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Abstract: Single-particle electron microscopy (EM) has been shown to be very powerful for 

studying structures and associated conformational changes of macromolecular complexes. In 

the context of analyzing conformational changes of complexes, distinct EM density maps 

obtained by image analysis and three-dimensional (3D) reconstruction are usually analyzed in 

3D for the interpretation of structural differences. However, graph visualization of these 

differences based on a quantitative analysis of elastic transformations (deformations) among 

density maps has not been done yet due to the lack of appropriate methods. Here, we present 

an approach that allows such visualization. This approach is based on statistical analysis of 

distances among elastically aligned pairs of EM maps (a map is deformed to fit the other 

map), and results in visualizing EM maps as points in a lower-dimensional distance space. 

The distances among points in the new space can be analyzed in terms of clusters or 

trajectories of points related to potential conformational changes. The results of the method 

are shown with synthetic and experimental EM maps at different resolutions. 

 

INTRODUCTION 

Single-particle analysis (SPA) of two-dimensional (2D) transmission electron microscopy 

(EM) images of isolated biological macromolecular complexes is routinely used to compute 

three-dimensional (3D) density maps of a wide range of complexes (e.g., proteins, ribosomes, 

viruses) (1). In this way, EM information, integrated with a large range of other types of data 

(e.g., from X-ray crystallography, nuclear magnetic resonance (NMR), modeling, etc.), often 

provides very valuable information on how these macromolecular complexes perform their 

function in the cell. 

 

EM density maps are ideally computed from images of complexes having identical 

conformation and different, uniformly distributed, random orientations. However, quite often, 

complexes present some degree of flexibility. Methodological extensions of SPA have thus 

been proposed to analyze flexible complexes (2-11). A classical approach to analyze 

macromolecular flexibility is to classify a set of particle images into distinct classes composed 

of particles with similar conformations and, then, to reconstruct an EM density map for each 

class (2-7). To explain differences between the obtained EM density maps in terms of 

conformational flexibility, the density maps are analyzed independently as well as with 

respect to each other (12-16). Multivariate statistical analysis (MSA), introduced to EM for 

analyzing mixed populations of images in the 1980s (17, 18) and now an integral part of many 

image analysis approaches and software, allows analyzing and visualization of mixed 

populations of 2D or 3D data by analyzing principal axes (eigenvectors) of the total data 

variance. However, to the best of our knowledge, no method currently allows graph 

visualization of differences among sets of EM density maps based on conformational 

modeling by elastic transformations (deformations) among maps and a quantitative analysis of 

these elastic transformations. To fill this gap, we here propose such a method. 

 

The classical, class-based approaches, rest on the assumption that flexibility is discrete, which 

is not true for a large range of biological systems characterized by continuous flexibility. 

When flexibility is a continuous process, these class-based approaches may lead to a 

resolution loss in the density maps coming from the classes because each density map may 

represent the average conformation of several slightly different conformations that were 

assigned to the same class. Some recent approaches (8-10) explicitly consider continuous 

flexibility and perform a multidimensional analysis of particular conformational variables 

(specific to each approach), which brings all images from the given set of single particle 

images into a common quantitative reference frame. In this common frame, images are shown 

as points and distances among points are related to conformational differences among the 
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corresponding complexes. Such approaches allow analyzing possible trajectories of 

conformational changes by exploring the regions of the common frame that are most densely 

populated. The common frame onto which EM data are mapped will be referred to as 

“distance space” or “map of structures”. 

 

Experimental raw individual 2D images of complexes with continuous flexibility can be seen 

as spread over some axes described by linear combinations of normal modes, as it has been 

shown in (8). When density maps are reconstructed from such images grouped, according to 

conformational similarity, in a few discrete groups along an axis, each of these maps 

represents the average conformation of slightly different conformations from the same group 

(8). These density maps can be thus seen as discrete samples of a continuous trajectory. 

