venosus, Ultrasound in Obstetrics and Gynecology, vol.11, issue.6, pp.419-425, 1998.
DOI : 10.1046/j.1469-0705.1998.11060419.x

T. Kohler, T. Kirkman, L. Kraiss, B. Zierler, and A. Clowes, Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts, Circulation Research, vol.69, issue.6, pp.1557-1565, 1991.
DOI : 10.1161/01.RES.69.6.1557

K. Uchler, A. Gjini, E. Peterson-maduro, J. Cancilla, B. Wolburg et al., Development of the zebrafish lymphatic system requires VEGFC signaling, Current Biology, vol.16, 2006.

H. Kwon, S. Fukuhara, K. Asakawa, K. Ando, T. Kashiwada et al., The parallel growth of motoneuron axons with the dorsal aorta depends on Vegfc/Vegfr3 signaling in zebrafish, Development, vol.140, issue.19, pp.4081-4090, 2013.
DOI : 10.1242/dev.091702

U. Langheinrich, G. Vacun, and T. Wagner, Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia???, Toxicology and Applied Pharmacology, vol.193, issue.3, pp.370-382, 2003.
DOI : 10.1016/j.taap.2003.07.012

B. Langille, Arterial remodeling: relation to hemodynamics, Canadian Journal of Physiology and Pharmacology, vol.74, issue.7, pp.834-841, 1996.
DOI : 10.1139/y96-082

B. Langille, M. Bendeck, and F. Keeley, Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow, The American Journal of Physiology, vol.256, pp.931-939, 1989.

B. Langille, O. Donnell, and F. , Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent, Science, vol.231, issue.4736, pp.405-407, 1986.
DOI : 10.1126/science.3941904

M. Levesque and R. Nerem, The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress, Journal of Biomechanical Engineering, vol.107, issue.4, pp.341-347, 1985.
DOI : 10.1115/1.3138567

H. Lipowsky, S. Usami, and S. Chien, In vivo measurements of ???apparent viscosity??? and microvessel hematocrit in the mesentery of the cat, Microvascular Research, vol.19, issue.3, pp.297-319, 1980.
DOI : 10.1016/0026-2862(80)90050-3

R. Magid, T. Murphy, and Z. Galis, Expression of Matrix Metalloproteinase-9 in Endothelial Cells Is Differentially Regulated by Shear Stress: ROLE OF c-Myc, Journal of Biological Chemistry, vol.278, issue.35, pp.32994-32999, 2003.
DOI : 10.1074/jbc.M304799200

S. Mohan, N. Mohan, and E. Sprague, Differential activation of NF-kappa B in human aortic endothelial cells conditioned to specific flow environments, The American Journal of Physiology, vol.273, pp.572-578, 1997.

S. Nicoli, C. Knyphausen, L. Zhu, A. Lakshmanan, and N. Lawson, miR-221 Is Required for Endothelial Tip Cell Behaviors during Vascular Development, Developmental Cell, vol.22, issue.2, pp.418-429
DOI : 10.1016/j.devcel.2012.01.008

J. Padilla, G. Simmons, S. Bender, A. Arce-esquivel, J. Whyte et al., Vascular Effects of Exercise: Endothelial Adaptations Beyond Active Muscle Beds, Physiology, vol.26, issue.3, pp.132-145, 2010.
DOI : 10.1152/physiol.00052.2010

M. Pitulescu, I. Schmidt, R. Benedito, and R. Adams, Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice, Nature Protocols, vol.163, issue.9, pp.1518-1534, 2010.
DOI : 10.1038/nprot.2010.113

M. Pusztaszeri, W. Seelentag, and F. Bosman, Immunohistochemical Expression of Endothelial Markers CD31, CD34, von Willebrand Factor, and Fli-1 in Normal Human Tissues, Journal of Histochemistry & Cytochemistry, vol.3, issue.4, pp.385-395, 2005.
DOI : 10.1097/00000478-200109000-00007

S. Rodbard, Vascular Caliber, Cardiology, vol.60, issue.1, pp.4-49, 1975.
DOI : 10.1159/000169701

T. Saito, Y. Hasegawa, Y. Ishigaki, T. Yamada, J. Gao et al., Importance of endothelial NF-??B signalling in vascular remodelling and aortic aneurysm formation, Cardiovascular Research, vol.97, issue.1, pp.106-114, 2013.
DOI : 10.1093/cvr/cvs298

W. Schaper, Collateral circulation, Basic Research in Cardiology, vol.124, issue.Suppl 1, pp.5-21, 2009.
DOI : 10.1007/s00395-008-0760-x

J. Silvestre, Z. Mallat, and A. Tedgui, Post-ischaemic neovascularization and inflammation, Cardiovascular Research, vol.78, issue.2, pp.242-249, 2008.
DOI : 10.1093/cvr/cvn027

