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Abstract

Due to its use in cryptographic protocols such as the Diffie-Hellman key exchange, the discrete
logarithm problem attracted a considerable amount of attention in the past 40 years. In this paper,
we summarize the key technical ideas and their evolution for the case of discrete logarithms in small
characteristic finite fields. This road leads from the original belief that this problem was hard enough for
cryptographic purpose to the current state of the art where the algorithms are so efficient and practical
that the problem can no longer be considered for cryptographic use.

Keywords: Cryptography, Discrete logarithms, Finite fields.

1 Introduction

The discrete logarithm is, together with integer factorization, one of the main candidate hard problems used
to construct public key cryptosystems. Its cryptographic use was started by Diffie and Hellman in their
seminal paper [I0] where they introduced the notion of public-key cryptography. This problem can be stated
in the following way: let G be a finite cyclic group (usually denoted multiplicatively) of order N and g a
generator of G. Since we have computations in mind, we assume the availability of efficient algorithms to
compute in G. In particular, multiplication of elements should be efficient. We now consider the map that
sends an integer n to ¢g" in G. This map can be efficiently computed with O(logn) multiplications using the
square-and-multiply algorithm. In the sequel, we call it discrete exponentiation. Discrete exponentiation is a
periodic map of period N, surjective onto GG. In fact, it defines an isomorphism ® between G and the additive
group (Z/NZ,+). The inverse isomorphism ®~! is called the discrete logarithm in basis g. It maps g" to
the class of n modulo N.

Depending on the algorithmic description of the group G, computing discrete logarithms might be very
easy or much more difficult. On the one hand, if we choose for G the group (Z/NZ,+) itself, computing
discrete logarithms is a trivial matter. On the other hand, there exist hardness results in the generic group
model [30] which show that to compute discrete logarithms efficiently, it is essential to understand and
make use of the algorithmic description of G. In generic groups, computing a discrete logarithm costs at
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Figure 1: History of discrete logarithm records in small characteristic finite fields

Date Field Bitsize Algorithm Authors
1984 2127 127 [9] Coppersmith
1991 2401 401 [9,12] Gordon, McCurley
2001/09 2521 521  [20] Joux, Lercier
2002/02 2607 607 [ Thomé
2005/09 2613 613 [20] Joux, Lercier
2012/06 3697 923 [21] Hayashi, Shimoyama, Shinohara, Takagi [29]
2013/02 21778 1778 [19] Joux
2013/02 21778 1991  [11] Gologlu, Granger, McGuire, Zumbrigel
2013/03 21080 4080 [19] Joux
2013/04 2809 809  [4 21] The Caramel Group [5]
2013/04 26120 6120 [111, 19] Gologlu, Granger, McGuire, Zumbragel
2013/05 206168 6168 [19] Joux
2014/01 36137 1303 [2 111 [19] Adj, Menezes, Oliveira, Rodriguez-Henriquez
2014/01 29234 9234 11,13, 14, 19] Granger, Kleinjung, Zumbrigel
2014/09 3547 3796  [19, 23] Joux, Pierrot
l

2014/10 2127 1279  [I1,013,[04,19] Kleinjung

least Q(,/p) operations, where p is the largest prime factor of N. This is much faster that exhaustively trying
all possible values from 0 to N — 1, but remains completely infeasible even for moderately large groups.

For cryptographic use, the two main types of groups that are usually considered are subgroups of either
the multiplicative group of a finite field or the group of points of an elliptic curve defined over a finite field.
For elliptic curves, there are no known algorithms that outperform generic algorithms, except in a few specific
cases. However, for finite fields, much faster algorithms do exist. For a group of size N, the complexity of
these faster algorithms is often of the form:

L (a,¢) = exp ((c + o(1))(log N)* (log log N)'=*) ,

where « and ¢ are two parameters such that 0 < o < 1 and ¢ > 0. We also encounter the notation Ly («)
when specifying c is undesired. This shortcut is used because the most important parameter is the first one,
which governs the transition from an exponential time algorithm to a polynomial time one. Indeed, when «
becomes 1, Ly («) is exponential in log N and on the other hand, if « tends to 0, Ly («) becomes polynomial
in log N.

