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The biological carbon pump is the process by which CO2 is transformed to organic 51 

carbon via photosynthesis, exported through sinking particles, and finally sequestered 52 

in the deep ocean or sediment. While the intensity of the pump correlates with plankton 53 

community composition, the underlying ecosystem structure and interactions driving 54 

the process remain largely uncharacterised. Here we use environmental and 55 

metagenomic data gathered during the Tara Oceans expedition to improve our 56 

understanding of carbon export in the oligotrophic ocean. We show that specific 57 

euphotic plankton communities correlate with carbon export and highlight unexpected 58 

and overlooked taxa such as Radiolaria, alveolate parasites, as well as Synechococcus 59 

and their phages, as lineages most strongly associated with carbon export in the 60 

subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the 61 

relative abundance of just a few bacterial and viral genes can predict most of the 62 

variability in carbon export in these regions.  63 

Marine planktonic photosynthetic organisms are responsible for approximately fifty percent 64 

of Earth’s primary production and they fuel the global ocean biological carbon pump1. The 65 

intensity of the pump is correlated to plankton community composition2,3, and controlled by 66 

the relative rates of primary production and carbon remineralisation4. About 10% of this 67 

newly produced organic carbon in the surface ocean is exported through gravitational 68 

sinking of particles. Finally, after multiple transformations, only a fraction of the exported 69 

material will reach the deep ocean where it is sequestered over thousand-year timescales of 70 

the ocean’s overturning circulation5.  71 

Like most biological systems, marine ecosystems in the sunlit upper layer of the ocean 72 

(denoted the euphotic zone) are complex6,7, characterised by a wide range of biotic and 73 

abiotic interactions8-10 and in constant balance between carbon production, transfer to higher 74 



trophic levels, remineralisation, and export to the deep layers11. The marine ecosystem 75 

structure and its taxonomic and functional composition likely evolved to comply with this 76 

loss of energy by modifying organism turnover times and by the establishment of complex 77 

feedbacks between them6 and the substrates they can exploit for metabolism12. Decades of 78 

groundbreaking research have focused on identifying independently the key players involved 79 

in the biological carbon pump. Among autotrophs, diatoms are commonly attributed to being 80 

important in carbon flux because of their large size and fast sinking rates13-15 while small 81 

autotrophic picoplankton may contribute directly as a result of subduction of surface water 82 

resulting from sub-mesoscale dynamic features16 or indirectly by aggregating with larger 83 

settling particles or through their consumption by organisms at higher trophic levels17. 84 

Among heterotrophs, zooplankton such as copepods impact carbon flux via production of 85 

fast-sinking fecal pellets while migrating hundreds of meters in the water-column18,19. These 86 

observations, focusing on just a few components of the marine ecosystem, highlight that 87 

carbon export results from multiple biotic interactions and that a better understanding of the 88 

mechanisms involved in its regulation will likely require an analysis of the entire planktonic 89 

ecosystem. 90 

Advanced sequencing technologies now offer the opportunity to simultaneously survey 91 

whole planktonic communities and associated molecular functions in unprecedented detail. 92 

Such a holistic approach may allow the identification of community- or gene-based 93 

biomarkers that could be used to monitor and predict ecosystem functions, e.g., related to the 94 

biogeochemistry of the ocean20-22. Here, we leverage global-scale ocean genomics 95 

datasets10,23-25 and associated environmental data to assess the coupling between ecosystem 96 

structure, functional repertoire, and the carbon export component of the biological carbon 97 

pump. 98 



Carbon export and plankton community composition 99 

The Tara Oceans global circumnavigation crossed diverse ocean ecosystems and sampled 100 

plankton at an unprecedented scale20,26 (see Methods). Hydrographic data were measured in 101 

situ or in seawater samples at all stations, as well as nutrients, oxygen and photosynthetic 102 

pigments (see Methods). Net Primary Production (NPP) was derived from satellite 103 

measurements (see Methods). In addition, particle size distributions (100 µm to a few mm) 104 

and concentrations were measured using an Underwater Vision Profiler (UVP) from which 105 

carbon export, corresponding to the carbon flux (Fig. 1) at 150 m, was calculated to range 106 

from 0.014 to 18.3 mg.m-2.d-1 using previously validated methods (see Methods). The 107 

approach allowed us to assemble the largest homogeneous carbon flux dataset during a 108 

single expedition, corresponding to more than 600 profiles over 150 stations. This dataset is 109 

of similar magnitude to the body of historical data available in the literature that includes the 110 

134 deep sediment trap-based carbon flux time-series27 from the JGOFS program and the 111 

419 thorium-derived particulate organic carbon (POC) export measurements28. 112 

From 68 globally distributed sites, a total of 7.2 Tb of metagenomics data, representing circa 113 

40 million non-redundant genes, around 35,000 Operational Taxonomic Units (OTUs) of 114 

prokaryotes (Bacteria and Archaea) and numerous mainly uncharacterized viruses and 115 

picoeukaryotes, have been described recently23,25. In addition, a set of 2.3 million eukaryotic 116 

18S rDNA ribotypes was generated from a subset of 47 sampling sites corresponding to 117 

approximately 130,000 OTUs24. Finally, 5,476 viral “populations” were identified at 43 sites 118 

from viral metagenomic contigs, only 39 (<0.1%) of which had been previously observed25 119 

(see Methods). These genomics data combined across all domains of life together with 120 

carbon flux estimates and other environmental parameters were used to explore the 121 

relationships between marine biogeochemistry and euphotic plankton communities (see 122 



Methods) in the oligotrophic open ocean. Our study did not include high latitude areas due to 123 

the current lack of available molecular data. 124 

Using a method for regression-based modeling of high dimensional data in biology 125 

(specifically a sparse Partial Least Square analysis - sPLS29, Extended data Fig. 1), we 126 

detected several plankton lineages for which relative sequence abundance correlated with 127 

carbon export and other environmental parameters, most notably with NPP, as expected (Fig. 128 

2 and see Supplementary Information SI1). These included diatoms, dinoflagellates and 129 

metazoa (zooplankton), lineages classically identified as key contributors to carbon export. 130 

Plankton community networks associated with carbon export 131 

While the analysis presented in Fig. 2 supports previous findings about key organisms 132 

involved in carbon export from the euphotic zone14,15,17-19, it is not able to capture how the 133 

intrinsic structure of the planktonic community relates to this biogeochemical process. 134 

Conversely, although other recent holistic approaches10,30,31 used species co-occurrence 135 

networks to reveal potential biotic interactions, they do not provide a robust description of 136 

sub-communities driven by abiotic interactions. To overcome these issues, we applied a 137 

systems biology approach known as Weighted Gene Correlation Network Analysis 138 

(WGCNA32,33) to detect significant associations between the Tara Oceans genomics data and 139 

carbon export. This method delineates communities in the euphotic zone that are the most 140 

associated with carbon export rather than predicting organisms associated with sinking 141 

particles. 142 

In brief, the WGCNA approach builds a network in which nodes are features (in this case 143 

plankton lineages or gene functions) and links are evaluated by the robustness of co-144 

occurrence scores. WGCNA then clusters the network into modules (hereafter denoted 145 

subnetworks) that can be examined to find strong and significant subnetwork-trait 146 



relationships. We then filtered each subnetwork using a Partial Least Square (PLS) analysis 147 

that emphasizes key nodes (based on the Variable Importance in Projection (VIP) scores; see 148 

