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Abstract 

Acute depression is associated with impaired self-referential processing. Antidepressant 

effects on the neural bases of self-referential processing in depression are unknown. This 

study aimed to assess short- and long-term effects of agomelatine on these neural bases in 

depressed patients and the association between pre-treatment brain activation and remission of 

depression 6 months later. We conducted a randomized double-blind, placebo-controlled, 

functional magnetic resonance imaging (fMRI) study during an emotional self-referential 

task, including three scanning sessions (baseline, after 1 week, and after 7 weeks). Twenty-
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five depressed outpatients were included, all treated with agomelatine or placebo for 1 week. 

Then, all patients received agomelatine for 24 weeks. Fourteen matched healthy volunteers 

(HV) who received placebo for 1 week were also included. After 7 days, only depressed 

patients receiving agomelatine significantly deactivated the ventrolateral prefrontal cortex 

during self-referential processing, as observed in HV at baseline. After 7 weeks, depressed 

patients significantly increased the activation of the ventral anterior cingulate cortex. Finally 

dorsomedial prefrontal cortex and precuneus activations at baseline significantly separated 

remitters from non-remitters at 24 weeks. In depressed patients, agomelatine had short- and 

long-term effects on brain structures involved in anhedonia and emotional regulation during 

self-referential processing. Activation of the dorsomedial prefrontal cortex and precuneus 

could be informative in the development of biomarker-based treatment of major depression. 

 

[Trials registration: Registered at controlled-trials.com (ISRCTN53505070)] 

 

Keywords: Major depressive disorder, Functional magnetic resonance imaging (fMRI), 

Antidepressant, Self-referential processing, Short-term, Long-term 

 

1. Introduction 

Major depressive disorder (MDD) is associated with several biases in information processing. 

Depressed patients prioritize the processing of negative emotional information and show 

increased attention to the self, namely self-focus (Mor and Winquist, 2002). Increased self-

focus in depressed patients involves the cortical midline structures, including the medial 

prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) (Lemogne et al., 2009; 

Yoshimura et al., 2010; Lemogne et al., 2012; Nejad et al., 2013), as well as the dorsolateral 

prefrontal cortex (DLPFC; Lemogne et al., 2009).   



 3 

There is growing interest in the effects of antidepressant drugs on such biases as they play a 

key role in the initiation and maintenance of depressive symptoms (Harmer et al., 2003, 2004, 

2009; Pringle et al., 2011). On one hand, one pilot study showed that long-term administration 

of antidepressants in depressed patients modulates the activity of the DLPFC during self- 

processing (Lemogne et al., 2010). On the other hand, although some studies with short-term 

administration of selective serotonin reuptake inhibitors in healthy subjects showed a 

modulation of midline cortical regions (Mattews et al., 2010; Di Simplicio et al., 2012), short- 

and long-term neural correlates of antidepressant effects on self-focus in depressed patients 

are still little known.  

The main goal of the present functional magnetic resonance imaging (fMRI) study was to 

assess both the short- and long-term effects of an antidepressant on the neural correlates of 

increased self-focus in depressed patients. Here, we used agomelatine, a potent agonist of 

MT1-MT2 melatoninergic receptors and an antagonist of the serotoninergic 5-HT2C receptor 

(de Bodinat et al., 2010) with established antidepressant efficacy (Taylor et al., 2014).  

Since increased self-focus can be defined as a tendency to engage in self-referential 

processing, we assessed depressed patients making self-referential judgments on emotional 

pictures during the following three fMRI scanning sessions: before treatment when patients 

were acutely depressed, after 1 week of treatment with agomelatine or placebo, and after 6 to 

7 weeks of agomelatine.  

We predicted that treatment with agomelatine, compared with placebo, would induce in 

depressed patients early changes in the MPFC and lateral prefrontal cortex (PFC) even in the 

absence of significant changes in mood ratings and depressive symptoms. Second, we 

hypothesized that 6-7 weeks of treatment with agomelatine would induce changes in the 

activity of the medial and lateral PFC, concomitantly with a clinical improvement of 
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depression. Finally, we tested if the activity of brain regions associated with self-referential 

processing at baseline would be associated with clinical remission 6 months later.  