The first subexponential algorithms for discrete logarithms in finite fields had complexity Ly (1/2). Ini-
tially, they only applied to prime fields. They were generalized to fixed characteristic fields, then improved
to Ly(1/3) for prime and fixed characteristic fields. By 2006, Lx(1/3) complexity was achieved for all
finite fields. In 2013, the situation changed for small characteristic finite fields and much faster algorithms
appeared for this case. This change removed the small finite field discrete logarithm problem from the list of
cryptographically usable problems. Note that most of these index calculus have been designed with practical
efficiency in min(ﬂ and that the stated performances can be achieved only under a variety of heuristic as-
sumptions. Thus, unless the contrary is explicitly stated, the reader should assumed that all the algorithms
mentioned in the present paper rely on such heuristic assumptions.

In this paper, we survey the key technical ideas behind discrete logarithms in small characteristic finite
fields and show the main evolutions that led to the state-of-the-art algorithms. It would be beyond the scope
of the present paper to present all the techniques and refinements that have recently appeared for small
characteristic fields [1l 2, 13} [14] [I5]. Alternatively, the reader interested in a more general survey about

I This is illustrated by large-sized computations performed by many research groups in the past decades (see Figure .



discrete logarithms can refer to [22]. For simplicity of exposition, we focus on algorithms that work using
polynomials over finite fields. In particular, we avoid all descriptions of the function field sieve algorithm of
Adleman-Huang []. Instead, we present a variation on this algorithm based on bivariate polynomials [21].

2 Preliminaries and notations

Throughout the article, ¢ denotes a prime power. For simplicity of exposition, we consider that ¢ is fixed
and that we wish to solve the discrete logarithm in [F » for some large extension degree k. As a consequence,
all complexities are expressed as functions of k and operations in the basefield F, are considered to have unit
cost.

Furthermore, Fy[X] denotes the univariate polynomials in X with coefficients in F;. We recall that the
finite field F;, can be represented as Fy[X]/(Zx(X)) for any irreducible polynomial I, of degree k, that is,
elements of the finite field can be represented as polynomials reduced modulo I (X). Since there is a unique
finite field with ¢* elements, all these representations are isomorphic. However, some of them are much more
convenient for discrete logarithm computations and making good choices for I is an important consideration
in this context.

Factoring polynomials over finite fields. It is well-known that any monic polynomial F'(X) in F,[X]
can be written as a product:

F(X)= HFi(X)ei,

where each F; is a monic irreducible polynomial and e; > 1 is its multiplicity. Moreover, up to the order
of factors, this factorization into irreducibles is unique. For non-necessarily monic polynomials, we obtain a
similar decomposition:

FX) =5[] Fx)™

by factoring out the leading coefficient g of F.

Decomposing polynomials into a product of irreducibles is one of the key tools in discrete logarithm
computations. Such a decomposition is especially useful when all the irreducibles that appear have low
degree. To quantify this notion, we say that a polynomial F(X) is £-smooth when all the irreducibles in its
decomposition have degree at most £. This property is easy to test, due to the existence of fast algorithms
for factoring univariate polynomials over finite fields [31].

Number of smooth polynomials and irreducibles in a finite field. It is also useful to consider
a combinatorial point of view and count the number of irreducible and smooth polynomials. To be more
precise, let us recall a major theorem used in order to estimate the probability of smoothness of polynomials.
This result is due to Panario, Gourdon and Flajolet who generalized in 1998 the probability of smoothness
of integers given in [§] to the probability of smoothness of polynomials in finite fields.

Estimate 1 (Panario, Gourdon and Flajolet [27]). The probability for a random polynomial of degree less

than n to be m-smooth is:
(n/m)~(/m)+e(d)

We do not give the range of validity of the ratio n/m as in the theorem, yet it covers all our cases.
Besides, the number N, (n) of irreducible polynomials of degree n in a finite field of cardinality ¢ is such that
Ny(n) =n~! 2din w(d)g™* where p is the Mobius function [25]. Hence we have the following result:

Lemma 2. If Ny(n) denotes the number of irreducible polynomials of degree n in a finite field of cardinality q
then ¢"/n — a < Ny(n) < ¢"/n, where o = ql"/21+1 /n.