However, the question is whether this trajectory could be extrapolated from its discrete, 

unordered samples (density maps) obtained by classical, class-based approaches. The 

approach described here was developed to help with a rough “extrapolation” of the original 

continuous trajectory from such discrete, unordered samples. This approach is based on a 

continuous, normal mode analysis (NMA) of a relatively small set of 3D density maps 

(usually, 3-10), and it could be used as the first step towards a fine extrapolation of the 

trajectory by methods such as HEMNMA (HEMNMA: Hybrid Electron Microscopy Normal 

Mode Analysis) that is based on a “continuous” analysis of a large set of 2D images using 

normal modes of a reference density map (8).  
 

In the proposed approach, each experimental density map is “modeled” by elastic deformation 

of other density maps from the given set of initially rigid-body aligned maps, in order to 

compare the maps in terms of their structural and conformational differences. Such modeling 

is used to evaluate how much one map (target) can be explained by the other map (reference), 

which is done by computing cross-correlation (normalized between 0 and 1) between the 

target map and its “model” obtained by deforming the reference map until it best fits the 

target map (through flexible fitting using normal modes). The unexplained part (what it is left 

after fitting) is termed “dissimilarity”, and is computed by subtracting the obtained cross-

correlation from 1. The dissimilarity measure characterizes the difference (distance) between 

maps that cannot be explained by flexible fitting. The smaller the dissimilarity, the better the 

characterization of the deformation between the two maps is in terms of conformational 

motions described by normal modes. Indeed, normal modes have been shown to be very 

successful in predicting large-scale low-frequency conformational motions of complexes that 

were also observed experimentally (19-23). The reference map deformed by flexible fitting is 

locally rigid-body aligned with the target map before computing the dissimilarity in order to 

correct for the potential errors in the initial rigid-body alignment that is done without taking 

into account the deformation. The combined flexible fitting and local rigid-body alignment 

will be referred to as elastic alignment.  

 

The obtained dissimilarities among the elastically aligned EM density maps are then used to 

construct a matrix of distances among the density maps. The distance matrix is analyzed using 

a statistical multivariate analysis method that projects the distances among the density maps 

onto a lower-dimensional space in which each EM density map is shown as a point. The 

dimension of the new space is usually one, two, or three, which allows its full visualization. 

The process of projecting the distance matrix onto a lower-dimensional space is similar to the 

one used in MSA (17, 18), but the meaning of the distance matrix here is different from the 

one in MSA. More precisely, the distance matrix in the proposed approach describes pairwise 

dissimilarities not for pairs of original EM maps, but for pairs of elastically aligned EM maps 

(basically, after one map was deformed to fit the other one).    
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In the obtained common quantitative reference frame (map of structures), potential clusters or 

trajectories of points can be analyzed by the user in terms of conformational changes. The 

proposed approach will be referred to as “StructMap”, which stands for “Structure Mapping”. 

The results of StructMap are shown with one set of synthetic EM data and three sets of 

experimental EM data. The synthetic EM density maps were generated using the EM density 

map of the closed conformation of the rabbit skeletal muscle type 1 ryanodine receptor 

(RyR1) complex from Samso et al (24). The experimental EM density maps comprise the 

eukaryotic primosome DNA polymerase Pol α – B subunit complex (Pol α – B) from Klinge 

et al (14), the E. coli 70S ribosome complex from Fischer et al (15), and the human 80S 

ribosomal complex from polysomes from Behrmann et al (25). 

 

MATERIALS AND METHODS 

In this section, we describe the methodology that is being proposed as well as the synthesis of 

the test data set that is used in Experiment 1 of the Results section.  

 

StructMap method 

StructMap comprises the following four steps (Fig. 1A): 1) preprocessing that consists of 3D-

to-3D rigid-body alignment of given EM maps as well as the computation of pseudo-atomic 

models and the corresponding normal modes of the maps; 2) iterative elastic 3D-to-3D 

alignment of each pair of EM maps from a given set of EM maps; 3) multivariate analysis of 

distances among the elastically aligned EM maps; and 4) analysis of the resulting low-

dimensional space of distances among EM maps. We here describe each of these steps. 

