A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups

Thibault Liard 1 Pierre Lissy 2
2 CEREMADE, Université Paris Dauphine
CEREMADE - CEntre de REcherches en MAthématiques de la DEcision
Abstract : In this article, we give a necessary and sufficient condition of Kalman type for the indirect controllability of systems of groups of linear operators, under some " regularity and locality " conditions on the control operator that will be made precise later and fits very well the case of distributed controls. Moreover, in the case of first order in time systems, when the Kalman rank condition is not satisfied, we characterize exactly the initial conditions that can be controlled. Some applications to the control of systems of Schrödinger or wave equations are provided. The main tool used here is the fictitious control method coupled with the proof of an algebraic solvability property for some related underdetermined system and some regularity results.
Type de document :
Article dans une revue
Mathematics of Control, Signals, and Systems, Springer Verlag, 2017, 29 (2), <10.1007/s00498-017-0193-x>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01298367
Contributeur : Thibault Liard <>
Soumis le : vendredi 28 octobre 2016 - 16:47:34
Dernière modification le : jeudi 23 mars 2017 - 15:16:16

Fichier

CouplingSchroWave 2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Thibault Liard, Pierre Lissy. A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups. Mathematics of Control, Signals, and Systems, Springer Verlag, 2017, 29 (2), <10.1007/s00498-017-0193-x>. <hal-01298367v2>

Partager

Métriques

Consultations de
la notice

129

Téléchargements du document

72