Proof. We know from [25] that:
AN+ Y dNg(d) = " 1)
d|n,d#n

This directly yields the upper bound Ny(n) < ¢"/n.
Back-substituting in , we deduce that:

[n/2]
" <nNg(n)+ D ' <nNyn)+ Y %
d|n,d#n i=1
Thus, we find the lower bound N, (n) > n~!(¢" — ¢\"/2+1 /(¢ — 1)) and the result follows. O

Moving between different representations of the same field. Concrete discrete logarithm challenges
in finite fields start from an explicit description of F » as an extension of the base field IF,; using a fixed
irreducible polynomial I of degree k over F,[X]. Then, the problem is to find the discrete logarithm of an
element h, given as a polynomial reduced modulo I, in the basis defined by g, another polynomial of the same
form. Yet, most discrete logarithm algorithms start by choosing their own, usually different representation
of Fx. For this purpose, they select another irreducible polynomial J of degree k over F,[X].

To shift the initial discrete logarithm problem from the original representation to the working represen-
tation we proceed as follows. Let 8 denote a root of J and consider I as a polynomial with coefficients in
F,» = Fy(B) and factorize it as a polynomial over this larger field. We know that I completely splits into
linear terms and we thus express all of its roots as polynomials in 5. Arbitrarily choose one of them and
call it . We are now able to write o = f(3) where f is a polynomial expression with coefficients in F,. In
the initial problem, h and g are given as polynomials in «, say H(«a) and G(«). In the new representation,
it now suffices to find the discrete logarithm of H(f(3)) in basis G(f(8)).

On the multiplicative generator. One side issue related to the computation of discrete logarithms is to
find a primitive element in a finite field Fyx, i.e. a multiplicative generator of the group F;k. This might be
unessential when computing discrete logarithms since we may assume that a generator g is given. Yet, it is
important when choosing a group for cryptographic purposes. A commonly encountered method is to take
random elements and verify whether their orders are strict divisors of ¢¥ — 1 or equal to ¢¥ — 1. This is easy
to check assuming that the factorization of ¢* — 1 is known. However, this factorization is hard to compute
when ¢” is large. Interestingly, the techniques to solve the discrete logarithm problem that we survey in the
present paper have also been used in [I7] to compute a multiplicative generator of F » without knowledge
of the factorization of ¢* — 1.

3 Hellman—Reyneri algorithm

The algorithm of Hellman and Reyneri [16] is an adaptation to IFx of Adleman’s index calculus algorithm [3]
for computing discrete logarithms in prime fields. It allows us to give a simple introduction to the concepts
used in index calculus method. In its original form, it is a heuristic algorithm, like all algorithms described
in the present article. However, there exists a rigorous variation due to Pomerance [28] with essentially the
same asymptotic complexity.

To use the Hellman—Reyneri algorithm, we first choose I, an arbitrary monic irreducible polynomial of
degree k, in order to represent the finite field Fr by Fy[a] where o denotes a (fixed) root of I. We also
choose a multiplicative generator g of the multiplicative group F;k. In addition, we fix an integer parameter £
with 1 < ¢ < k.

For an integer r selected uniformly at random in [0, ¢* — 1], we see that g" is a uniformly random element
of F;k. This element can be represented by a polynomial G, (X) of degree at most k — 1 which can be



efficiently computed by using a square-and-multiply exponentiation method. When this polynomial G, is
{-smooth, we can write:

tr
r e(m
g =B [[F ()", (2)
=1

where the Fi(r) are the irreducible monic polynomials of degree at most ¢ that appear in the factorization
of G, and 3, the leading coefficient of .. Taking logarithms in [F x, we obtain an affine equation:

tr

r = log,(B;) + Z eET) log,, (Fi(r)(a)) (mod ¢* — 1),

i=1
whose unknowns are formal logarithms of elements of the set:

F ={B|B € F,} U{F(a)|F monic irred. of degree at most ¢ in F,[X]}.

