S. Golubic and L. Seong-joo, Early cyanobacterial fossil record: preservation, palaeoenvironments and identification, European Journal of Phycology, vol.34, issue.4, pp.339-348, 1999.
DOI : 10.1080/09670269910001736402

M. Merz, The biology of carbonate precipitation by cyanobacteria. Facies, pp.81-101, 1992.

G. Arp, V. Thiel, A. Reimer, W. Michaelis, and J. Reitner, Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA, Sedimentary Geology, vol.126, issue.1-4, pp.159-176, 1999.
DOI : 10.1016/S0037-0738(99)00038-X

W. Altermann, J. Kazmierczak, A. Oren, and D. T. Wright, Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history, Geobiology, vol.14, issue.3, pp.147-166, 2006.
DOI : 10.1016/S0016-7037(98)00026-X

C. Jansson and T. Northen, Calcifying cyanobacteria???the potential of biomineralization for carbon capture and storage, Current Opinion in Biotechnology, vol.21, issue.3, pp.365-371, 2010.
DOI : 10.1016/j.copbio.2010.03.017

I. A. Bundeleva, L. S. Shirokova, O. S. Pokrovsky, P. Benezeth, B. Menez et al., Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp., Chemical Geology, vol.374, issue.375, pp.44-60, 2014.
DOI : 10.1016/j.chemgeo.2014.03.007

URL : https://hal.archives-ouvertes.fr/hal-00967924

P. Freytet, E. P. Verrecchia, and N. A. Pronina, Freshwater organisms that build stromatolites: A synopsis of biocrystallization by prokaryotic and eukaryotic algae Carbonic anhydrase: Enzyme that has transformed the biosphere, Sedimentology Russ. J. Plant Physiol, vol.45, issue.58, pp.535-563, 1998.

T. Bosak, B. Liang, T. D. Wu, S. P. Templer, A. Evans et al., Cyanobacterial diversity and activity in modern conical microbialites, Geobiology, vol.17, issue.5, pp.100-100, 2013.
DOI : 10.1111/j.1472-4669.2012.00334.x

J. B. Thompson, S. Schultze-lam, T. J. Beveridge, and D. J. Des-marais, Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton, Limnol. Oceanogr, vol.42, pp.133-141, 1997.

N. Kamennaya, C. Ajo-franklin, T. Northen, and C. Jansson, Cyanobacteria as Biocatalysts for Carbonate Mineralization, Minerals, vol.2, issue.4, pp.338-364, 2012.
DOI : 10.3390/min2040338

K. Yasumoto, M. Yasumoto-hirose, J. Yasumoto, R. Murata, S. Sato et al., Biogenic Polyamines Capture CO2 and Accelerate Extracellular Bacterial CaCO3 Formation, Biogenic polyamines capture CO 2 and accelerate extracellular bacterial CaCO 3 formation, pp.465-474, 2014.
DOI : 10.1007/s10126-014-9566-z

S. Schultze-lam, D. Fortin, B. S. Davis, and T. J. Beveridge, Mineralization of bacterial surfaces, Chemical Geology, vol.132, issue.1-4, pp.171-181, 1996.
DOI : 10.1016/S0009-2541(96)00053-8

R. Riding, Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic?Cambrian changes in atmospheric composition, Geobiology, vol.15, issue.4, pp.299-316, 2006.
DOI : 10.1073/pnas.242379899

M. Dittrich and S. Sibler, Calcium carbonate precipitation by cyanobacterial polysaccharides, Geological Society, London, Special Publications, vol.336, issue.1, pp.51-63, 2010.
DOI : 10.1144/SP336.4

B. D. Lee, W. A. Apel, and M. R. Walton, Calcium carbonate formation by Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807, Bioresource Technology, vol.97, issue.18, pp.2427-2434, 2006.
DOI : 10.1016/j.biortech.2005.09.028

M. Obst, B. Wehrli, and M. Dittrich, nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism, Geobiology, vol.201, issue.3, pp.324-347, 2009.
DOI : 10.1111/j.1472-4669.2009.00200.x

A. Q. Liang, C. Paulo, Y. Zhu, and M. Dittrich, CaCO 3 biomineralization on cyanobacterial surfaces: Insights from experiments with three Synechococcus strains. Colloid Surf, pp.600-608, 2013.