Methods and Extended data Fig. 1). These particular nodes are mandatory to summarize a 149 

subnetwork (or community) related to carbon export. In particular, they are of interest for 150 

evaluating (i) subnetwork robustness and (ii) predictive power for a given trait (see Methods 151 

and Extended data Fig. 1). 152 

We applied WGCNA to the relative abundance tables of eukaryotic, prokaryotic and viral 153 

lineages23-25 and identified unique subnetworks significantly associated with carbon export 154 

within each dataset (see Methods and Supplementary Information SI1, SI2, SI3). The 155 

eukaryotic subnetwork (subnetwork-trait relationship to carbon export, Pearson cor. = 0.81, p 156 

= 5e-15) contained 49 lineages (Extended data Fig. 2a and Supplementary Information SI2) 157 

among which twenty percent represented photosynthetic organisms (Fig. 3a and 158 

Supplementary Information SI2). Surprisingly, this small subnetwork’s structure correlates 159 

very strongly to carbon export (Pearson cor. = 0.87, p = 5e-16, Extended data Fig. 2d) and it 160 

predicts as much as 69% (Leave-One-Out Cross-Validated (LOOCV), R2 = 0.69) of the 161 

variability in carbon export (Extended data Fig. 3a). Only ~6% of the subnetwork nodes 162 

correspond to diatoms and they show lower VIP scores than dinoflagellates (Supplementary 163 

Information SI2). This is likely because our samples are not from silicate replete conditions 164 

where diatoms were blooming (see Methods). Furthermore, our analysis did not incorporate 165 

data from high latitudes, where diatoms are known to be particularly important for carbon 166 

export, so this result suggests that dinoflagellates have a heretofore unrecognized role in 167 

carbon export processes in subtropical oligotrophic ‘type’ ecosystems, one of the largest 168 

biome on Earth. More precisely four of the five highest VIP scoring eukaryotic lineages that 169 

correlated with carbon flux were heterotrophs such as Metazoa (copepods), non-170 

photosynthetic Dinophyceae, and Rhizaria (Fig. 3a and Supplementary Information SI2). 171 



These results corroborate recent metagenomics analysis of microbial communities from 172 

sediment traps in the oligotrophic North Pacific subtropical gyre34. Consistently, in situ 173 

imaging surveys have revealed Rhizarian lineages, made up of large fragile organisms such 174 

as the Collodaria, to represent an until now under-appreciated component of global plankton 175 

biomass35, which here also appear to be of relevance for carbon export. Another 14% of 176 

lineages from the subnetwork correspond to parasitic organisms, a largely under-explored 177 

component of planktonic ecosystems.  178 

The prokaryotic subnetwork that associated most significantly with carbon export 179 

(subnetwork-trait relationship to carbon export, Pearson cor. = 0.32, p = 9e-03) contained 109 180 

OTUs (Extended data Fig. 2b and Supplementary Information SI3), its structure correlated 181 

well to carbon export (Pearson cor. = 0.47, p = 5e-06, Extended data Fig. 2e) and it could 182 

predict as much as 60% of the carbon export (LOOCV, R2 = 0.60) (Extended data Fig. 3b). 183 

By far the highest VIP score within this community was assigned to Synechococcus, 184 

followed by Cobetia, Pseudoalteromonas and Idiomarina, as well as Vibrio and Arcobacter 185 

(Fig. 3b and Supplementary Information SI3). Noteworthy, Prochlorococcus genera and 186 

SAR11 clade fall out of this community, while the significance of Synechococcus for carbon 187 

export could be validated using absolute cell counts estimated by flow cytometry (Pearson 188 

cor. = 0.64, p = 4e-10, Extended data Fig. 4b). Moreover, Prochlorococcus cell counts did not 189 

correlate with carbon export (Pearson cor. = -0.13, p = 0.27, Extended data Fig. 4a) whereas 190 

the Synechococcus to Prochlorococcus cell count ratio correlated positively and significantly 191 

(Pearson cor. = 0.54, p = 4e-07, Extended data Fig. 4c), suggesting the relevance of 192 

Synechococcus, rather than Prochlorococcus, to carbon export. Interestingly, 193 

Pseudoalteromonas, Idiomarina, Vibrio and Arcobacter (of which several species are known 194 

to be associated with eukaryotes36) have also been observed in live and poisoned sediment 195 

traps34 and these genera display very high VIP scores in our subnetwork associated with 196 



carbon export. Additional genera reported as being enriched in poisoned traps (also known 197 

as being associated with eukaryotes) include Enterovibrio and Campylobacter, and are 198 

present as well in our carbon export subnetwork.  199 

Interestingly, the viral subnetwork (n=277) most related to carbon export (Pearson cor. = 200 

0.93, p = 2e-15, Extended data Fig. 2c) contained particularly high VIP scores for two 201 

Synechococcus phages (Fig. 3c and Supplementary Information SI4), which represented a 202 

16-fold enrichment (Fisher’s exact test p = 6.4e-09). Its structure also correlated with carbon 203 

export (Pearson cor. = 0.88, p = 6e-93, Extended data Fig. 2f) and it could predict up to 89% 204 

of the variability of carbon export (LOOCV, R2 = 0.89) (Extended data Fig. 3c). The 205 

significance of these convergent results is reinforced by the fact that sequences from these 206 

datasets are derived from organisms collected on independent size filters (see Methods), and 207 

further implicates the importance of top-down processes in carbon export. 208 

With the aim of integrating eukaryotic, prokaryotic, and viral carbon export communities, we 209 

synthesized their respective subnetworks using, as a backbone, a single global co-occurrence 210 

network established previously10. The resulting network focused on key lineages and their 211 

predicted co-occurrences (Fig. 4). Lineages with high VIP values (such as Synechococcus) 212 

are revealed here as hubs of the co-occurrence network10, illustrating the potentially strategic 213 

key roles within the integrated network of lineages under-appreciated by conventional 214 

methods to study carbon export in the ocean. Associations between the hub lineages are 215 

mostly mutually exclusive which may explain the relatively weak correlation of some of 216 

these lineages with carbon export when using standard correlation analyses as shown in Fig. 217 

2. 218 

Gene functions associated with carbon export 219 

Given the potential importance of prokaryotic processes influencing the biological carbon 220 



pump22, we used the same analytical approaches to examine the prokaryotic genomic 221 

functions associated with carbon export in the annotated Ocean Microbial Reference Gene 222 

Catalogue from Tara Oceans23. We built a global co-occurrence network for functions (i.e., 223 

Orthologous Groups of genes or OGs) from the euphotic zone and identified two 224 

subnetworks of functions that are significantly associated with carbon export (Fig. 5a, 225 

Extended data Fig. 5a, light and dark green subnetworks; FNET1 and FNET2, respectively, 226 

and Extended data Fig. 5c).  227 

The majority of functions in FNET1 and FNET2 correlate well with carbon export (FNET1: 228 

mean Pearson cor. = 0.45, s.d. 0.09 and FNET2: mean Pearson cor. = 0.34, s.d. 0.10). 229 

Interestingly, FNET2 functions (n=220) encode mostly (83%) core functions (i.e., functions 230 

observed in all euphotic samples, see Methods) while the majority of FNET1 functions 231 

(n=441) are non-core (85%) (see Supplementary Information SI5, SI6), highlighting both 232 

essential and adaptive ecological functions associated with carbon export. Top VIP scoring 233 

functions in the FNET1 subnetwork are membrane proteins such as ABC-type sugar 234 

transporters (Fig. 5a). This subnetwork also contains many functions specific to the 235 

Synechococcus accessory photosynthetic apparatus (e.g., relating to phycobilisomes, 236 

phycocyanin and phycoerythrin; see Supplementary Information SI5), which is consistent 237 

with the major role of this genus for carbon export inferred from the prokaryotic subnetwork 238 