This set is usually called the factor base. Since F has cardinality smaller than ¢“*' and since the equations
are randomly generated, we expect that after generating ¢‘*' such equations, we obtain a system with a
unique solution formed of the logarithms in basis g of the elements of F. This expectation is precisely the
reason why Hellman—Reyneri algorithm is heuristic.

Individual logarithms. Once these logarithms of elements of F are known, in order to find the logarithm
of an arbitrary element h in F*,, it suffices to find one extra equation of a form similar to Equation but
involving h. Typically, one can find an element h-g" that factors into elements of F and deduce the logarithm
of h by subtracting r from the sum of logarithms of the elements in the factorization. Thus, computing one
individual logarithm in the finite field once the precomputation of logarithms of factor base elements has
been done costs much less than this precomputation. For practical purposes, this is an extremely important
property. For this reason, most discrete logarithm algorithms have a separate individual logarithm phase.
Rigorous algorithms form a notable exception to this rule since these algorithms don’t aim at being practically
competitive and because having a separate individual logarithm phase would make a rigorous analysis much
more complicated.

Note. In order to simplify exposition, the above presentation differs from the more traditional way of
performing index calculus. Normally, the elements of IF, are not included in the factor base F. Instead,
they are simply disregarded in the equations. This is possible because these constant elements have order
dividing ¢ — 1 which implies that their logarithms are multiples of (¢* —1)/(g — 1). Thus, removing them is
possible if we restrict ourselves to computing logarithms modulo (¢* — 1)/(q — 1). More generally, all small
factors of ¢¥ — 1 are usually removed from consideration when doing the linear algebra. There are two main
reasons for this. First, small factors might cause problem due to the occurrence of non invertible elements
during the linear algebra process. Second, thanks to the use of generic algorithms such as Pohlig-Hellman,
Shanks’ baby-step—giant-step and Pollard’s Rho, recovering the missing part of the logarithm is an easy
addition to the individual logarithm computation.

Complexity analysis. In order to analyze the complexity algorithm, since the individual logarithm phase
is negligible compared to the precomputation, it suffices to express the cost of the collection of relations and
linear algebra as a function of the parameter £. Using our upper bound of ¢+ on the cardinality of F and
denoting by p, the probability for a random polynomial G, to be f-smooth, the expected running time of the
collection of relations is upper bounded by ¢‘*!/p. To analyze the linear algebra, we first remark that the
number of factor base elements in any multiplicative relation we form is upper bounded by k. This comes
from the simple fact that the number of irreducible polynomials that appear when factor a polynomial
is smaller than its degree. Thus the linear algebra is performed on a very sparse matrix containing at
most k entries per line, and the cost of this phase is essentially quadratic in the size of F if we use sparse



linear algebra techniques such as Lanczos [24] or Wiedemann [32] algorithms. More precisely, the running
time of the linear algebra is upper bounded by k ¢%¢+2.
From Estimate [I] we know that:

k
Thus, choosing our parameter as follows:
0 k log, k
2 )

yields an total runtime complexity of:

gV EreMIklos b — 1, (1/2,V/2).

4 Coppersmith’s algorithm

In 1984, Coppersmith’s algorithm [9] was the first to achieve complexity below Ly (1/2) for discrete loga-
rithms in finite fields. This new algorithm was illustrated with a record on the finite field Foi27. In its basic
form, it works for fields of characteristic 2 but can easily be generalized [7] to any characteristic. The key
idea compared to the Hellman-Reyneri algorithm is to use the freedom we have when representing F,x and
to choose a representation that helps the construction of multiplicative relations.

In the original form proposed by Coppersmith, the irreducible that defines IF » is chosen to be of the
form 2* — S(x), where S is a polynomial of degree ds as low as possible. Here, we replace this choice by
a more recent construction from [I9], which simplifies the presentation of the construction of multiplicative
relations in Coppersmith’s algorithm. In this section, we let 7 be the unique integer such that ¢" ' < k < ¢®
and choose a low degree polynomial S(x) such that z¢" — S(z) has a single irreducible factor of degree k.
We denote this factor by Ix(x) and use it as a defining polynomial of F .