 

2. Methods 

2.1. Subjects  

Thirty female outpatients meeting DSM-IV criteria for MDD with the Mini International 

Neuropsychiatric Interview (MINI, Sheehan et al., 1998) were recruited between October 

2008 and June 2011 by psychiatrists (7 centres located in Paris area, France).  

Current depressive episode had to be unipolar subtype, longer than 4 weeks, of moderate or 

severe intensity with total scores ≥22 on the 17-item Hamilton Rating Scale for Depression 

(HAM-D; Hamilton, 1960) and Clinical Global Impression (CGI) severity scores ≥4 (Guy, 

1976). All patients had to be free of psychotropic medication for a minimum of 2 weeks 

(washout period defined according to the medication) before inclusion. Patients with 

comorbid conditions were excluded (see Supplementary Material 1 for details).  

Two subgroups of 15 patients were determined by the blinded allocation of the treatment for 

the first week: agomelatine (AGO) or placebo (PBO) (see Section 2.2). Two patients of the 

AGO group and three patients of the PBO group were excluded (one because of excessive 

head movements in the MRI scanner and four owing to positive drug screening) leading to a 

final sample of 13 patients in the AGO group and 12 patients in the PBO group. These MDD 

patients were compared with the 14 HV. All groups were matched for age and gender (see 

supplementary Fig. 1 for CONSORT flow diagram). 

Table 1 summarizes demographic and clinical characteristics of the MDD and HV groups.  

This study was conducted in accordance with the principles of the Declaration of Helsinki. 

Approval was obtained from the French ethics committee for Biomedical Research of the 

Pitié-Salpêtrière Hospital (Paris). Each participant gave his/her informed written consent 
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before entering the study, and healthy volunteers were registered on the French National File. 

 

2.2. Drug treatment and study design 

The study was randomized, double-blind, multicenter and placebo-controlled during the first 

week, with two parallel groups of MDD patients (AGO vs. PBO). Patients took one tablet of 

AGO 25 mg or placebo, orally per day at around 8 p.m., for 1 week (except for one patient in 

the AGO group who missed 1 day of treatment) in a double-blind protocol followed by an 

open-label period with AGO until 24 weeks (W24). At W7, patients had thus received 6 or 7 

weeks of treatment with AGO, with two possible sequences of treatment (PBO/AGO, 

AGO/AGO).  All HV took one tablet of placebo per day orally at around 8 p.m., during 1 

week in a single-blind protocol (see Supplementary Material 2 for randomization).  

Each patient was scanned on three occasions, before beginning treatment (W0), after 1 week 

(W1) and 7 weeks of treatment (W7). Among the 25 MDD patients, all were included for 

analyses regarding the short-term AGO effects after 1 week (part I), but six patients had 

missing fMRI data at W7 (see CONSORT flow diagram, supplementary Fig. 1), leading to a 

final sample of 19 MDD patients for the long-term (W0-W7) AGO effects (part II). The HV 

were scanned on two occasions, at W0 and after 1 week of PBO (supplementary Fig. 2).  

 

2.3. Clinical assessment 

Depression severity was assessed with the 17-item HAM-D scale (Hamilton, 1960) and CGI 

severity and clinical improvement subscores (Guy, 1976) before each fMRI scan (W0, W1, 

W7) and after 24 weeks of treatments (W24; three missing HAM-D assessments from the 

final sample of 19 patients leading to a sub-sample of 16 patients for analyses regarding 

remission prediction, part III).  
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2.4. Experimental design 

A total of 432 black and white pictures were taken from either the International Affective 

Picture System (IAPS, Lang et al., 2005) or the Empathy Picture System (EPS, Geday et al., 

2003) (Supplementary Material 3).  

The task comprised three judgment conditions: self, general and a control (Lemogne et al., 

2011). In both self and general conditions, the subjects were presented with an equal number 

of positive and negative pictures. In the control condition, subjects were presented with 

neutral pictures. In the self condition, the subject judged if the picture was self-related or not. 