(Fig. 3b). In addition, functions related to carbohydrates, inorganic ion transport and 239 

metabolism, as well as transcription, are also well represented (Fig. 5b), suggesting overall a 240 

subnetwork of functions dedicated to photosynthesis and growth. 241 

The FNET2 subnetwork contains several functions encoded by genes taxonomically 242 

assigned to Candidatus pelagibacter and Prochlorococcus, known as occupying similar 243 

oceanic regions as Synechococcus, but overall most of its relative abundance (74%) is 244 



taxonomically unclassified (Extended data Fig. 6). Top VIP scoring functions in FNET2 are 245 

also membrane proteins and ABC-type sugar transporters, as well as functions involved in 246 

carbohydrate breakdown such as a chitinase (Fig. 5a). These features highlight the potential 247 

roles of bacteria in the formation and degradation of marine aggregates37. Strikingly, 77% 248 

and 58%, of OGs with a VIP score > 1 in FNET1 and FNET2, respectively, are functionally 249 

uncharacterized38,39 (Fig. 5b), pointing to the strong need for future molecular work to 250 

explore these functions (see Supplementary Information SI5, SI6). 251 

The relevance of the identified bacterial functions to predict carbon export was also 252 

confirmed by PLS regression (Extended data Fig. 6b and 6c). As proposed for plankton 253 

communities, the functional subnetworks predict 41% and 48% of carbon export variability 254 

(LOOCV, R2 = 0.41 and 0.48 for FNET1 and FNET2, respectively) with a minimal number 255 

of functions (Fig. 5b, 123 and 54 functions with a VIP score > 1 for FNET1 and FNET2, 256 

respectively). Finally, higher predictive power was obtained using subnetworks of viral 257 

protein clusters (Extended data Fig. 5b, 5d and 7a), predicting 55% and 89% of carbon 258 

export variability (LOOCV R2 = 0.55 and 0.89 for VNET1 and VNET2, respectively; 259 

Extended data Fig. 7b, Supplementary Information, SI7, SI8), suggesting again the key role, 260 

of not only bacteria, but also their phages in biological processes sustaining carbon export at 261 

a global level. 262 

Discussion 263 

In this report we have revealed the potential contribution of under-appreciated components 264 

of plankton communities, as well as confirmed the importance of prokaryotes and viruses, in 265 

the carbon export component of the biological carbon pump in the nutrient-depleted 266 

oligotrophic ocean. Carbon export was estimated from particle size distribution at 150 m 267 

measured with the UVP, and we assumed similar particle composition across all size classes. 268 



Furthermore, because of instrument and method limitations, particles smaller than 250 µm 269 

were not used for these estimations (see Methods). These export estimates evaluate how 270 

much carbon leaves the euphotic zone, but they are not necessarily related to sequestration, 271 

which occurs deeper in the water column and over longer timescales. Overall, the use of the 272 

UVP was the only realistic method to evaluate carbon flux over the 3 years expedition 273 

because deployment of sediment traps at all stations would have been impossible. While our 274 

findings are consistent with the numerous previous studies that have highlighted the central 275 

role of copepods and diatoms in the biological carbon pump14,15,17-19, they place them in an 276 

ecosystem context and generate hypotheses as to the processes that determine the intensity of 277 

export, such as parasitism and predation. For example, while viruses are commonly assumed 278 

to lyse cells and maintain fixed organic carbon in surface waters, thereby reducing the 279 

intensity of the biological carbon pump40, there are hints that viral lysis may increase carbon 280 

export through the production of colloidal particles and aggregate formation41. Our current 281 

study suggests that these latter roles may be more ubiquitous than currently appreciated. The 282 

importance of aggregation and cell stickiness as inferred from gene network analysis, should 283 

be further explored mechanistically to investigate the biological significance of these 284 

findings. 285 

The future evolution of the oceanic carbon sink remains uncertain because of poorly 286 

constrained processes, particularly those associated with the biological pump. With current 287 

trends in climate change, the size and biodiversity of phytoplankton are predicted to decrease 288 

globally42,43. Furthermore, in spite of the potential importance of viruses revealed in this 289 

study, they have largely been ignored because of limitations in sampling technologies. 290 

Consequently, as oligotrophic gyres expand and global mean NPP decreases44, the field is 291 

currently unable to predict the consequences for carbon export from the ocean’s euphotic 292 

zone. By pinpointing key species that appear to be strongly associated with carbon export in 293 



these areas, as well as their co-occurences within plankton communities and key microbial 294 

functions, the integrated datasets combined with advanced computational techniques used in 295 

this study could provide a framework to address this critical bottleneck. 296 

One of the grand challenges in the life sciences is to link genes to ecosystems45, based on the 297 

posit that genes can have predictable ecological footprints at community and ecosystem 298 

levels46-48. The extensive data sets from Tara Oceans have allowed us to predict as much as 299 

89% of the variability in carbon export from the oligotrophic surface ocean with just a small 300 

number of genes, largely with unknown functions, encoded by prokaryotes and viruses. 301 

These findings can be used as a basis to include biological complexity and guide 302 

experimental work designed to inform modeling of the global carbon cycle and to understand 303 

how it influences and is influenced by changes in climate. Such statistical analyses scaling 304 

from gene-to-ecosystems may open the way to the development of a new conceptual and 305 

methodological framework to better understand the mechanisms underpinning key ecological 306 

processes.  307 
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Figure Legends: 414 
Figure 1 | Global view of carbon fluxes along the Tara Oceans circumnavigation route. 415 
Carbon flux in mg.m-2.d-1 estimated from particles size distribution and abundance measured 416 
with the Underwater Vision Profiler 5 (UVP5).  417 
 418 
Figure 2 | Eukaryotic community associated to carbon export seen using standard 419 
methods for regression-based modeling of high dimensional data. Eukaryotic lineages 420 
associated to carbon export as revealed by sPLS analysis. Correlations between lineages and 421 
environmental parameters are depicted as a clustered heatmap and lineages with a correlation 422 
to carbon export higher than 0.2 are highlighted. 423 
 424 
Figure 3 | Ecological networks reveal key taxa lineages associated with carbon export at 425 
global scale. The relative abundances of taxa in selected subnetworks were used to estimate 426 
carbon export and to identify key lineages associated with the process. a, The selected 427 
eukaryotic subnetwork (n=49, see Supplementary Information SI2) can predict carbon export 428 
with high accuracy (PLS regression, LOOCV, R2=0.69, see Extended data Fig. 3a). Lineages 429 
with the highest VIP score (dots size is proportional to the VIP score in the scatter plot) in 430 
the PLS are depicted as red dots corresponding to three Rhizaria (Collodaria, Collozoum 431 
inerme and Sticholonche sp.), one copepod (Oithona sp.), one siphonophore (Lilyopsis), 432 
three Dinophyceae and one ciliate (Spirotontonia turbinata). b, The selected prokaryotic 433 
subnetwork (n=109, see Supplementary Information SI3) can predict carbon export with 434 
good accuracy (PLS regression, LOOCV, R2=0.60, see Extended data Fig. 3b). c, The 435 
selected viral population subnetwork (n=277, see Supplementary Information SI4) can 436 
predict carbon export with high accuracy (PLS regression, LOOCV, R2=0.89, see Extended 437 
data Fig. 3c). Two viral populations with a high VIP score (red dots) are predicted as 438 
Synechococcus phages (see Supplementary Information SI4).  439 

Figure 4 | Plankton community network built from eukaryotic, prokaryotic and viral 440 
subnetworks related to carbon export. Major lineages were selected within the three 441 
subnetworks (VIP > 1). Co-occurrences between all lineages of interest were extracted from 442 
a previously established global co-occurrence network (see methods). Only lineages 443 
discussed within the study are pinpointed. The resulting graph is composed of 329 nodes, 444 
467 edges, with a diameter of 7, and average weighted degree of 4.6. 445 