 

1)  Preprocessing - rigid-body alignment of EM maps and computing pseudo-atomic models 

and corresponding normal modes of EM maps: Before starting the elastic alignment of EM 

maps in step 2, these maps must be rigid-body aligned as well as possible. More precisely, 

given two EM density maps, the elastic alignment (step 2) is done by flexible and rigid-body 

alignments of one density map, referred to as “reference density map”, until it matches the 

other density map, referred to as “target density map”. However, the rigid-body alignment 

involved in that step is not global but only local (the initial orientation and position of the 

deformed reference map with respect to the target map are refined). In this way, the initial 

rigid-body alignment is corrected at each iteration of the elastic alignment taking into account 

the deformation estimated at that iteration. 

Rigid-body alignment of EM maps is a part of many common data processing workflows. 

Before using the approach proposed here, the EM maps will thus, most likely, be already 

globally rigid-body aligned in some way, which was also the case with the experimental EM 

maps used in this article. Thus, in the preprocessing step of StructMap, in all experiments in 

this article, given maps were only locally rigid-body aligned, meaning that they were aligned 

around the orientations and positions in which the maps were available before our work. This 

rigid-body local alignment was performed using the xmipp_volume_align program in Xmipp 

3.1. This method was used to refine the alignment of EM maps around the orientation and 

position in which the maps were available before this work, as aligned by the authors of the 

maps. However, note that the xmipp_volume_align method can optionally be used for a 

global rigid-body alignment of EM maps, meaning over all rotations and translations, 

independently of the currently available ones.  

 

In the elastic alignment procedure (step 2), the flexible alignment is based on deforming the 

reference density map. The density map deformation is realized by displacing a set of 3D 

Gaussian functions along vectors that are linear combinations of normal modes of the given 
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density map, where the 3D Gaussian functions are used to model the map densities with the 

method proposed in (27). More precisely, the reference density map is converted into a 

collection of 3D Gaussian functions of different amplitudes and positions over the map so that 

the sum of these Gaussian functions over a voxel approximates the reference-map density at 

that voxel, with a given mean approximation error over all voxels (27). The 3D Gaussian 

functions are referred to as “pseudo-atoms”, though their positions do not have to coincide 

with true atomic positions. The density map representation by pseudo-atoms (PDB-format 

structure) will be here referred to as “pseudo-atomic model” to distinguish it from a true 

atomic-resolution structure. 

 

Normal modes of the given EM map are often computed using the elastic network model of 

the potential energy function of the complex around a minimum energy conformation (8, 19-

22, 27, 28), as was the case here. In the elastic network approach, the network is composed of 

nodes that are 3D point particles connected with springs, where the springs represent 

harmonic restraints on displacements from the equilibrium conformation (28). Here, the 

elastic network nodes are 3D Gaussian functions (pseudo-atoms). The elastic network 

approach based on nodes determined by 3D Gaussian functions was shown to result in 

computing normal modes that approximate atomic normal modes with high accuracy (8, 27). 

Additionally, as displacing pseudo-atoms (nodes) along normal modes results in deforming 

the pseudo-atomic model, such Gaussian-based nodes allow an easy computation of deformed 

density maps (by summing 3D Gaussian functions) and a comparable resolution of these maps 

to the resolution of the original, non-deformed density map. The resolution of the pseudo-

atomic models (reference and deformed) and the resolution of the deformed density maps can 

be controlled by controlling the error of pseudo-atomic approximation of the given density 

map (27). Such deformed density maps are compared with the target density maps in the 

elastic alignment procedure (step 2) to estimate the deformation. 

 

The user-friendly HEMNMA graphical interface (29) was used here for both computing 

pseudo-atomic models and normal modes. More precisely, we used a previously developed 

software for converting EM maps into pseudo-atoms (27) and for NMA (developed by Tama 

et al (22)), which were also used in our previous work based on normal modes of pseudo-

atomic models (8, 27), before being integrated in HEMNMA (29). More details on the use of 

HEMNMA for these two tasks are given in a separate subsection of this section (see the 

subsection entitled “Use of HEMNMA for computing pseudo-atomic models and normal 

modes”). 