In the general condition, the subject judged if the picture was positive or negative. In the 

control condition, the subject had to state if the picture represented an outdoor or indoor scene 

(supplementary Fig. 3). 

 

2.5. fMRI protocol 

All stimuli were back-projected onto a semi-transparent screen located at the side of the head 

that the subjects viewed through a 45–degree mirror above their eyes. 

Before fMRI scanning, subjects performed a practice run similar to functional runs outside the 

scanner. The fMRI design consisted of three functional runs of 36 images each. Each run 

comprised three blocks, each block associated with only one condition (“self”, “general”, or 

“control”) in a pseudo-random counterbalanced order across the runs. For each condition 

there were six positive images, six negative images for self and general conditions, or six 

indoor and six outdoor neutral pictures for the control condition. Each trial consisted of a 

picture displayed for 2.565 s, followed by a fixation cros-shair for 3.5 s. The duration of each 

trial (i.e., 6.065 s) was computed to optimize the hemodynamic response sampling over the 

course of each block, taking into account the echo-planar imaging (EPI) sequence repetition 

time. To introduce jitter into the fMRI time series, each block contained six null events, 
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consisting of a fixation cross-hair for 6.065 s. Pictures and null events were pseudo-randomly 

intermixed. The lists were drawn up randomly for each subject. 

The start of each list was preceded by an instruction cue specifying for 5.330 s the judgment 

condition (self, general or control) followed by presentation of a fixation cross-hair for 3.5 s 

to allow a decrease in the hemodynamic response (supplementary Fig. 3). 

 

2.6. fMRI data acquisition 

All data acquisition was performed in a 3 T TRIO 32-channel TIM scanner (Siemens Medical 

Solutions, Erlangen, Germany), in the Centre for NeuroImaging Research of the Salpêtrière 

Hospital, with a 12-channel head coil. The fMRI scans were obtained using a T2* gradient-

echoplanar sequence (repetition time/echo time: 2290/28 ms; bandwidth: 1680 Hz; field of 

view: 192×192 mm; matrix: 96×96; flip angle: 75°); 38 interleaved axial slices were obtained 

(voxel size: 2×2×2 mm
3
) covering the whole brain and were acquired parallel to the 

anteroposterior commissure plane. 

Each sequence lasted for 356 s, resulting in 156 images. Additional "dummy” volumes were 

acquired at the beginning of each run to allow the magnetization to stabilize to a steady state 

before the first real volume. A set of high-resolution three-dimensional T1-weighted images 

was acquired (3D fast gradient echo inversion recovery sequence, inversion time: 900 ms; 

repetition time/echo time: 2300/4.18 ms; bandwidth: 150 Hz; field of view: 256×256 mm; 

matrix: 256×256; flip angle: 9°; voxel size 1×1×1 mm
3
) for anatomical localization. 
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2.7. Statistical analyses 

See Supplementary Material 4 for clinical and behavioral data analyses.  

2.7.1. fMRI data preprocessing and first level analysis 

Data were processed using the SPM5 software (http://www.fil.ion.ucl.ac.uk/spm/software/). A 

standard data pre-processing protocol was followed (slice timing, movement correction, co-

registration with the T1-weighted image and normalization into a standardized Montreal 

Neurological Institute (MNI) coordinate system space using the transformations computed 

during the segmentation of the T1-weighted image, and finally spatial smoothing with an 

isotropic kernel of 8-mm full-width at half-maximum).  

An individual statistical parametric map was computed for each subject using a general linear 

model. Each condition was modeled using an event-related approach and convolved with the 

canonical hemodynamic response function (HRF) to create regressors of interest (self, general 

and control). A high-pass filter (cut-off of 128 s) was applied and motion realignment 

parameters included as regressors of non-interest. The first level individual “self versus 

general” t-contrast images were obtained for the HRF estimates. 

 

Because we did not observe any significant (p<0.005) interaction between condition, valence 

and group at the first and second sessions in a second level analysis of variance (ANOVA), 

we did not define the first level individual valence t-contrast images above and we did not 

take into account emotional valence in second level analyses (Section 2.7.2). 