Figure 5 | Bacterial functional networks reveal key functions associated with carbon 446 
export at global scale. A bacterial functional network was built based on Orthologous 447 
Group/Gene (OG) relative abundances using the WGCNA methodology (see Methods) and 448 
correlated to classical oceanographic parameters. a, Two functional subnetworks (light and 449 
dark green, FNET1 (n=220) and FNET2 (n=441), respectively) are significantly associated 450 
with carbon export (FNET1: Pearson cor. 0.42, p = 4e-09 and FNET2: 0.54, p = 7e-06, see 451 
Extended data Fig. 5a). The highest VIP score functions from top to bottom correspond to 452 
red dots from right to left. b, Higher functional categories are depicted for functions with a 453 
VIP score >1 (PLS regression, LOOCV, FNET1 R2=0.41 and FNET2 R2=0.48, see Extended 454 
data Fig. 6) in both functional subnetworks,  455 



Methods 456 

Environmental data collection 457 
From 2009-2013, environmental data (Supplementary Information SI9) were collected across all 458 
major oceanic provinces in the context of the Tara Oceans expeditions20. Sampling stations were 459 
selected to represent distinct marine ecosystems at a global scale49. Note that Southern Ocean stations 460 
were not examined herein because they were ranked as outliers due to their exceptional 461 
environmental characteristics and biota23,24. Environmental data were obtained from vertical profiles 462 
of a sampling package50,51. It consisted of conductivity and temperature sensors, chlorophyll and 463 
CDOM fluorometers, light transmissometer (Wetlabs C-star 25cm), a backscatter sensor (WetLabs 464 
ECO BB), a nitrate sensor (SATLANTIC ISUS) and a Hydroptic Underwater Vision Profiler (UVP; 465 
Hydroptics52. Nitrate and fluorescence to chlorophyll concentrations as well as salinity were 466 
calibrated from water samples collected with Niskin bottle50. Net Primary Production (NPP) data 467 
were extracted from 8 day composites of the Vertically Generalized Production Model (VGPM53) at 468 
the week of sampling54. Carbon fluxes and carbon export, corresponding to the carbon flux at 150 m, 469 
were estimated based on particle concentration and size distributions obtained from the UVP51 and 470 
details are presented below. 471 

From particle size distribution to carbon export estimation 472 
Previous research has shown that the distribution of particle size follows a power law over the µm to 473 
the mm size range3,55,56. This Junge-type distribution translates into the following mathematical 474 
equation, whose parameters can be retrieved from UVP images: 475 

𝑛(𝑑) = 𝑎𝑑𝑘 (eq. 1) 

 476 
where d is the particle diameter, and exponent k is defined as the slope of the number spectrum when 477 
equation (2) is log transformed. This slope is commonly used as a descriptor of the shape of the 478 
aggregate size distribution. 479 
 480 
The carbon-based particle size approach relies on the assumption that the total carbon flux of 481 
particles (F) corresponds to the flux spectrum integrated over all particle sizes: 482 

𝐹 = 𝑛(𝑑).𝑚(𝑑).𝑤(𝑑)𝑑𝑑
!

!
 (eq. 2) 

where n(d) is the particle size spectrum, i.e., equation (1), and m(d) is the mass (here carbon content) 483 
of a spherical particle described as: 484 

𝑚(𝑑) = 𝛼𝑑! (eq. 3) 

where 𝛼 = 𝜋𝜌/6, 𝜌 is the average density of the particle, and w(d) is the settling rate calculated using 485 
Stokes Law: 486 

𝑤(𝑑) = 𝛽𝑑! (eq. 4) 

where 𝛽 = 𝑔(𝜌− 𝜌0)(18𝜈𝜌0)
−1, 𝑔 is the gravitational acceleration, 𝜌!the fluid density, and 𝜈 the 487 

kinematic viscosity. 488 
 489 
In addition, mass and settling rates of particles, m(d) and w(d), respectively, are often described as 490 
power law functions of their diameter obtained by fitting observed data, 𝑚(𝑑).𝑤(𝑑) = 𝐴𝑑𝐵. The 491 



particles carbon flux can then be estimated using an approximation of Eq. 2 over a finite number (x) 492 
of small logarithmic intervals for diameter d spanning from 250 µm to 1.5 mm (particles <250 µm 493 
and >1.5 mm are not considered, consistent with the method presented by Guidi et al., [2008]57) such 494 
as 495 

𝐹 = 𝑛𝑖𝐴𝑑𝑖
𝐵 △ 𝑑𝑖

𝑥

𝑖!!

 (eq. 5) 

 496 
where A=12.5±3.40 and B=3.81 ± 0.70 have been estimated using a global dataset that compared 497 
particle fluxes in sediment traps and particle size distributions from the UVP images.  498 

Genomic data collection 499 
For the sake of consistency between all available datasets from the Tara Oceans expeditions, we 500 
considered subsets of the data recently published in Science23-25. In brief, one sample corresponds to 501 
data collected at one depth (surface (SRF) or Deep Cholorophyll Maximum (DCM) determined from 502 
the profile of chlorophyll fluorometer) and at one station. To study the eukaryotic community in our 503 
current manuscript, we selected stations at which we had environmental data and carbon export 504 
estimated at 150 m with the UVP and all size fractions. Consequently a subset of 33 stations 505 
(corresponding to 56 samples) has been created compared to the 47 stations analyzed in de Vargas et 506 
al. [2015]. A similar procedure has been applied to the prokaryotic and viral datasets, reducing the 507 
Sunagawa et al. [2015] prokaryotic dataset to a subset of 104 samples from 62 stations and the Brum 508 
et al. [2015] viral dataset into a subset of 37 samples from 22 stations (See Supplementary 509 
Information SI10). In addition a detailed table is provided summarizing which samples (depth and 510 
station) are available for each domain (Supplementary Information SI11).  511 

Eukaryotic taxa profiling 512 
Photic-zone eukaryotic plankton diversity has been investigated through millions of environmental 513 
Illumina reads. Sequences of the 18S ribosomal RNA gene V9 region were obtained by PCR 514 
amplification and a stringent quality-check pipeline has been applied to remove potential chimera or 515 
rare sequences (details on data cleaning in de Vargas et al. [2015]24). For 47 stations, and if possible 516 
at two depths (SRF and DCM), eukaryotic communities were sampled in the piconano- (0.8-5 µm), 517 
micro- (20-180 µm) and meso-plankton (180-2000 µm) fractions (a detailed list of these samples is 518 
given in Supplementary Information SI12). In the framework of the carbon export study, sequences 519 
from all size fractions were pooled in order to get the most accurate and statistically reliable dataset 520 
of the eukaryotic community. The 2.3 million eukaryotic ribotypes were assigned to known 521 
eukaryotic taxonomic entities by global alignment to a curated database24. To get the most accurate 522 
vision of the eukaryotic community, sequences showing less than 97% identity with reference 523 
sequences were excluded. The final eukaryotic relative abundance matrix used in our analyses 524 
included 1,750 lineages (taxonomic assignation has been performed using a last common ancestor 525 
methodology, and had thus been performed down to species level when possible) in 56 samples from 526 
33 stations. Pooled abundance (number of V9 sequences) of each lineage has been normalized by the 527 
total sum of sequences in each sample.  528 

Prokaryotic taxa profiling 529 
To investigate the prokaryotic lineages, communities were sampled in the pico-plankton. Both filter 530 
sizes have been used along the Tara Oceans transect: up to station #52, prokaryotic fractions 531 
correspond to a 0.22-1.6 µm size fraction, and from station #56, prokaryotic fractions correspond to a 532 