We further write n = ny + ng for values of n; and ny to be determined during the complexity analysis.
The key to the construction of relations is to note that for any pair of polynomials A and B with coefficients

in F,, we have:
no

(A(a?) + wq"lB(l‘)) = A(a®?) + S(@)B(")  (mod Ii(x)), 3)

thanks to the linearity of raising to the power ¢ and to the fact that 29" = S(z) (mod Iy (x)).

Defining the factor basis F as in Section we see that Equation yields a multiplicative relation when
both A(z)+2?" B(x) and A(x?"*)+S(z)B(z?"*) are f-smooth. Here, it is traditional to say that this occurs
whenever the product

(A(x) + g™ B@)) : (A(:cq"z) +S(2)B(a?" ))

is £-smooth and make the heuristic argument that this event happens which probability comparable to the
smoothness of a random polynomial of the same degree.

To continue the analysis, we look at all the pairs of non-zero polynomials A and B of degree at most £,
with A being chosen monic. The reason for this last restriction is that multiplying A and B by any constant
of F, in fact yields the same equation. Under this condition on the degrees of A and B, we choose (n1,n2)
in the way that minimizes the degree of the above product. Since the total degree is:
l-q™

’I’L17

04+ q¢™ +ds +

it is minimized by making ¢™* as close as possible to /¢ ¢". With this choice, the degree asymptotically
becomes (2 + 0(1))y/£¢"™. In terms of k, this varies between (2 + o(1))v £k and (2,/q + o(1))V £k depending
on how close k is to the next power of q.



Finally, / is chosen as in Section [3| by balancing the opposite of the logarithm of the probability of success
with ¢. This yields:
0= (4/3)1/3 qn/3 n2/3.

Hence, the complexity becomes L (1/3, (32/9)%/2). In terms of ¢*, this varies between L« (1/3, (32/9)'/3)
and L, (1/3,(32¢/9)'/3) depending on how close k is to the next power of g. Note that, due to the simplified
presentation we have chosen, the worst case is less good than with Coppersmith’s original algorithm.

Notes on the linear algebra. Compared to the algorithm of Hellman and Reyneri, there are two main
differences that occur during the computation of the linear algebra. More precisely, the type of equations
that arise from relations as in no longer contain a constant term and they include some large coeffi-
cients ¢"™2. The consequence of the first difference is that the system has many solutions. Thankfully, any
of these solutions (except the zero vector) gives logarithms, up to multiplication by a constant. Thus, if the
multiplicative generator g appears in the factor base F, it is easy to renormalize the vector we obtain to get
logarithms in basis g. In the case where g is outside of F, we need to use the individual logarithm process
on g to obtain the correct renormalization constant. The large coefficients ¢"* impact the performance of
matrix-vector multiplication and thus accordingly slow down the linear algebra process. However, since there
is a single large constant, one multiplication per line of the matrix is enough instead of one multiplication
per large entry. Moreover, in the frequently considered case where ¢ = 2, the multiplication simply becomes
a left shift by ny bits and does not really slow down the process.

Individual logarithms — Enters the descent. One difficulty with Coppersmith’s algorithm is that the
construction of an additional relation involving an arbitrary finite field element is no longer simple. Thus, an
additional, extremely important idea becomes necessary: the notion of descent. In a nutshell, this process
is a way to write a relation between a polynomial in « and a small number of other polynomials of lower
degree. Iterating the method many times, it becomes possible to express everything in terms of the elements
of F. As a consequence, the computation of an individual logarithm is now represented as a tree where
the descendants of a node (labeled by a polynomial) are the nodes labeled by the lower degree polynomials
occurring in the corresponding relation. All the leaves of the tree should belong to F. In order to determine
the cost of the computation, we need to bound the number of nodes in the tree and the cost of searching
for one relation between a node and its sons. This analysis is beyond the scope of the present survey, the
important result being that this whole descent process has negligible cost compared to the initial computation
of the logarithms of elements of F.