 

2.7.2. Second level analyses  

We carried out second level random effects analyses to investigate both short- and long-term 

effects of AGO treatment on brain activation during self-referential processing. 



 9 

Given the subjectivity in social and affective phenomena leading to person-to-person 

variability, we focused the fMRI analysis with an a priori region of interest (ROI) approach. 

To avoid a non-independent analysis from the data set, the ROIs were anatomically defined 

using coordinates from previous neuroimaging studies of self-referential processing and 

emotion regulation in healthy and depressed individuals. We identified the nine following 

ROIs: the dorsomedial prefrontal cortex or Brodmann area (BA) 9 (dmPFC9), dmPFC BA10 

(rostral part, dmPFC10), ventromedial prefrontal cortex (vmPFC), PCC, vACC, rostral ACC 

(rACC), dorsal anterior cingulate (dACC), VLPFC (BA 11), and DLPFC (BA 9) (Phillips et 

al., 2003b; Drevets et al., 2008; Fales et al., 2009; Lemogne et al., 2009; Lemogne et al., 

2011; Kanske et al., 2012; Cisler et al., 2013). The coordinates were used as centers of 5-mm 

radius spheres (Table 2). The size of the ROIs was selected to favour accuracy of location. 

For the analyses including a between-group factor (see below), mean reaction times were 

added as covariates of no interest because of the difference of reaction times between the 

three groups (see Section 3.3.1). 

 

2.7.2.1. Part I: Short-term effects of 1-week administration of AGO on neural correlates of 

self-referential processing  

An ANOVA with a between-group factor (AGO/PBO/HV) and a within-group scan time 

factor (W0/W1) was performed on the “self versus general” contrast images. The mean signal 

of all the voxel values in each ROI was extracted at W0 and W1 for each group (AGO, PBO 

and HV) using MarsBar software (http://marsbar.sourceforge.net).  

 

2.7.2.2. Part II: Long-term effects of 6- to 7-week administration of AGO on neural correlates 

of self-referential processing 

We performed a paired t-test comparing the activation in brain regions involved in self-



 10 

referential processing between W0 and W7 in MDD patients. The mean signal of all the voxel 

values in each ROI was extracted at W0 and at W7 using Marsbar software. 

 

2.7.2.3. Part III: Associations between pre-treatment brain activation at W0 and clinical 

remission at W24  

To investigate the possible link between the pre-treatment brain activation and clinical 

improvement after 24 weeks of antidepressant, we used the 17-item HAM-D as a categorical 

variable, to split the MDD sample into two groups according to a score cut-off of 7 at W24 

(remitters ≤7, non-remitters >7). Subsequently, we performed an ANOVA comparing brain 

activation during self-referential processing in ROIs at W0 and W7 (within-group scan time 

factor) between patients in remission at W24 (i.e., remitters) and those not in remission at 

W24 (i.e., non-remitters) (between-group factor). The mean signal of all the voxel values in 

each ROI was extracted at W0 and W7 for each patient group (remitters and non-remitters) 

using MarsBar software.  

 

3. Results 

3.1. Demographic data 

Table 1 summarizes demographic and clinical characteristics of the patient and HV groups. 

No relevant difference was found between the two groups for age or educational level.  

 

3.2. Clinical effects  

3.2.1. Short-term effects of AGO 

The two MDD groups did not significantly differ regarding demographic and clinical 

characteristics at W0 (Table 1).  

In the two MDD groups, the mean HAM-D score significantly decreased between W0 (AGO: 
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mean=24.4, SD=3.3; PBO: mean=25.3, SD=2.9) and W1 (AGO: mean =21.4, SD=4.7; PBO: 

mean =21.3, SD=5.1; main effect of time, F(1,23)=25.5, p<0.001), but this decrease was not 

clinically significant. No patient was a responder (i.e., HAM-D score reduction ≥50%) at W1. 

There was not a significant main effect of group [F(1,46)=0.07, p=0.8] or a group×time 

interaction [F(1,46)=0.45, p=0.5)]. 