 

2) Iterative elastic 3D-to-3D alignment of EM density maps: The proposed method involves 

elastic 3D-to-3D alignment in the continuous, NMA framework, which was realized by 

extending and modifying the elastic 3D-to-2D alignment method of (8), available via 

HEMNMA interface (29). The elastic alignment here means a combined flexible and rigid-

body local alignment of one map with the other. The flexible alignment of two maps is 

performed by deforming one map using normal modes until it fits the other map, and the 

deformation is realized by displacing pseudo-atoms with a linear combination of normal 

modes, as in (22, 27). Pseudo-atoms (3D Gaussian functions modeling the original, non-

deformed EM map) are displaced, using normal modes, with respect to their location in the 

original map, meaning that the flexible alignment is local around the conformation given by 

the original map. However, recall that normal modes describe low-frequency large-scale 

conformational changes, which means a relatively large range of global deformation 

amplitudes (several nanometers). The rigid-body alignment of two maps is performed by 

rotating and translating one map until it fits the other. The elastic alignment procedure 
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assumes that maps were initially rigid-body aligned (prior to computing pseudo-atoms and 

normal modes in the preprocessing step) so that it only performs local rigid-body alignment 

(refinement of current orientations and translations). The transformation of the map by elastic 

alignment can thus be mainly described as the map deformation because the rigid-body 

alignment part of transformation will be small for initially rigid-body aligned maps.  
 

The iterative elastic alignment method consists in refining the amplitude of displacement in 

each normal mode (elastic parameters) as well as the orientation and position (rigid-body 

parameters) of the reference density map until it matches the target density maps. This is done 

by minimizing dissimilarity between the two maps, and this dissimilarity (the objective 

function to be minimized) is here defined as S=1-CC, where CC is the cross-correlation 

between the elastically aligned reference and target density maps. The optimization of the 

objective function is done with Powell’s UOBYQA method that uses a quadratic-

approximation local model of the objective function subject to a trust region (30). The 

UOBYQA method takes into account the curvature of the objective function by constructing 

interpolant quadratic models. A typical iteration of the algorithm generates a new vector of 

variables (new point) by minimizing the quadratic model. The objective function is then 

evaluated at the new point and one of the interpolation points is replaced by this new point 

(30).  

 

The trust-region radius is related to the length of steps that are used in the objective function 

optimization (30). Its meaning here is the norm of the vector of normal-mode displacement-

amplitude differences between points at which the objective function is evaluated, where 

points are vectors of the displacement (deformation) amplitudes and the vector dimension is 

the dimension of the search space given by the number of normal modes. The trust-region is a 

ball around the best point found currently, with the radius given by the trust-region radius. As 

the deformation amplitudes, the trust-region radius has no physical units, as the NMA 

software used here computes the coordinates of normal mode vectors in angstroms while it 

displaces pseudo-atoms using normal-mode displacement amplitudes without units. Trust-

region-based approaches are known to be more robust to noise thanks to the regularization 

effect of minimizing objective-function models (usually quadratic) around current iterates 

over regions of controlled size. The trust-region radius is adapted iteratively to optimize the 

trust-region size. Actually, the UOBYQA method uses two radii; one () is not allowed to 

increase because this would necessitate expensive decrease later; the other () satisfies    

and allows the length of steps to exceed , which improves the efficiency of the algorithm 

(30). The method requires setting the initial vector of displacement amplitudes (initial point), 

the maximum number of iterations, the initial and final values of the trust region radius , and 

sets the initial value of  to be equal to the initial value of . 

 

The developed 3D-to-3D elastic alignment software uses an implementation of the UOBYQA 

method from CONDOR libraries (31). The 3D-to-3D elastic alignment method is available in 

Xmipp (32-34) (version 3.1) as a program under the name xmipp_nma_alignment_vol. This 

program aligns a reference pseudo-atomic model (obtained from a reference EM density map) 

with a set of target EM density maps, and requires that all density maps have the same size (in 

voxels) and the same voxel size (in angstroms). For each target EM density map, the reference 

pseudo-atomic model is deformed and its orientation and position refined so that the 

corresponding density map (after the displaced pseudo-atoms are converted into the density 

map format) best matches the target EM density map.  
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In the proposed approach, the initial displacement amplitudes are equal to zero, meaning that 

the non-deformed reference pseudo-atomic model is used to initialize the first iteration. In 

each UOBYQA iteration (Fig. 1B), the pseudo-atomic model is displaced with the new guess 