0.22-3 µm size fraction. Prokaryotic taxonomic profiling was performed using 16S rRNA gene tags 533 
directly identified in Illumina-sequenced metagenomes (mitags) as described in Logares et al., 534 
[2014]58. 16S mitags were mapped to cluster centroids of taxonomically annotated 16S reference 535 
sequences from the SILVA database59 (release 115: SSU Ref NR 99) that had been clustered at 97% 536 
sequence identity using USEARCH v6.0.30760. 16S mitag counts were normalized by the total reads 537 
count in each sample (further details in Sunagawa et al. [2015]23). The photic-zone prokaryotic 538 
relative abundance matrix used in our analyses included 3,253,962 mitags corresponding to 1,328 539 
genera in 104 samples from 62 stations. 540 
 541 
Prokaryotic functional profiling 542 
For each prokaryotic sample, gene relative abundance profiles were generated by mapping reads to 543 
the OM-RGC using the MOCAT pipeline61. The relative abundance of each reference gene was 544 
calculated as gene length-normalized base counts. And functional abundances were calculated as the 545 
sum of the relative abundances of these reference genes, annotated to OG functional groups. In our 546 
analyses, we used the subset of the OM-RGC that was annotated to Bacteria or Archaea (24.4 M 547 
genes). Using a rarefied (to 33 M inserts) gene count table, an OG was considered to be part of the 548 
ocean microbial core if at least one insert from each sample was mapped to a gene annotated to that 549 
OG. For further details on the prokaryotic profiling please refer to Sunagawa et al. [2015]23. The final 550 
prokaryotic functional relative abundance matrix used in our analyses included 37,832 OGs or 551 
functions in 104 samples from 62 stations. Genes from functions of FNET1 and FNET2 subnetworks 552 
were taxonomically annotated using a modified dual BLAST-based last common ancestor (2bLCA) 553 
approach62. We used RAPsearch263 rather than BLAST to efficiently process the large data volume 554 
and a database of non-redundant protein sequences from UniProt (version: UniRef_2013_07) and 555 
eukaryotic transcriptome data not represented in UniRef (see Supplementary Information SI5, SI6, 556 
for full annotations). 557 

Enumeration of prokaryotes by flow cytometry 558 
For prokaryote enumeration by flow cytometry, three aliquots of 1 ml of seawater (pre-filtered by 559 
200-µm mesh) were collected from both SRF and DCM. The samples were fixed immediately using 560 
cold 25% glutaraldehyde (final concentration 0.125%), left in the dark for 10 min at room 561 
temperature, flash-frozen and kept in liquid nitrogen on board and then stored at -80°C on land. Two 562 
subsamples were taken to separate counts of heterotrophic prokaryotes (not shown herein) and 563 
phototrophic picoplankton. For heterotrophic prokaryote determination, 400 µl of sample was added 564 
to a diluted SYTO-13 (Molecular Probes Inc., Eugene, OR, USA) stock (10:1) at 2.5 µmol l-1 final 565 
concentration, left for about 10 min in the dark to complete the staining and run in the flow 566 
cytometer. We used a FacsCalibur (Becton & Dickinson) flow cytometer equipped with a 15 mW 567 
Argon-ion laser (488 nm emission). At least 30,000 events were acquired for each subsample (usually 568 
100,000 events). Fluorescent beads (1 µm, Fluoresbrite carboxylate microspheres, Polysciences Inc., 569 
Warrington, PA) were added at a known density as internal standards. The bead standard 570 
concentration was determined by epifluorescence microscopy. For phototrophic picoplankton, we 571 
used the same procedure as for heterotrophic prokaryote, but without addition of SYTO-13. Data 572 
analysis was performed with FlowJo software (Tree Star, Inc.). 573 

Profiling of viral populations  574 
In order to associate viruses to carbon export we used viral populations as defined in Brum et al. 575 
[2015]25 using a set of 43 Tara Oceans viromes. Briefly, viral populations were defined as large 576 
contigs (>10 predicted genes and >10 kb) identified as most likely originating from bacterial or 577 
archaeal viruses. These 6,322 contigs remained and were then clustered into populations if they 578 



shared more than 80% of their genes at >95% nucleotide identity. This resulted in 5,477 579 
‘populations’ from the 6,322 contigs, where as many as 12 contigs were included per population. For 580 
each population, the longest contig was chosen as the ‘seed’ representative sequence. The relative 581 
abundance of each population was computed by mapping all quality-controlled reads to the set of 582 
5,477 non-redundant populations (considering only mapping quality scores greater than 1) with 583 
Bowtie264 and if more than 75% of the reference sequence was covered by virome reads. The relative 584 
abundance of a population in a sample was computed as the number of base pairs recruited to the 585 
contig normalized to the total number of base pairs available in the virome and the contig length if 586 
more than 75% of the reference sequence was covered by virome reads, and set to 0 otherwise (see 587 
Brum et al. [2015]25 for further details). The final viral population abundance matrix used in our 588 
analyses included 5,291 viral population contigs in 37 samples from 22 stations. 589 

Viral host predictions 590 
The longest contig in a population was defined as the seed sequence and considered the best estimate 591 
of that population’s origin. These seed sequences were used to assess taxonomic affiliation of each 592 
viral population. Cases where >50% of the genes were affiliated to a specific reference genome from 593 
RefSeq Virus (based on a BLASTp comparison with thresholds of 50 for bit score and 10-5 for e-594 
value) with an identity percentage of at least 75% (at the protein sequence level) were considered as 595 
confident affiliations to the corresponding reference virus. The viral population host group was then 596 
estimated based on these confident affiliations (see Supplementary Information SI13 for host 597 
affiliation of viral population contigs associated to carbon export). 598 

Viral protein clusters 599 
Viral protein clusters (PCs) correspond to ORFs initially mapped to existing clusters (POV, GOS and 600 
phage genomes). The remaining, unmapped ORFs were self-clustered, using cd-hit as described in 601 
Brum et al. [2015]25. Only PCs with more than two ORFs were considered bona fide and were used 602 
for subsequent analyses. To compute PC relative abundance for statistical analyses, reads were 603 
mapped back to predicted ORFs in the contigs dataset using Mosaik as described in Brum et al. 604 
[2015]25. Read counts to PCs were normalized by sequencing depth of each virome. Importantly, we 605 
restricted our analyses to 4,294 PCs associated to the 277 viral population contigs significantly 606 
associated to carbon export in 37 samples from 22 stations. 607 

Sparse Partial Least Squares analysis 608 
In order to directly associate eukaryotic lineages to carbon export and other environmental traits (Fig. 609 
2), we used sparse Partial Least Square (sPLS65 as implemented in the R package mixOmics29. We 610 
applied the sPLS in regression mode, which will model a causal relationship between the lineages 611 
and the environmental traits, i.e. PLS will predict environmental traits (e.g. carbon export) from 612 
lineage abundances. This approach enabled us to identify high correlations (see Supplementary 613 
Information SI1) between certain lineages and carbon export but without taking into account the 614 
global structure of the planktonic community. 615 

Co-occurrence network model analysis 616 
Weighted correlation network analysis (WGCNA) was performed to delineate feature (lineages, viral 617 
populations, PCs or functions) subnetworks based on their relative abundance66,67. A signed 618 
adjacency measure for each pair of features was calculated by raising the absolute value of their 619 
Pearson correlation coefficient to the power of a parameter p. The default value p=6 was used for 620 
each global network, except for the Prokaryotic functional network where p had to be lowered to 4 in 621 
order to optimize the scale-free topology network fit. Indeed, this power allows the weighted 622 



correlation network to show a scale free topology where key nodes are highly connected with others. 623 
The obtained adjacency matrix was then used to calculate the topological overlap measure (TOM), 624 
which for each pair of features, taking into account their weighted pairwise correlation (direct 625 
relationships) and their weighted correlations with other features in the network (indirect 626 
relationships). For identifying subnetworks a hierarchical clustering was performed using a distance 627 
based on the TOM measure. This resulted in the definition of several subnetworks, each represented 628 
by its first principal component. 629 