3.2.2. Long-term effects of AGO  

The mean score of HAM-D significantly decreased from W0 to W7 (mean=25.1, SD=3.1 vs. 

mean=13.4, SD=5.0; t(18)=11.8, p<0.001; n=19 patients) and from W7 to W24 (mean =13.2, 

SD=5.3 vs. mean =8.8, SD=6.3; t(15)=2.8, p=0.014; n=16 patients). At W7, 10 patients 

(52.6%) were responders, seven patients were partial responders (reduction between 30% and 

50%) and two patients were non-responders (reduction < 30%) [supplementary Table 1]. 

Among the 16 patients included in analyses regarding remission prediction at W24, there 

were nine remitters (56.2%) and seven non-remitters. At W0, future remitters and non-

remitters did not significantly differ in age, duration of illness, number of depressive episodes 

or severity of illness according to the HAM-D score. The duration of the current episode was 

longer in future non-remitters (mean =7.9 months, SD=4.9) as compared with remitters (mean 

=3.1 months, SD=2.3; U=11, p=0.03). According to the DSM-IV, there were more severe 

MDD episodes in future non-remitters compared with remitters (χ²=5.7, p=0.02) 

[supplementary Table 2].  

See Supplementary Material 5 for additional clinical effects. 

 

3.3. Treatment results 

3.3.1. Behavioural results 

3.3.1.1. Short-term effects of AGO 

Regarding the reaction times (RTs) during the self and general conditions, we observed a 
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main effect of condition [F(1,72)=5.8; p=0.02], explained by a slower RT for the ‘self’ than 

the ‘general’ condition. There was a main effect of group [F(2,72)=8; p<0.001] with a longer 

RT in MDD patients (AGO and PBO) than in healthy controls, the AGO patients being slower 

than the PBO group  (supplementary Table 3). There was no main effect or time, nor any 

interaction. However, when the valence factor was included in the ANOVA, in addition to a 

main effect of condition [F(1,142)=11.5; p<0.001] and of group [F(2,142)=14.5; p<0.001], 

there was also a significant time × group interaction [F(2,142)=3.6; p=0.031] explained by a 

shorter RT at time W1 only in the AGO patients. Post hoc tests revealed that depressed 

patients from the AGO group showed a tendency to decrease their RT time for a “yes” 

response to positive stimuli in the self condition (W0, mean =2384 ms, SD=944; W1, mean 

=2195 ms, SD=768; p=0.057). 

 

3.3.1.2. Long-term effects of AGO 

For the reaction times (RTs) during the ‘self’ and ‘general’ conditions, we observed a main 

effect of condition [F(1,122)=8.9; p=0.003], explained by a slower RT for the ‘self’ than the 

‘general’ condition. There was a main effect of group [F(1,122)=23.5; p<0.001], with a longer 

RT in MDD patients than in healthy volunteers. There was also a main effect of time 

[F(1,122)=9.5; p=0.002] and a time × group interaction [F(1,122)=5.8; p=0.017] explained by 

a shorter RT at W7 observed only in MDD patients. Post hoc tests revealed that patients 

decreased their RT for “yes” response for positive and negative stimuli in the ‘self’ condition 

(respectively, W0: mean=2239 ms, SD=882, W7: mean=2025 ms, SD=639, p=0.022; W0: 

mean=2348 ms, SD=845, W7, mean =2013 ms, SD=512, p=0.0008) and for positive in the 

‘general’ condition (W0, mean=1913 ms, SD=824; W7, mean=1656 ms, SD=523; p=0.013). 

See Supplementary Material 6 for the results for the responses (yes or no) given during the 

‘self’ and ‘general’ conditions. 
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3.3.2. fMRI results 

3.3.2.1. Part I: Short-term effects of 1-week administration of AGO on neural correlates of 

self-referential processing  

No significant time or group main effects were found, but there was a significant group×time 

interaction in the right VLPFC (F(2,71)=3.4; p=0.038, p-corrected=0.3) [Fig. 1]. 