T. A. Mcconnaughey and J. Whelan, Calcification generates protons for nutrient and bicarbonate uptake, Earth-Science Reviews, vol.42, issue.1-2, pp.95-117, 1997.
DOI : 10.1016/S0012-8252(96)00036-0

J. Mccutcheon, I. M. Power, A. L. Harrison, G. M. Dipple, and G. Southam, A Greenhouse-Scale Photosynthetic Microbial Bioreactor for Carbon Sequestration in Magnesium Carbonate Minerals, Environmental Science & Technology, vol.48, issue.16, pp.9142-9151, 2014.
DOI : 10.1021/es500344s

S. Spitzer, N. Brinkmann, A. Reimer, D. Ionescu, T. Friedl et al., Removal and Potential Calcification of Cyanobacterial Biofilms ???An Experimental Microsensor Study, Geomicrobiology Journal, vol.65, issue.3-4, pp.304-315, 2015.
DOI : 10.1021/es0346680

K. Benzerara, N. Menguy, F. Guyot, F. Skouri, G. De-lucca et al., Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis, Earth and Planetary Science Letters, vol.228, issue.3-4, pp.439-449, 2004.
DOI : 10.1016/j.epsl.2004.09.030

E. Couradeau, K. Benzerara, E. Gérard, D. Moreira, S. Bernard et al., An Early-Branching Microbialite Cyanobacterium Forms Intracellular Carbonates, Science, vol.336, issue.6080, pp.459-462, 2012.
DOI : 10.1126/science.1216171

K. Benzerara, F. Skouri-panet, J. H. Li, C. Ferard, M. Gugger et al., Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria, Proc. Natl. Acad. Sci. USA 2014, pp.10933-10938
DOI : 10.1073/pnas.1403510111

URL : https://hal.archives-ouvertes.fr/hal-01101603

M. Ragon, K. Benzerara, D. Moreira, R. Tavera, and P. Lopez-garcia, 16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization, Frontiers in Microbiology, vol.73, p.331, 2014.
DOI : 10.1016/j.gca.2009.04.013

URL : https://hal.archives-ouvertes.fr/hal-01321248

S. Amarouche-yala, A. Benouadah, O. Bentabet, and A. , Morphological and phylogenetic diversity of thermophilic cyanobacteria in Algerian hot springs, Extremophiles, vol.10, issue.1, pp.1035-1047, 2014.
DOI : 10.1007/s00792-014-0680-7

D. Boer, W. E. La-rivière, J. W. Schmidt, and K. , Some properties ofAchromatium oxaliferum, Antonie van Leeuwenhoek, vol.81, issue.1, pp.553-563, 1971.
DOI : 10.1007/BF02218525

N. D. Gray, The Unique Role of Intracellular Calcification in the Genus Achromatium, B. In Inclusions in, pp.299-309, 2006.
DOI : 10.1007/3-540-33774-1_11

V. Salman, T. Yang, T. Berben, F. Klein, E. Angert et al., Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh, The ISME Journal, vol.27, issue.11, pp.2503-2514
DOI : 10.1016/S0006-3495(96)79633-9

M. Mansor, T. L. Hamilton, M. S. Fantle, and J. Macalady, Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing, Frontiers in Microbiology, vol.1411, issue.410, p.822
DOI : 10.1016/S0005-2728(99)00032-8

N. Cam, T. Georgelin, M. Jaber, J. F. Lambert, and K. Benzerara, In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba-carbonates: What do we learn about intracellular calcification by cyanobacteria?, Geochimica et Cosmochimica Acta, vol.161, pp.36-49, 2015.
DOI : 10.1016/j.gca.2015.04.003

URL : https://hal.archives-ouvertes.fr/hal-01147190

M. R. Badger and T. J. Andrews, Photosynthesis and Inorganic Carbon Usage by the Marine Cyanobacterium, Synechococcus sp, PLANT PHYSIOLOGY, vol.70, issue.2, pp.517-523, 1982.
DOI : 10.1104/pp.70.2.517

A. L. Barrán-berdón, Free Ca2+ as an early intracellular biomarker of exposure of cyanobacteria to environmental pollution, Analytical and Bioanalytical Chemistry, vol.44, issue.10, pp.1015-1029, 2011.
DOI : 10.1007/s00216-010-4209-3

R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria, Microbiology, vol.111, issue.1, pp.1-61, 1979.
DOI : 10.1099/00221287-111-1-1

D. Software, Available online: http://www.digisens3-D.com/fr/logiciel-tomographie/soft/2-3- D_Electron_Tomography_Software.html (accessed on 1, 2016.

S. A. Nierzwicki-bauer, D. L. Balkwill, S. E. Stevens, and . Jr, Use of a computer-aided reconstruction system to examine the three-dimensional architecture of cyanobacteria, Journal of Ultrastructure Research, vol.84, issue.1, pp.73-82, 1983.
DOI : 10.1016/S0022-5320(83)90088-6

J. Cosmidis, K. Benzerara, N. Nassif, T. Tyliszczak, and F. Bourdelle, Characterization of Ca-phosphate biomaterials by scanning transmission X-ray microscopy (STXM) at the Ca, p.3

Z. F. Yin, M. Kasrai, G. M. Bancroft, K. H. Tan, and X. H. Feng, X-ray-absorption spectroscopic studies of sodium polyphosphate glasses, Physical Review B, vol.51, issue.2, pp.742-750, 1995.
DOI : 10.1103/PhysRevB.51.742

J. Kruse, P. Leinweber, K. Eckhardt, F. Godlinski, Y. Hu et al., Phosphorus L 2,3 -edge XANES: Overview of reference compounds, J. Synchrotron Radiat, vol.16, pp.247-259, 2009.