of the normal-mode displacement amplitudes (new point) obtained by minimizing the 

quadratic model, and the modified pseudo-atomic coordinates are converted into a density 

map. Then, this density map is locally rigid-body aligned with the target density map. The 

rigid-body alignment is done with a fast rotational matching method that maximizes the cross-

correlation between two density maps (26), and the objective function S is evaluated after this 

alignment. The local model of the objective function is then reconstructed around the new 

point, and a new iteration is started by finding the minimum of the current local model of the 

objective function and moving the current vector of deformation amplitudes (current point) to 

this minimum. The iterations are repeated until reaching the final value of the trust-region 

radius  or the maximum number of iterations. All experiments in this article were performed 

using the initial and final values of the trust-region radius  and the maximum number of 

iterations of 250, 50, and 10,000, respectively. Within a similar objective-function 

optimization procedure (in HEMNMA), these values have been shown to produce good 

results with several complexes of different amplitudes of conformational changes (70S 

ribosome, Pol α – B complex, and Tomato Bushy Stunt Virus) (8). They are set as default 

values in xmipp_nma_alignment_vol. The use of trust-region radii improves the optimization 

convergence, by improving robustness to noise, but UOBYQA does not guarantee reaching 

the global optimum. Though reaching the global optimum cannot be guaranteed, the method 

provides rather good solutions, as shown in this article.  

 

The main difference between the objective-function optimization in the elastic alignment 

procedure in HEMNMA and in StructMap is a different nature of target data (2D images in 

HEMNMA vs 3D density maps in StructMap). As the reference data are in both cases 3D 

density maps, HEMNMA is based on elastic 2D-to-3D data alignment, whereas StructMap is 

based on elastic 3D-to-3D data alignment. This means that the elastic alignment procedure in 

HEMNMA requires computing 2D projections of a 3D density map (to perform its matching 

with target images), which is not the case of StructMap. Note here that this comparison is 

only done regarding technical details of the two elastic alignment procedures, and not 

regarding the results that the entire StructMap and HEMNMA methodologies can produce. 

Actually, StructMap is not meant to replace HEMNMA because the two methodologies are 

complementary and can be combined, as shown in Results (Experiment 2) and discussed 

further in Discussion.  

 

3) Multivariate distance analysis: The optimized value of the dissimilarity measure, S, 

obtained for each aligned pair of EM density maps is used to construct an N-by-N 

symmetrical distance matrix D, where N is the number of given EM maps. As the alignment 

of the i-th EM map, Vi, with respect to the j-th EM map, Vj, is done through elastic geometric 

transformations of Vi until it matches Vj, this alignment will result in dissimilarity Sij  that  will 

generally be different from Sji , representing the dissimilarity of Vj  aligned  with respect to Vi. 

Thus, we set the ij-th and ji-th elements of the distance matrix D (Dij and Dji, respectively) to 

be the average between Sij and Sji (i.e., Dij=Dji=(Sij +Sji)/2). Note that the differences between 

Sij and Sji are usually small (a strong asymmetry of the distance matrix would indicate that the 

underlying matching of one volume into the other is ill-defined, which was not observed 

here). We set Dii=0 since there is no distance from an EM density map to itself.  

 

To perform multivariate analysis of the distance matrix, we use a non-metric 

multidimensional scaling method (35) that is available in MATLAB (MATLAB and Statistics 
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Toolbox Release 2011b, The MathWorks, Inc., Natick, Massachusetts, United States) under 

the name mdscale. The method returns N points in p dimensions, where the number of 

dimensions p (p ≤ N) is an input parameter (in normal practice, p=1, p=2 or, at most, p=3), 

such that the Euclidean distances between the obtained points approximate a monotonic 

transformation of distances in the distance matrix. The mdscale method optimizes the so-

called Kruskal's normalized stress (35) function that measures the degree of correspondence 

between the input distance matrix and the output points. The points are plotted in a p-

dimensional distance space (map of structures). In this article, results of the mdscale method 

are deterministic as the method was used with no randomness option.   

 

4) Analysis of the map of structures: The pattern that the points make in the new, p-

dimensional space, together with their relative distances, can be used to identify clusters of 

points that correspond to similar EM maps. In some cases, the disposition of points in the p-

dimensional space can also be used to explore potential sequences of conformational changes 

that we will then refer to as “trajectories of points”.   