The group×time interaction found in the VLPFC was explained by a specific effect found in 

AGO patients: there was a significant decrease of VLPFC activation in AGO patients during 

the first week of treatment (W0>W1: t(12)=2.7; p=0.004) compared with HV (AGO>HV × 

W0>W1, t(71)=2.6, p=0.006) that was not observed in PBO patients. There was indeed a 

trend toward significance when comparing this decrease in AGO patients versus PBO patients 

(AGO>PBO patients × W0>W1, t(71)=1.6, p=0.056). At W1, the VLPFC activation was no 

longer different in AGO patients versus HV (Fig. 1). 

 No correlation was found between VLPFC activation and the HAM-D score (results not 

shown). 

 

3.3.2.2. Part II: Long-term effect of 6/7-week administration of AGO on neural correlates of 

self-referential processing 

After 6-7 weeks of administration of AGO (W7 vs. W0), MDD patients displayed an 

increased activation in the vACC (t[18]=2.7; p=0.008, p-corrected= 0.075) (Fig. 2) and a 

tendency to decrease the activation of the DLPFC (t[18]=1.4, p=0.087, p-corrected=0.6).  
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3.3.2.3. Part III: Associations between pre-treatment brain activation at W0 and clinical 

remission at W24 

Comparing remitters (n=9) and non-remitters (n=7) patients, we observed a significant group 

main effect in the dmPFC BA10 (F[1,28]=8.4, p=0.007, p-corrected=0.07), PCC (F[1,28]=5.4, 

p=0.028, p-corrected=0.24), and DLPFC (F[1,28]=6.4; p=0.017, p-corrected=0.16) explained 

by a decreased activation in these regions in future remitters compared with future non-

remitters (Fig. 3).  There was no group×time interaction, suggesting that activation in these 

brain regions remained stable between W0 and W7.  

 

4. Discussion 

This study aimed to assess short-term and long-term effects associated with treatment with an 

antidepressant drug, agomelatine, on the neural bases of self-referential processing in 

depressed patients as well as the association between pre-treatment brain activation and 

remission of depression 6 months later. After 1 week of treatment, only MDD patients 

receiving agomelatine normalized the hyperactivity of the VLPFC during self-referential 

processing in relation to healthy volunteers’ level. After 6/7 weeks of administration of 

agomelatine, MDD patients displayed an increased vACC activation during self-referential 

processing. Finally pretreatment activation in the dmPFC10, PCC and DLPFC during self-

referential processing distinguished future remitters from non-remitters 6 months later. 

Activation in these regions was lower in remitters than in non-remitters and remained stable 

after 6/7 weeks of treatment in both groups of patients.  

The change of VLPFC activation between baseline and W1 was specifically found in the 

group of depressed patients treated with agomelatine. Two studies investigated the early 

effects of antidepressants on neural responses in depressed patients (Mayberg et al., 2000; 

Davidson et al., 2003), but the specific early effect of agomelatine compared with placebo on 
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the VLPFC in the present study is a new finding in depressed patients.  

Beyond regulating negative emotions (Phillips et al., 2003), the VLPFC plays a key role in the 

processing of positive emotional stimuli in major depression. Light et al. (2011) recently 

found that depressed patients exhibiting lesser VLPFC activity during the inhibition of 

positive affect showed a greater reduction of anhedonia after 8 weeks of antidepressant 

treatment. Interestingly, there is some evidence that agomelatine may exert early specific 

effects on anhedonia in major depression (Di Giannantonio et al., 2011; Martinotti et al., 

2012).  Although we did not include an anhedonia rating scale in the present study, we may 

hypothesize that the early effects of agomelatine on anhedonia are mediated by changes on 

VLPFC activity.  

The vACC is part of the subgenual ACC receiving the dopamine (DA) projection from the 

ventral tegmental area, the origin of the mesolimbic DA system (Drevets et al., 1997). Drevets 

and collaborators hypothesized that the reduced vACC activity in MDD could be associated 

with diminished stimulation of mesolimbic DA release, resulting in reduced incentive 

motivation and anhedonia in MDD (Drevets et al., 2008; Cléry-Melin et al., 2011).  