These characteristic components play a key role in weighted correlation network analysis. On the one 630 
hand, the closeness of each feature to its cluster, referred to as the subnetwork membership, is 631 
measured by correlating its relative abundance with the first principal component of the subnetwork. 632 
On the other hand, association between the subnetworks and a given trait is measured by the pairwise 633 
Pearson correlation coefficients between the considered environmental trait and their respective 634 
principal components. A similar protocol has been performed on the eukaryotic relative abundance 635 
matrix, the prokaryotic relative abundance matrix, the prokaryotic functions relative abundance 636 
matrix and the viral population and PC relative abundance matrices. All procedures were applied on 637 
Hellinger-transformed log-scaled abundances. Noteworthy, the protocol is not sensitive to copy 638 
number variation as observed across different eukaryotic species, because the association between 639 
two species relies on a correlation score between relative abundance measurements. Computations 640 
were carried out using the R package WGCNA33. 641 

Given the nature of the eukaryotic dataset (three distinct size fractions), the sampling process may 642 
lead to the loss of size fractions. In particular, samples #1, #3, #17, #37, #39, #43, #48, #53, #54, #55, 643 
#66 are eventually biases by such a loss (Supplementary Information SI12). A complementary 644 
WGCNA analysis was performed with addition of these samples to evaluate the robustness of our 645 
protocol to missing size fractions. The composition of the eukaryotic subnetwork built with an 646 
extended dataset (i.e., 67 samples from 37 stations for which size fractions were missing in 11 647 
samples) was compared to the subnetwork as presented above (i.e., 56 samples from 33 stations). 648 
Both subnetworks shown an overlap of 75% of lineage, whereas four of the top five VIP lineages 649 
with the extended dataset (see Extended data Fig. 8 for details) can be found in the top six VIP 650 
lineages of the above subnetwork (Supplementary Information SI2), emphasizing highly similar 651 
results and a small sensitivity to size fraction loss.  652 

Extraction of subnetworks related to carbon export 653 
For each subnetwork (called modules within WGCNA) extracted from each global network, pairwise 654 
Pearson correlation coefficients between the subnetwork principal components and the carbon export 655 
estimation was computed, as well as corresponding p-values corrected for multiple testing using the 656 
Benjamini & Hochberg FDR procedure. The subnetworks showing the highest correlation scores are 657 
of interest and were investigated. One subnetwork (49 nodes) was significant within the eukaryotic 658 
network; one subnetwork (109 nodes) was significant for the prokaryotic network; one subnetwork 659 
(277 nodes) was significant within the virus network; two subnetworks (441 and 220 nodes) were 660 
significant within the prokaryotic functional network, and two subnetworks (1,879 and 2,147 nodes) 661 
were significant within the viral PCs network. 662 

Partial Least Squares regression 663 
In addition to the network analyses, we asked whether the identified subnetworks can be used as 664 
predictors for the carbon export estimations. To answer this question, we used Partial least squares 665 
(PLS) regression, which is a dimensionality-reduction method that aims at determining predictor 666 



combinations with maximum covariance with the response variable. The identified combinations, 667 
called latent variables, are used to predict the response variable. The predictive power of the model is 668 
assessed by correlating the predicted vector with the measured values. The significance of the 669 
prediction power was evaluated by permuting the data 10,000 times. For each permutation, a PLS 670 
model was built to predict the randomized response variable and a Pearson correlation was calculated 671 
between the permuted response variable and in Leave-One-Out Cross-Validation (LOOCV) predicted 672 
values. The 10,000 random correlations are compared to the performance of the PLS model that were 673 
used to predict the true response variable. In addition, the predictors were ranked according to their 674 
value importance in projection (VIP)68. The VIP measure of a predictor estimates its contribution in 675 
the PLS regression. The predictors having high VIP values are assumed important for the PLS 676 
prediction of the response variable. The VIP values of the prokaryotic functional subnetworks are 677 
provided in Supplementary Information SI5, SI6. For the sake of illustration, only lineages or 678 
functions with VIP > 168 are discussed and pictured in Figure 4 and 5. Our computations were carried 679 
out using the R package pls69. All programs are available under GPL Licence. 680 

Subnetwork representations 681 
Nodes of the subnetworks represent either lineages (eukaryotic, prokaryotic or viral) or functions 682 
(prokaryotic or viral). Subnetworks related to the carbon export have been represented in two distinct 683 
formats. Scatter plots represent each nodes based on their Pearson correlation to the carbon export 684 
and their respective node centrality within the subnetwork. The latter has been recomputed using 685 
significant Spearman correlations above 0.3 (>0.9 for viral PCs) as edges, this is done for 686 
visualization purposes since WGCNA subnetworks (based on the Topology Overlap Measure (TOM) 687 
between nodes) are hyper-connected. Size representation of nodes are proportional to the VIP score 688 
after PLS. The hiveplots depict the same subnetworks by focusing on two main features: x-axis and 689 
y-axis depict nodes of subnetworks ranked by their VIP scores and Pearson correlation to the carbon 690 
export, respectively. 691 

References and Notes (Methods) 692 
49 Pesant, S. et al. Open science resources for the discovery and analysis of Tara Oceans data. Scientific 693 

Data 2, 150023, doi:10.1038/sdata.2015.23 (2015). 694 
50 Picheral, M. et al. Vertical profiles of environmental parameters measured on discrete water samples 695 

collected with Niskin bottles during the Tara Oceans expedition 2009-2013. 696 
doi:10.1594/PANGAEA.836319 (2014). 697 

51 Picheral, M. et al. Vertical profiles of environmental parameters measured from physical, optical and 698 
imaging sensors during Tara Oceans expedition 2009-2013. doi:10.1594/PANGAEA.836321 (2014). 699 

52 Picheral, M. et al. The Underwater Vision Profiler 5: An advanced instrument for high spatial 700 
resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Meth. 8, 462–473, 701 
doi:10:4319/lom.2010.8.462 (2010). 702 

53 Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll 703 
concentration. Limnol. Oceanogr. 42, 1-20 (1997). 704 

54 Chaffron, S. et al. Contextual environmental data of selected samples from the Tara Oceans 705 
Expedition (2009-2013). doi:10.1594/PANGAEA.840718 (2014). 706 

55 McCave, I. N. Size spectra and aggregation of suspended particles in the deep ocean. Deep-Sea Res. I. 707 
31, 329-352 (1984). 708 

56 Sheldon, R. W., Prakash, A. & Sutcliff, W. H. Size distribution of particles in ocean. Limnol. 709 
Oceanogr. 17, 327-340 (1972). 710 

57 Guidi, L. et al. Relationship between particle size distribution and flux in the mesopelagic zone. Deep-711 
Sea Res. I. 55, 1364-1374, doi:10.1016/j.dsr.2008.05.014 (2008). 712 

58 Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon 713 
sequencing to explore diversity and structure of microbial communities. Environ Microbiol 16, 2659-714 
2671, doi:Doi 10.1111/1462-2920.12250 (2014). 715 

59 Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-716 
based tools. Nucleic Acids Res 41, D590-D596, doi:10.1093/Nar/Gks1219 (2013). 717 



60 Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-718 
2461, doi:10.1093/Bioinformatics/Btq461 (2010). 719 

61 Kultima, J. R. et al. MOCAT: A Metagenomics Assembly and Gene Prediction Toolkit. PLoS ONE 7, 720 
ARTN e47656, doi:10.1371/journal.pone.0047656 (2012). 721 

62 Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial 722 
metagenomes. ISME J. 7, 1678-1695, doi:10.1038/Ismej.2013.59 (2013). 723 