 

 
Figure 1: Flowchart of the proposed StructMap method (A) and the iterative elastic 3D-to-3D alignment step 

between any two EM density maps (B). The measure of dissimilarity between two finally aligned EM density 

maps is taken as the distance between the two maps. The distances among all pairs of EM maps are used to 

construct a distance matrix that is then analyzed with a multivariate analysis method, so as to project all EM 

maps onto a common distance space (map of structures), in which each EM map is represented as a point. Points 

may then be analyzed in terms of their positions and mutual distances to potentially identify clusters or 

trajectories of points. 

 

Data generation for the experiment with synthetic EM maps  

For one of the experiments performed with the proposed method, we discretized two distinct 

synthetic trajectories of continuous conformational changes of the same complex. The two 

synthesized trajectories are completely fictional and may not exist or coexist in the 

experimental case. They were synthesized by displacing the EM map of the closed 

conformation of RyR1 (from Samso et al (24)) using two different normal modes from the 

same set of normal modes. The two normal modes used for the displacement were selected to 

produce opening-closing movements of RyR1. The displacement in one of the two modes 

(mode 8) produces symmetrical conformational changes that correspond to those usually 

reported in the literature. By “symmetrical changes” we mean that the object remains 

symmetrical after the displacement using normal modes. The displacement in the other mode 

(mode 9), in turn, produces asymmetrical conformational changes. By “asymmetrical 

changes” we mean that the object becomes asymmetrical after the displacement using normal 

modes. To the best of our knowledge, those asymmetrical changes have not been previously 
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reported. The synthesis of this test data set is fully described in this section. The results of the 

experiment with this data set are given in the Results section (Experiment 1). 

    

We used the EM  density map of the closed conformation of RyR1 deposited at the EMDB 

with code EMD-1606 (24) (resolution: 10.2 Å; size: 180  180  180 voxels; voxel size: 2.8 

Å  2.8 Å  2.8 Å). The pseudo-atomic model of the EM density map and its normal modes 8 

and 9 were used to compute 8 additional pseudo-atomic models. The density maps obtained 

from the 9 pseudo-atomic models were projected to obtain 500 randomly oriented projections 

for each density map. The projections had a uniform angular distribution, the size of 128128 

pixels, and the pixel size of 3.94 Å  3.94 Å. Note here that the projection resolution is lower 

than the resolution that could be obtained by projecting the obtained density maps onto the 

image planes whose size is given by the original density map size (i.e., image size of 180  

180 pixels and the pixel size of 2.8 Å  2.8 Å), which was chosen to “simulate” a real 

experiment as, in practice, the object’s 2D projection images are collected at a limited 

resolution, due to image formation and detection limitations. Each projection was modified by 

adding simulated experimental noise and contrast transfer function (CTF). The CTF and noise 

were simulated for a 200 kV microscope with a spherical aberration of 2 mm, defocus of 1 

µm and signal-to-noise ratio of 0.2, using the method of Velazquez-Muriel et al (36). Finally, 

each of the 9 sets of simulated images was used to compute the corresponding 3D 

reconstruction (Fig. 2A-E). Note here that resolution of the reconstructed density maps is low 

(around 20 Å), as a relatively small number (500) of noisy and CTF-affected images was used 

for the reconstruction. 

 

The reconstructed density map referred to as 1 corresponds to the non-displaced initial 

pseudo-atomic model (i.e., zero displacement amplitudes in all modes) (Fig. 2A). Four of 

other reconstructed density maps, referred to as 2, 3, 4, and 5 (Fig. 2B-C), correspond to the 

displacement of the initial pseudo-atomic model in mode 8 using the displacement amplitude 

of 300, 500, -300, and -500 (no units), respectively, and zero displacement amplitudes in other 

modes. Four additional reconstructed density maps, referred to as 6, 7, 8, and 9 (Fig. 2D-E), 

correspond to the displacement of the initial pseudo-atomic model in mode 9 using the 

displacement amplitude of 300, 500, -300, and -500 (no units), respectively, and zero 

displacement amplitudes in other modes. 