The modulation of vACC and VLPFC activations associated with agomelatine treatment may 

relate to its unique pharmacological action. Both the stimulation of melatoninergic receptors 

and the blockade of 5-HT2c receptors increase dopamine and noradrenaline 

neurotransmission and their release has been observed in the fronto-cortical dopaminergic and 

noradrenergic pathways (Millan et al., 2003; Chenu et al., 2013).  

PCC, dmPFC10 and DLPFC activation during self-referential processing at baseline clearly 

differentiated remitters from non-remitters. We selected the remission as the targeted endpoint 

of our analysis. Remission can be defined as a complete or near complete absence of 

symptoms, and patients achieving remission have a lower likelihood of depressive recurrence 
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and a better psychosocial functioning compared with patients with residual depressive 

symptoms.  

Using this endpoint, we did not replicate the findings of hyperactivity of the rostral region of 

anterior cingulate cortex (rACC) associated with prognosis. The importance of rACC activity 

in treatment outcome of depression has been associated with response to several treatments 

rather than with remission. Brain regions associated with the prediction of treatment response 

may be different from brain regions associated with the prediction of remission. Studies with 

larger samples are needed to test this hypothesis and to define the neurobiological 

heterogeneity of patients with different long-term outcomes. 

The pre-treatment activation of dmPFC10 did not change after 6/7 weeks of antidepressant. A 

persistent hyperactivation of the dmPFC during self-referential processing in MDD patients 

compared with controls has been previously described following 9 weeks of antidepressant 

drug treatment (Lemogne et al., 2010). Given the strong relationships between dmPFC and 

self-referential processing (Lemogne et al., 2012), we may hypothesize that cognitive 

behavior therapy (CBT), by addressing cognitive biases such as excessive self-focus, would 

target the dorsal part of the medial prefrontal cortex more specifically than antidepressant 

drugs. Indeed, while CBT influences both the ventral and dorsal medial frontal regions (Siegle 

et al., 2012; Yoshimura et al., 2013), a specific modulation by CBT on the dmPFC was 

described when compared with paroxetine (Goldapple et al., 2004) in the treatment of 

depression. Further studies comparing drugs and CBT (McGrath et al., 2013) are needed to 

test if reducing activity in the dmPFC during self-referential processing is a mechanism 

underlying clinical changes specific to CBT. 

   

This preliminary study is not without limitations. First, although the MDD groups were 

clinically well characterized and carefully matched with the control group, our samples of 
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patients and healthy controls were relatively small. The further subdivision of the MDD 

patients into remitted and non-remitted groups increases this limitation. In addition, although 

this study was not a therapeutic trial, the attrition rate was high because of the constraints of 

and the controls related to possible bias in the fMRI protocol (mainly excessive head 

movements and positive drug screening). Many group differences in this first study did not 

survive correction for multiple comparisons, thus emphasizing the need for replication of this 

study in studies involving larger groups of patients. Therefore, our findings must be 

interpreted with caution. For ethical reasons, we were not able to introduce a prolonged 

placebo arm in depressed patients. Moreover, we did not include a group of healthy controls 

receiving agomelatine. Finally, we do not know whether the predictive value of the dmPFC 

and the PCC is specific to agomelatine or even to antidepressant drugs in general. 

In summary, acute depressed patients receiving the antidepressant agomelatine showed a 

normalized VLPFC activation during self-referential processing after 1 week of treatment, 

before significant clinical improvement of depressive symptoms. Whereas 6-7 weeks 

administration of the antidepressant was associated with a selective increase of vACC 

activation during self-referential processing, the pre-treatment activation of the dmPFC, PCC 

and DLPFC was associated with clinical remission at 6 months.  
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Figure legends 

Fig. 1. Mean BOLD signal from the VLPFC, in MDD patients treated by placebo (PBO) or 

agomelatine (AGO) and healthy volunteers (HV), at W0 and W1 (MNI coordinates, 30 44 -

11). The bars graphs plot the contrast estimates (arbitrary units) between self-referential and 

general conditions (± 90% confidence interval) per group and scan time. 

Abbreviations: VLPFC: ventrolateral prefrontal cortex. 