63 Zhao, Y. A., Tang, H. X. & Ye, Y. Z. RAPSearch2: a fast and memory-efficient protein similarity 724 
search tool for next-generation sequencing data. Bioinformatics 28, 125-126, 725 
doi:10.1093/Bioinformatics/Btr595 (2012). 726 

64 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-727 
U354, doi:10.1038/Nmeth.1923 (2012). 728 

65 Shen, H. P. & Huang, J. H. Z. Sparse principal component analysis via regularized low rank matrix 729 
approximation. J Multivariate Anal 99, 1015-1034, doi:10.1016/J.Jmva.2007.06.007 (2008). 730 

66 Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-731 
expression modules. Bmc Syst Biol 1, Artn 54, doi:10.1186/1752-0509-1-54 (2007). 732 

67 Li, A. & Horvath, S. Network neighborhood analysis with the multi-node topological overlap measure. 733 
Bioinformatics 23, 222-231, doi:10.1093/Bioinformatics/Btl581 (2007). 734 

68 Chong, I. G. & Jun, C. H. Performance of some variable selection methods when multicollinearity is 735 
present. Chemometr. Intell. Lab. 78, 103-112, doi:10.1016/J.Chemolab.2004.12.011 (2005). 736 

69 Mevik, B. H. & Wehrens, R. The pls package: Principal component and partial least squares 737 
regression in R. J Stat Softw 18, 1-23 (2007). 738 

  739 

Acknowledgements  740 

We thank the commitment of the following people and sponsors: CNRS (in particular Groupement de 741 
Recherche GDR3280), European Molecular Biology Laboratory (EMBL), Genoscope/CEA, VIB, Stazione 742 
Zoologica Anton Dohrn, UNIMIB, Fund for Scientific Research – Flanders, Rega Institute, KU Leuven, The 743 
French Ministry of Research, the French Government 'Investissements d'Avenir' programmes OCEANOMICS 744 
(ANR-11-BTBR-0008), FRANCE GENOMIQUE (ANR-10-INBS-09-08), MEMO LIFE (ANR-10-LABX-54), 745 
PSL* Research University (ANR-11-IDEX-0001-02), ANR (projects POSEIDON/ANR-09-BLAN-0348, 746 
PHYTBACK/ANR-2010-1709-01, PROMETHEUS/ANR-09-PCS-GENM-217, TARA-GIRUS/ANR-09-PCS-747 
GENM-218, SAMOSA, ANR-13-ADAP-0010), European Union FP7 (MicroB3/No.287589, IHMS/HEALTH-748 
F4-2010-261376), ERC Advanced Grant Award to CB (Diatomite: 294823), Gordon and Betty Moore 749 
Foundation grant (#3790 and #2631) and the UA Technology and Research Initiative Fund and the Water, 750 
Environmental, and Energy Solutions Initiative to MBS, Spanish Ministry of Science and Innovation grant 751 
CGL2011-26848/BOS MicroOcean PANGENOMICS to SGA, TANIT (CONES 2010-0036) from the Agència 752 
de Gestió d´Ajusts Universitaris i Reserca to SGA, JSPS KAKENHI Grant Number 26430184 to HO, and 753 
FWO, BIO5, Biosphere 2 to MBS. We also thank the support and commitment of Agnès b. and Etienne 754 
Bourgois, the Veolia Environment Foundation, Region Bretagne, Lorient Agglomeration, World Courier, 755 
Illumina, the EDF Foundation, FRB, the Prince Albert II de Monaco Foundation, the Tara schooner and its 756 
captains and crew. We thank MERCATOR-CORIOLIS and ACRI-ST for providing daily satellite data during 757 
the expedition. We are also grateful to the French Ministry of Foreign Affairs for supporting the expedition and 758 
to the countries who graciously granted sampling permissions. Tara Oceans would not exist without continuous 759 
support from 23 institutes (http://oceans.taraexpeditions.org). The authors further declare that all data reported 760 
herein are fully and freely available from the date of publication, with no restrictions, and that all of the 761 
samples, analyses, publications, and ownership of data are free from legal entanglement or restriction of any 762 
sort by the various nations whose waters the Tara Oceans expedition sampled in. This article is contribution 763 
number ZZZ of Tara Oceans. 764 

Author Contributions  765 

L.G., S.C., Lu.B. and D.E. designed the study and wrote the paper. C.D., M.P., J.P. and Sa.S. collected Tara 766 
Oceans samples. S.K-L managed the logistics of the Tara Oceans project. L.G. and M.P. analysed 767 
oceanographic data. S.C. and Lu.B. analysed taxonomic data. S.C., Lu.B., D.E. and S.R. performed the 768 



genomic and statistical analyses. A.L., Y.D., L.G., S.C., Lu.B. and D.E. produced and analysed the networks. 769 
E.K., C.B. and G.G. supervised the study. M.S., J.R., E.K., C.B. and G.G. provided constructive comments, 770 
revised and edited the manuscript. Tara Oceans coordinators provided a creative environment and constructive 771 
criticism throughout the study. All authors discussed the results and commented on the manuscript. 772 

Author Information  773 

Data described herein is available at EBI under the project identifiers PRJEB402, PRJEB6610 and PRJEB7988, 774 
PANGAEA50,51,54, and a companion website (http://www.raeslab.org/companion/ocean-carbon-export.html). 775 
The data release policy regarding future public release of Tara Oceans data is described in Pesant et al., 776 
[2015]49. All authors approved the final manuscript. Reprints and permissions information is available at 777 
www.nature.com/reprints. The authors declare no competing financial interests. Correspondence and requests 778 
for materials should be addressed to lguidi@obs-vlfr.fr, samuel.chaffron@vib-kuleuven.be, 779 
lucie.bittner@upmc.fr, damien.eveillard@univ-nantes.fr, Jeroen.Raes@vib-kuleuven.be, karsenti@embl.de, 780 
cbowler@biologie.ens.fr, gorsky@obs-vlfr.fr  781 