A. Fernandez-martinez, B. Kalkan, S. M. Clark, and G. A. Waychunas, Pressure-Induced Polyamorphism and Formation of ???Aragonitic??? Amorphous Calcium Carbonate, Angewandte Chemie International Edition, vol.19, issue.32, pp.8354-8357, 2013.
DOI : 10.1002/anie.201302974

URL : https://hal.archives-ouvertes.fr/hal-00840695

J. H. Li, Y. X. Pan, G. J. Chen, Q. S. Liu, L. X. Tian et al., AMB-1: transmission electron microscopy and magnetic observations, Geophysical Journal International, vol.177, issue.1, pp.33-42, 2009.
DOI : 10.1111/j.1365-246X.2009.04043.x

L. Edelmann, Freeze-dried and resin-embedded biological material is well suited for ultrastructure research, Journal of Microscopy, vol.207, issue.1, pp.5-26, 2002.
DOI : 10.1046/j.1365-2818.2002.01033.x

D. Porta, R. Rippka, and M. Hernandez-marine, Unusual ultrastructural features in three strains of Cyanothece (cyanobacteria), Archives of Microbiology, vol.173, issue.2, pp.154-163, 2000.
DOI : 10.1007/s002039900126

C. R. Blue, J. D. Rimstidt, and P. M. Dove, A Mixed Flow Reactor Method to Synthesize Amorphous Calcium Carbonate Under Controlled Chemical Conditions, In Research Methods in Biomineralization Science, vol.532, pp.557-568, 2013.
DOI : 10.1016/B978-0-12-416617-2.00023-0

R. J. Reeder, Y. Tang, M. P. Schmidt, M. P. Schmidt, L. M. Kubista et al., Characterization of Structure in Biogenic Amorphous Calcium Carbonate: Pair Distribution Function and Nuclear Magnetic Resonance Studies of Lobster Gastrolith, Crystal Growth & Design, vol.13, issue.5, pp.1905-1914, 2013.
DOI : 10.1021/cg301653s

I. S. Kulaev, V. Vagabov, and T. Kulakovskaya, The Biochemistry of Inorganic Polyphosphates, pp.9-12, 2004.

J. H. Cartwright, A. G. Checa, J. D. Gale, and D. Gebauer, Calcium Carbonate Polyamorphism and Its Role in Biomineralization: How Many Amorphous Calcium Carbonates Are There?, Angewandte Chemie International Edition, vol.370, issue.48, pp.11960-11970, 2012.
DOI : 10.1002/anie.201203125

I. Hurbain and M. Sachse, The future is cold: cryo-preparation methods for transmission electron microscopy of cells, Biology of the Cell, vol.102, issue.Suppl, pp.405-420, 2011.
DOI : 10.1042/BC20110015

URL : https://hal.archives-ouvertes.fr/pasteur-01131341

J. Miot, K. Maclellan, N. Boisset, and K. Benzerara, Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study, Geobiology, vol.188, issue.6, pp.459-470, 2011.
DOI : 10.1111/j.1472-4669.2011.00298.x

URL : https://hal.archives-ouvertes.fr/hal-00677379

A. Komeili, H. Vali, T. J. Beveridge, and D. K. Newman, Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation, Proc. Natl. Acad. Sci, pp.3839-3844, 2004.
DOI : 10.1073/pnas.0400391101

D. D. Eberl, V. A. Drits, and J. Srodon, Deducing growth mechanisms for minerals from the shapes of crystal size distributions, American Journal of Science, vol.298, issue.6, pp.499-533, 1998.
DOI : 10.2475/ajs.298.6.499

P. Jandacka, P. Alexa, J. Pistora, J. H. Li, H. Vojtkova et al., Size distributions of nanoparticles from magnetotactic bacteria as signatures of biologically controlled mineralization, American Mineralogist, vol.98, issue.11-12, pp.2105-2114, 2013.
DOI : 10.2138/am.2013.4429

I. M. Head, N. D. Gray, H. D. Babenzien, and F. Glockner, Uncultured giant sulfur bacteria of the genus Achromatium, FEMS Microbiology Ecology, vol.33, issue.3, pp.171-180, 2000.
DOI : 10.1111/j.1574-6941.2000.tb00739.x