 

Fig. 2. Mean BOLD signal from the vACC (MNI coordinates, 5 32 -2) per scan times (W0 

and W7) in MDD patients (n=19). The bar graphs plot the contrast estimates (arbitrary units) 

between self -referential and general conditions (± standard error for mean).  

Abbreviations: vACC : ventral anterior cingulate cortex.  

 

Fig. 3. A. Mean BOLD signal from the regions of interest in future remitters and non-

remitters, at W0 and W7: A. dmPFC10 (MNI coordinates, 1 60 6), B. PCC (-3 -54 18), C. 

DLPFC (36 26 33). The bars graphs plot the contrast estimates (arbitrary units) between self-

referential and general conditions (± 90% confidence interval) per group and scan time (the 

points represent the individual values of each patient).  

Abbreviations: dmPFC10: dorsomedial prefrontal cortex Brodmann area 10, PCC: posterior 

cingulate cortex, DLPFC: dorsolateral prefrontal cortex.  

 

 

 



Table 1. Demographic and clinical characteristics of major depressive disorder patients and 

healthy volunteers (part I) at baseline  

 

Characteristics AGO patients 

group 

(n=13) 

PBO patients 

group 

(n=12) 

HV group 

(n=14) 

Age (years, mean±SD) 

min - max 

41.8  

27 - 52 

(±8.0) 40.1  

27 - 50 

(±7.6) 41.6   

26 - 53 

(±7.4) 

Right handed/left handed (n/n) 13/0 11/1 13/1 

Education (years, mean±SD) 14.4   (±1.7) 12.8   (±2.3) 13.0   (±2.3) 

DSM-IV classification: 

- Recurrent episode (n) 

 

13 

 

11 

 

- 

- Severity  Moderate (n) 5 5 - 

 Severe without psychotic feature (n) 8 7 - 

- Melancholic features (n)  8 8 - 

Duration of the disease (years, mean±SD) 16.0  (± 9.7)
a
 10.0  (± 7.2)

a
 - 

Current episode duration (months, mean±SD) 5.4  (± 4.2) 3.4  (± 2.9) - 

Number of previous depressive episodes (including 

the current one) (mean±SD) 
2.9  (± 1.2) 2.4  (± 1.2) - 

HAMD-D-17 score (mean±SD) 24.4  (± 3.3) 25.3  (± 2.9) - 

CGI severity of illness score (mean±SD) 4.8  (± 0.6) 4.9  (± 0.5) - 

AGO=agomelatine treatment; PBO=placebo treatment; HV=healthy volunteers; SD=standard 

deviation; n=number of subjects. 
a
 p for difference between AGO and PBO patients = 0.09. 
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Table 2. Name (abbreviations) and Montreal Neurological Institute coordinates of the regions 

of interest comprising self-referential and emotion regulation processes networks 

 

Name  x y z 

Dorsomedial prefrontal cortex, BA 9 (dmPFC9) -6 26 40 

Dorsomedial prefrontal cortex, BA 10 (dmPFC10) 1  60 6 

Ventromedial prefrontal cortex (vmPFC) -6 42 -12 

Posterior cingulate cortex (PCC) -3 -54 18 

Dorsal anterior cingulate cortex (dACC) 1 14 30 

Rostral anterior cingulate cortex (rACC) 2 36 6 

Ventral Anterior cingulate cortex (vACC) 5 32 -2 

Dorsolateral prefrontal cortex (DLPFC) ± 36  26 33 

Ventrolateral prefrontal cortex (VLPFC) ±  30 44  11 

 

BA= Brodmann area. 

Table 2
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Highlights 

 

- Short-term and long-term brain effects of a new antidepressant compound were 

investigated in major depression without anxiety disorder  

- Depressed patients were scanned during a self-referential task on three occasions, 

before beginning the treatment, after 1 week and after 7 weeks of treatment. 

- The antidepressant normalized VLPFC activation after 1 week of treatment and 

increased the ventral ACC activation after six/seven weeks of treatment 

- The pre-treatment activation of dorsomedial PFC, and precuneus was associated with 

clinical remission at 6 months. 

- This new antidepressant had short- and long-term effects on brain structures involved 

in anhedonia and emotional regulation during self-referential processing 
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