J. Silvestre, D. Smadja, and L. ´. Bi, Postischemic Revascularization: From Cellular and Molecular Mechanisms to Clinical Applications, Physiological Reviews, vol.93, issue.4, pp.1743-1802, 2013.
DOI : 10.1152/physrev.00006.2013

H. Sun, C. Li, H. Chen, H. Lin, H. Lv et al., Involvement of integrins, MAPK, and NF-??B in regulation of the shear stress-induced MMP-9 expression in endothelial cells, Biochemical and Biophysical Research Communications, vol.353, issue.1, pp.152-158, 2007.
DOI : 10.1016/j.bbrc.2006.12.002

J. Suo, D. Ferrara, D. Sorescu, R. Guldberg, W. Taylor et al., Hemodynamic Shear Stresses in Mouse Aortas: Implications for Atherogenesis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.2, pp.346-351, 2007.
DOI : 10.1161/01.ATV.0000253492.45717.46

D. Sweet, Z. Chen, C. Givens, A. Owens, . Iii et al., Endothelial Shc Regulates Arteriogenesis Through Dual Control of Arterial Specification and Inflammation via the Notch and Nuclear Factor-??-Light-Chain-Enhancer of Activated B-Cell Pathways, Circulation Research, vol.113, issue.1, pp.32-39, 2013.
DOI : 10.1161/CIRCRESAHA.113.301407

T. Tammela, G. Zarkada, E. Wallgard, A. Murtomäkimurtom¨murtomäki, S. Suchting et al., Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation, Nature, vol.196, issue.7204, pp.656-660, 2008.
DOI : 10.1038/nature07083

R. Thoma, UntersuchungenüberUntersuchungen¨Untersuchungenüber die Histogenese und Histomechanik des GefäßsystemsGef¨Gefäßsystems

F. Tronc, M. Wassef, B. Esposito, D. Henrion, S. Glagov et al., Role of NO in Flow-Induced Remodeling of the Rabbit Common Carotid Artery, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.16, issue.10, pp.1256-1262, 1996.
DOI : 10.1161/01.ATV.16.10.1256

J. Tuttle, R. Nachreiner, A. Bhuller, K. Condict, B. Connors et al., Shear level influences resistance artery remodeling: wall dimensions, cell density, and eNOS expression, American Journal of Physiology Heart and Circulatory Physiology, vol.281, pp.1380-1389, 2001.

E. Tzima, M. Irani-tehrani, W. Kiosses, E. Dejana, D. Schultz et al., A mechanosensory complex that mediates the endothelial cell response to fluid shear stress, Nature, vol.11, issue.7057, pp.426-431, 2005.
DOI : 10.1172/JCI200213595

S. Usami, H. Chen, Y. Zhao, S. Chien, and R. Skalak, Design and construction of a linear shear stress flow chamber, Annals of Biomedical Engineering, vol.64, issue.1, pp.77-83, 1993.
DOI : 10.1007/BF02368167

R. Viggers, A. Wechezak, and L. Sauvage, An Apparatus to Study the Response of Cultured Endothelium to Shear Stress, Journal of Biomechanical Engineering, vol.108, issue.4, pp.332-337, 1986.
DOI : 10.1115/1.3138624

J. Villefranc, S. Nicoli, K. Bentley, M. Jeltsch, G. Zarkada et al., A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development, Development, vol.140, issue.7, pp.1497-1506, 2013.
DOI : 10.1242/dev.084152

T. Walshe, M. Saint-geniez, A. Maharaj, E. Sekiyama, A. Maldonado et al., TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature, PLOS ONE, vol.4, 2009.

C. Wang, H. Lu, and M. Schwartz, A novel in vitro flow system for changing flow direction on endothelial cells, Journal of Biomechanics, vol.45, issue.7, pp.1212-1218, 2012.
DOI : 10.1016/j.jbiomech.2012.01.045

Y. Wang, M. Nakayama, M. Pitulescu, T. Schmidt, M. Bochenek et al., Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis, Nature, vol.93, issue.7297, pp.483-486, 2010.
DOI : 10.1006/dbio.2002.0711

M. Ward, G. Pasterkamp, A. Yeung, and C. Borst, Arterial Remodeling : Mechanisms and Clinical Implications, Circulation, vol.102, issue.10, pp.1186-1191, 2000.
DOI : 10.1161/01.CIR.102.10.1186

A. Witmer, J. Dai, H. Weich, G. Vrensen, and R. Schlingemann, Expression of Vascular Endothelial Growth Factor Receptors 1, 2, and 3 in Quiescent Endothelia, Journal of Histochemistry & Cytochemistry, vol.118, issue.6, pp.767-777, 2002.
DOI : 10.1038/35025220

K. Yaniv, S. Isogai, D. Castranova, L. Dye, J. Hitomi et al., Live imaging of lymphatic development in the zebrafish, Nature Medicine, vol.203, issue.6, pp.711-716, 2006.
DOI : 10.1038/nm1427