I. M. Head, N. D. Gray, R. Howarth, R. W. Pickup, K. J. Clarke et al., Achromatium oxaliferum Understanding the Unmistakable, Adv. Microb. Ecol, vol.16, pp.1-40, 2000.
DOI : 10.1007/978-1-4615-4187-5_1

N. Gray, I. Head, E. Rosenberg, E. Delong, S. Lory et al., The Family Achromatiaceae, The Prokaryotes, pp.1-14, 2014.
DOI : 10.1007/978-3-642-38922-1_406

B. D. Rae, B. M. Long, M. R. Badger, and G. D. Price, Functions, Compositions, and Evolution of the Two Types of Carboxysomes: Polyhedral Microcompartments That Facilitate CO2 Fixation in Cyanobacteria and Some Proteobacteria, Microbiology and Molecular Biology Reviews, vol.77, issue.3, pp.357-379, 2013.
DOI : 10.1128/MMBR.00061-12

S. Heinhorst, G. C. Cannon, and J. M. Shively, Chapter 4: Carboxysomes and their structural organization in prokaryotes, In Nanomicrobiology: Physiological and Environmental Characteristics, 2014.

A. M. Van-de-meene, M. F. Hohmann-marriott, W. F. Vermaas, and R. W. Roberson, The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803, Archives of Microbiology, vol.125, issue.5, pp.259-270, 2006.
DOI : 10.1007/s00203-005-0027-y

D. F. Savage, B. Afonso, A. H. Chen, and P. A. Silver, Spatially Ordered Dynamics of the Bacterial Carbon Fixation Machinery, Science, vol.327, issue.5970, pp.1258-1261, 2010.
DOI : 10.1126/science.1186090

B. D. Rae, B. M. Long, L. F. Whitehead, B. Forster, M. R. Badger et al., Fixation, Journal of Molecular Microbiology and Biotechnology, vol.23, issue.4-5, pp.300-307, 2013.
DOI : 10.1159/000351342

F. Cai, Z. Dou, S. L. Bernstein, R. Leverenz, E. Williams et al., Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component, Life, vol.5, issue.2, pp.1141-1171, 2015.
DOI : 10.3390/life5021141

C. V. Iancu, D. M. Morris, Z. Dou, S. Heinhorst, G. C. Cannon et al., Organization, Structure, and Assembly of ??-Carboxysomes Determined by Electron Cryotomography of Intact Cells, Journal of Molecular Biology, vol.396, issue.1, pp.105-117, 2010.
DOI : 10.1016/j.jmb.2009.11.019

M. Liberton, J. R. Austin, R. H. Berg, and H. B. Pakrasi, Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography, PLANT PHYSIOLOGY, vol.155, issue.4, pp.1656-1666, 2011.
DOI : 10.1104/pp.110.165332

S. Tanaka, C. A. Kerfeld, M. R. Sawaya, F. Cai, S. Heinhorst et al., Atomic-Level Models of the Bacterial Carboxysome Shell, Science, vol.319, issue.5866, pp.1083-1086, 2008.
DOI : 10.1126/science.1151458

D. W. Adams and J. Errington, Bacterial cell division: assembly, maintenance and disassembly of the Z ring, Nature Reviews Microbiology, vol.55, issue.9, pp.642-653, 2009.
DOI : 10.1038/nrmicro2198

P. R. Gilson and P. L. Beech, Cell division protein FtsZ: running rings around bacteria, chloroplasts and mitochondria, Research in Microbiology, vol.152, issue.1, pp.3-10, 2001.
DOI : 10.1016/S0923-2508(00)01162-1

K. Mazouni, F. Domain, C. Cassier-chauvat, and F. Chauvat, Molecular analysis of the key cytokinetic components of cyanobacteria: FtsZ, ZipN and MinCDE, Molecular Microbiology, vol.16, issue.4, pp.1145-1158, 2004.
DOI : 10.1111/j.1365-2958.2004.04042.x

C. Cassier-chauvat and F. Chauvat, Cell division in cyanobacteria In The Biology of Cyanobacteria, 2014.

X. C. Yu and W. Margolin, Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks invitro, The EMBO Journal, vol.16, issue.17, pp.5455-5463, 1997.
DOI : 10.1093/emboj/16.17.5455

A. Mukherjee and J. Lutkenhaus, Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations, J. Bacteriol, vol.181, pp.823-832, 1999.

R. Jaiswal and D. Panda, Differential Assembly Properties of Escherichia coli FtsZ and Mycobacterium tuberculosis FtsZ: An Analysis Using Divalent Calcium, Journal of Biochemistry, vol.146, issue.5, pp.733-742, 2009.
DOI : 10.1093/jb/mvp120

A. B. Lindner, R. Madden, A. Demarez, E. J. Stewart, and F. Taddei, Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation, Proc. Natl. Acad. Sci, pp.3076-3081, 2008.
DOI : 10.1073/pnas.0708931105