To find a relation involving a polynomial G(«), which can be assumed to be irreducible without loss of
generality, we proceed as follows :

e Choose values of n; and ng, possibly different from the ones used initially and adapted to the degree
of G, such that n = nq + ns.

e Note that the set of polynomials (A, B) such that G divides A(z)+ 27" B(z) form a lattice. Compute
a basis (A1, B1) and (As, Bs) of this lattice.

e For a pair of low degree polynomials (A1, A2), let A = A\ A1 + A2 A2 and B = A\ By + A2 B> and consider
the candidate relation:

no

(A(x) + " B(x)) = A(2?"?) + S(@)B(2?"?) (mod I(z)).

e Among these candidates relations which all contain G, keep one such that the degrees of all the other
irreducible polynomials involved are smaller that x deg G for a constant x < 1 (a typical choice would
be k = 3/4).



5 Bivariate polynomials

In order to improve on Coppersmith’s algorithm, the next step is the function field sieve algorithm [4]
proposed by Adleman and Huang in 1999. This algorithm was used for several record breaking computations
as shown in Figure [Il We present a variation of this method that appeared in [2I] and only makes use of
polynomials. In particular, this variation was used in 2012 to compute discrete logarithms in a 923-bit field
of characteristic 3 using about 900000 CPU-hours [29]. The starting point of the algorithm is to define the
extension field implicitly using two polynomial bivariate relations over Fy:

y=f(z) and z=g(y).

Putting the two relations together, we obtain z = ¢(f(z)). Thus, if the polynomial g(f(x)) — = has an
irreducible factor Ij(x) of degree k, we obtain a representation of F . Under the constraint that the
product of the degree of f and g is greater than k, we heuristically expect to easily find a satisfying pair
of polynomials f and g. Once this is done, we let a denote a root in Fyr of Ix(z) and 8 = f(a). By
construction, we also have a = g(8) in Fx.

From this, given a pair of polynomials A and B, we can write:

A(a)+ B B(a) = A(a)+ f(a)B(a) and
A(a) +BB(a) = A(g(8)) + B B(g(b))-

Putting together the right-hand sides, we have equality in Fx between a polynomial in o and a polynomial
in 8. Moreover, both polynomials have relatively low-degree if parameters are properly selected. As a
consequence, if both polynomials factor into irreducible factors of degree at most ¢, we obtain a multiplicative
relation. Note that we have essentially doubled the size of the factor base since it now contains the evaluation
of each irreducible polynomial both at « and at 5.

To analyze the complexity, it suffices to optimize on a single parameter £. This parameter is the degree
bound on the irreducible of F. The degrees of A and B are also fixed to be at most £. In addition, the
degrees of f and g are chosen to satisfy deg f - deg g =~ k and deg f/ deg g ~ ¢. Once optimized, this yields a

heuristic complexity of L, (1 /3,(32/9)" 3) .
With this bivariate representation, the computation of individual logarithms also involves a descent

process as in Section |4} whose cost is negligible compared to the precomputation of logarithms of elements
of the factor base.

6 The paradigm shift: Constructed smooth polynomials

Despite their obvious differences, the algorithms of Sections 4] and |5 share a common principle. Both create
medium degree polynomials that respectively appear on the two sides of a multiplicative relation and hope
that these two polynomials simultaneously factor into low-degree irreducibles. The fundamental obstruction
that arises here is that the degrees of the two medium-sized polynomials cannot be made arbitrarily small.
The reason for this is the fact that the rule that relates these two polynomials encodes the representation of
the finite field that we are using. Due to this, lowering the degree of one of the two medium-sized polynomial
increases the degree of the other. As long as we rely on chance to obtain smooth polynomials, the best
strategy is to balance the two degrees. In this setting, the bivariate algorithm is essentially the best we can
do.

In order to escape this obstruction, a different approach is needed. A recently discovered option [19)]
that allows to break the Ly(1/3) barrier works by writing an equation between a high-degree polynomial
and a low-degree polynomial, where the high-degree polynomial is constructed to guarantee its smoothness.
First announced in 2013, this yielded a Ly (1/4) complexity, which was later improved to quasi-polynomial
complexity in [6]. This idea of constructing smooth polynomials first appeared in a less efficient version in [I§].
Independently of the Ly (1/4) algorithm from [I9] which directly construct smooth high degree polynomials,



1] considers a family of high-degree polynomials containing many smooth polynomials. However, this
option only leads to an Ly (1/3) algorithm. At the present time, the largest field of small characteristic
that was broken with this family of algorithms, called Frobenius Representation algorithms, is a Kummer
extension field with a 9234-bit cardinality.