Extended data legends: 782 
Extended Data Figure 1: Overview of analytical methods used in the manuscript. a, Depiction of a 783 
standard pairwise analysis that considers a sequence relative abundance matrix for s samples (s x 784 
OTUs (Operational Taxonomic Units)) and its corresponding environmental matrix (s x p 785 
(parameters)). sPLS results emphasize OTU(s) that are the most correlated to environmental 786 
parameters. b, Depiction of a graph-based approach. Using only a relative abundance matrix (s x 787 
OTUs), WGCNA builds a graph where nodes are OTUs and edges represent significant co-788 
occurrence. Co-occurrence scores between nodes are weights allocated to corresponding edges. 789 
These weights are magnified by a power-law function until the graph becomes scale-free. The graph 790 
is then decomposed within subnetworks (groups of OTUs) that are analyzed separately. One 791 
subnetwork (group of OTUs) is considered of interest when its topology is related to the trait of 792 
interest; in the current case carbon export. For each subnetwork (for instance the subnetwork related 793 
to carbon export), each OTU is spread within a feature space that plots each OTU based on its 794 
membership to the subnetwork (x-axis) and its correlation to the environmental trait of interest (i.e., 795 
carbon export). A good regression of all OTUs emphasizes the putative relation of the subnetwork 796 
topology and the carbon export trait (i.e. the more a given OTU defines the subnetwork topology, the 797 
more it is correlated to carbon export). c, Depiction of the machine learning (PLS) approach that was 798 
applied following subnetwork identification and selection. Greater VIP scores (i.e. larger circles) 799 
emphasized most important OTUs. VIP refers to Variable Importance in Projection and reflects the 800 
relative predictive power of a given OTU. OTUs with VIP score greater than one are considered as 801 
important in the predictive model and their selection do not alter the overall predictive power. 802 
 803 
Extended Data Figure 2: Domain-specific ecological subnetworks associated to environmental 804 
parameters and species subnetwork structures correlate to carbon export. a,b,c, Global ecological 805 
networks were built for the 3 domains of life using the WGCNA methodology (see methods) and 806 
correlated to classical oceanographic parameters as well as carbon export (estimated at 150 m from 807 
particles size distribution and abundance). Each domain-specific global network is decomposed into 808 
smaller coherent subnetworks (depicted by distinct colours on the y-axis) and their eigen vector is 809 
correlated to all environmental parameters. Similar to a correlation at the network scale, this approach 810 
directly links subnetworks to environmental parameters (i.e. the more the taxa contribute to the 811 
subnetwork structure, the more their abundance are correlated to the parameter). The measure allows 812 
to identify subnetworks for which the overall structure is related to the carbon export. a, A single 813 
eukaryotic subnetwork (n=58, N=1’870) is strongly associated to carbon export (Pearson cor. 0.81, p 814 
= 5e-15). b, A single prokaryotic subnetwork (n=109, N=1’527) is moderately associated to carbon 815 
export (Pearson cor. 0.32, p = 9e-03). c, A single viral subnetwork (n=277, N=5’476) is strongly 816 
associated to carbon export (Pearson cor. 0.93,  p = 2e-15). d,e,f, The WGCNA approach directly links 817 
subnetworks to environmental parameters, i.e. the more the features contribute to the subnetwork 818 
structure (topology), the more their abundance are correlated to the parameter. This measure allows 819 
to identify subnetworks for which the overall structure, summarized as the eigen vector of the 820 
subnetwork, is related to the carbon export. d, The eukaryotic subnetwork structure correlates to 821 
carbon export (Pearson cor. = 0.87, p = 5e-16). e, The prokaryotic subnetwork structure correlates to 822 
carbon export (Pearson cor. = 0.47, p = 5e-06). f, The viral population subnetwork structure correlates 823 
to carbon export (Pearson cor. = 0.88, p = 6e-93). 824 
 825 
Extended Data Figure 3: Species subnetworks predict carbon export. PLS regression was used to 826 
predict carbon export using lineage abundances in selected subnetworks. LOOCV was performed and 827 
VIP scores computed for each lineage. a, The eukaryotic subnetwork predicts carbon export with a 828 
R2 of 0.69. b, The prokaryotic subnetwork predicts carbon export with a R2 of 0.60. c, The viral 829 
population subnetwork predicts carbon export with a R2 of 0.89. 830 
 831 
Extended Data Figure 4: Synechococcus (rather than Prochlorococcus) absolute cell counts 832 
correlate well to carbon export. a, Prochlorococcus cell counts estimated by flow cytometry do not 833 
correlate to carbon export (mean carbon flux at 150m, Pearson cor. = -0.13, p = 0.27). b, 834 
Synechococcus cell counts estimated by flow cytometry correlate significantly to carbon export 835 



(Pearson cor. = 0.64, p = 4.0e-10). c, Synechococcus / Prochlorococcus cell counts ratio correlates 836 
significantly to carbon export (Pearson cor. = 0.54, p = 4.0e-07). 837 
 838 
Extended Data Figure 5: Function and gene subnetworks associated to environmental parameters 839 
and their structure correlate to carbon export. a,b, Global ecological networks were built for the 840 
prokaryotic functions and viral PCs using the WGCNA methodology (see methods) and correlated to 841 
classical oceanographic parameters as well as carbon export. Each global network is decomposed into 842 
smaller coherent subnetworks (depicted by distinct colours on the y-axis) and their eigen vector is 843 
correlated to all environmental parameters. Similar to a correlation at the network scale, this approach 844 
directly links subnetworks to environmental parameters (i.e. the more the taxa contribute to the 845 
subnetwork structure, the more their abundance are correlated to the parameter). The measure allows 846 
to identify subnetworks for which the overall structure is related to the carbon export. a, Two 847 
bacterial functional subnetworks (n=441 and n=220, N=37’832) are associated to carbon export 848 
(Pearson cor. 0.54, p = 1e-07 and 0.42, p = 1e-04). b, Two viral PCs subnetworks (n=1’879 and 849 
n=2’147, N=4’678) are strongly associated to carbon export (Pearson cor. 0.75, p = 3e-07 and 0.91, p = 850 
3e-14). c,d The WGCNA approach directly links subnetworks to environmental parameters, i.e. the 851 
more the features contribute to the subnetwork structure (topology), the more their abundance are 852 
correlated to the parameter. This measure allows to identify subnetworks for which the overall 853 
structure, summarized as the eigen vector of the subnetwork, is related to the carbon export. c, The 854 
bacterial function subnetwork structures correlates to carbon export (FNET1 Pearson cor. = 0.68, p = 855 
3e-61, and FNET2 Pearson cor. = 0.47, p = 6e-13). d, The viral PC subnetwork structures correlates to 856 
carbon export (VNET1 Pearson cor. = 0.91, p < 1e-200, and VNET2 Pearson cor. = 0.96, p < 1e-200). 857 
 858 
Extended Data Figure 6: Cumulative abnundance of genus-level taxonomic annotations of genes 859 
encoding functions from FNET1 and FNET2 subnetworks and Bacterial function subnetworks 860 
predict carbon export. a, Genes contributing to the relative abundance of FNET1 and FNET2 861 
subnetwork functions were taxonomically annotated by homolgy searches against a non-redundant 862 
gene reference database using a last common ancestor (LCA) approach (see methods). b,c, PLS 863 
regression was used to predict carbon export using abundances of functions (OGs) in selected 864 
subnetworks. LOOCV was performed and VIP scores computed for each function. b, Light green 865 
subnetwork (FNET1) functions predict carbon export with a R2 of 0.41. c, Dark green subnetwork 866 
(FNET2) functions predict carbon export with a R2 of 0.48. 867 
 868 
Extended Data Figure 7: Viral protein cluster networks reveal potential marker genes for carbon 869 
export prediction at global scale. a, A viral protein cluster (PC) network was built using abundances 870 
of PCs predicted from viral population contigs associated to carbon export (Fig. 3b) using the 871 
WGCNA methodology (see methods) and correlated to classical oceanographic parameters. Two 872 
viral PC subnetworks (light and dark orange, VNET1 and VNET2, left and right panel respectively) 873 
are strongly associated to carbon export (VNET1: Pearson cor. 0.75, p = 3e-07 and VNET2: 0.91, p = 874 
3e-14, Extended data figure 5b). Size of dots is proportional to the VIP score computed for the PLS 875 
regression. b, Viral PC subnetworks predict carbon export. PLS regression was used to predict 876 
carbon export using abundances of viral protein clusters (PCs) in selected subnetworks. LOOCV was 877 
performed and VIP scores computed for each PC. Light orange subnetwork (VNET1, left panel) PCs 878 
predict carbon export with a R2 of 0.55. Dark orange subnetwork (VNET2, right panel) PCs predict 879 
carbon export with a R2 of 0.89. 880 
 881 

Extended Data Figure 8: WGCNA and PLS regression analyses for the full Eukaryotic dataset. a, A 882 
single eukaryotic subnetwork (n=58, is strongly associated to carbon export (Pearson cor. 0.79, p = 883 
3e-14). b, The eukaryotic subnetwork structure correlates to carbon export (Pearson cor. = 0.94, p = 4e-884 
27). c, The eukaryotic subnetwork predicts carbon export with a R2 of 0.76. d, Lineages with the 885 
highest VIP score (dots size is proportional to the VIP score in the scatter plot) in the PLS are 886 
depicted as red dots corresponding to two rhizarian (Collodaria), one copepod (Euchaeta), and three 887 
dinophyceae (Noctiluca scintillans, Gonyaulax polygramma and Gonyaulax sp. (clade 4)).  888 
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