In order to construct smooth polynomials of high degree, one starts from the identity:

X1 -x=J[&x-9. (4)
v€F,

For simplicity, we follow the approach of [23] and consider two non-zero polynomials A and B with coefficients
in IF,. We can write:

A(X)?B(X) — A(X) B(X)*

I
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We see that A(X)? B(X) — A(X) B(X)? is constructed to be a product of polynomials of degree at most
equal to the maximum of the degrees of A and B. In order to use this polynomial in a multiplicative relation,
we need to relate it to a low degree polynomial in the finite field. For this purpose, we first use the linearity
of the Frobenius map and write:

A(X)T B(X) — A(X) B(X)? = A(X%) B(X) — A(X) B(XY).

Remembering Coppersmith’s algorithm, it is natural to construct the finite field F » by searching for a
low-degree polynomial S such that X9 — S(X) has an irreducible factor Ij of degree k. Once again, this
requires ¢ > k. Letting o denote a root of I and putting everything together, we can now write:

B(a) ] (Ala) =7 B(a) = A(S(a)) B(a) — A(a) B(S(a)), (5)

v€F,

with the constructed smooth polynomial on the left and a low-degree polynomial on the right. More pre-
cisely, if A and B have degree at most ¢, the degree of the polynomial on the right can be upper bounded
by £ (deg S+ 1).

As usual, the parameter ¢ dictates the size of the factor base. The fundamental difference is that, in
this new context, £ can be chosen to be a small constant. As a consequence, the precomputation of the
logarithms of the elements of the factor base becomes polynomial time.

By contrast with the previous algorithm, the computation of individual discrete logarithms becomes the
asymptotically limiting phase. Its complexity is quasi-polynomial, thanks to [6] or [I4], more precisely of
the form ¢@Ues(max(a:k)) for an arbitrary finite field F,x. This is worse than any polynomial but incredibly
better than subexponential Ly (1/3) complexity.

Note. To add flexibility, in most papers, instead of choosing Iy as a divisor of X? — S(X), it is chosen as
a divisor of S1(X)X9 — Sp(X). This means that the right-hand side in Equation (5)) becomes:

A(s@) P40 (555)

a rational fraction, whose denominator is fixed and whose numerator has low-degree.




7 Current state and open problems

After a few very active years, the state of discrete logarithms in small characteristic finite fields has been more
or less stabilized. From a practical point of view, the complexity of the polynomial time precomputation
of the logarithms of factor base elements has been reduced [23] to O(¢®) for finite fields of the form Fx
with k& < 2¢. From a theoretical point of view, the most recent progress appears in [I5] and proposes a
method to reduce the heuristic hypotheses required : it would now suffice to prove the existence of a pair of
polynomials (Sp, S1) such that S1(X)X?—Sy(X) has an irreducible factor of degree k. This final, challenging
question remains open, despite the fact that in practical computations, finding (Sy, S1) is easy and efficient.

Another problem would be to find a truly polynomial time algorithm rather than a quasi-polynomial one.
With the current techniques for the individual logarithm part, this does not seem possible. This is due to
the fact that each inner node of the tree involved during the descent process has O(g) sons. Since the height
of the tree is logarithmic in k, the total number of leaves is already more that polynomial in the size of the
field. More precisely, for k ~ ¢, the number of leaves is O(qo(log ‘I)), thus dominating any polynomial in q.

Finally, the hardest and possibly most interesting open problem would be to somehow generalize these
algorithms to the case of larger characteristic fields, the goal being to beat the apparent Ly (1/3) barrier for
large characteristic. Unfortunately, the ideas based on the use of polynomials and change of variables seem
to be unusable in this context and different techniques would be required. Related issues are the possibility
of finding improved algorithms for the factorization of large integers or for discrete logarithms on elliptic
curve. This last question is discussed in [20].
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