 

Figure 2B-C shows that the sequences of discrete states 3-2-1-4-5 and 5-4-1-2-3 describe 

symmetrical opening and closing of the complex, respectively, whereas Figure 2D-E shows 

that sequence 7-6-1-8-9 (or 9-8-1-6-7) describes asymmetrical opening or closing of the 

complex (one side of the complex opens while the other side closes). 

 

Use of HEMNMA for computing pseudo-atomic models and normal modes 

As mentioned earlier in this section, the pseudo-atomic models and their normal modes were 

computed using the HEMNMA graphical interface (29). In this subsection, we give more 

details on the HEMNMA parameter settings used for this purpose.  

 

The HEMNMA graphical interface (29) allows using a 3D binary mask and adjusting the 

desired EM-map approximation error and the standard deviation of Gaussian functions (for 

computing pseudo-atomic models), the interaction cut-off distance between pseudo-atoms (for 

computing normal modes), the number of lowest-frequency normal modes to be analyzed in 

terms of their collectivity and the collectivity threshold (for selecting the modes that will be 

used in the further analysis that is here the elastic alignment of EM density maps). The 3D 

binary mask can be used to assure that some parts of the EM density map are not represented 
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by Gaussian functions (e.g., a noisy background of the complex). Here, the 3D binary mask 

was obtained by a combination of EM-map thresholding and several morphological 

operations. The desired error of the EM-map representation by Gaussian functions determines 

the end of the iterative process by which Gaussian functions are added to the pseudo-atomic 

representation and, here, it was set to a value of 5% that usually results in good 

representations (29). The Gaussian-function standard deviation was adjusted to a value 

between 1 and 2 voxels, as typically done to better optimize the EM-map approximation error 

(29). The elastic network model for the computation of normal modes has the interaction cut-

off distance parameter that determines the distance between the pseudo-atoms above which 

they do not interact, and its value is usually adjusted between 10 Å and 30 Å according to the 

size of the complex (in voxels) (8, 22). Here, the interaction cut-off distance parameter was 

set to 10 Å for Pol α – B, 25 Å for 70S and 80S, and 30 Å for RyR1. It has been shown that 

highly collective low-frequency modes are relevant to functional conformational changes (19, 

20) and that such changes can usually be described by a few modes among the first (lowest-

frequency) twenty to fifty pseudo-atomic normal modes (8, 22). The collectivity degree (37) 

measures the collectivity of motions in a normal mode by counting the number of pseudo-

atoms affected by the mode. The collectivity degree approaches 1 for maximally collective 

motions and 0 for localized motions (37). Here, the collectivity degree was computed and 

analyzed for the first twenty normal modes in the case of lower-resolution density maps 

(synthetic maps of RyR1 and experimental maps of Pol α – B) while the first thirty normal 

modes were analyzed in terms of collectivity in the case of higher-resolution density maps 

(experimental maps of 70S and 80S). The modes collectivity threshold determines a subset of 

the total set of normal modes that will be used for a further analysis. The collectivity threshold 

of 0.15 was used here, which means that only the modes with the collectivity degree above 

0.15 were used for the elastic alignment of EM density maps. The collectivity threshold of 

0.15 has been shown to successfully reject poorly collective modes that are very likely 

unrelated to functional conformational changes (8, 29). The six lowest-frequency modes were 

not used either, as they are related to rigid-body movements (8, 22, 29).  

 

RESULTS 

In this section, we show the performance of the StructMap method with synthetic and 

experimental EM density maps. The most important information gained by using StructMap 

are the graphical and numerical distance-space results i.e. the overall, graphical view of 

differences (distances) among a set of elastically aligned density maps (represented by points 

in the distance space) as well as all pairwise distances among these maps. In the distance 

space, some pairs of points are connected by lines to help discuss distances among points and 

a potential disposition (configuration) of points in clusters or trajectories in the distance space. 

In the experiments with experimental EM maps (Experiments 2-4), lines are drawn to connect 

points representing subsequent states according to the previously published work in which 

these maps were obtained, which was done to visualize the patterns that these previously 

published results (sequences) make in the distance spaces obtained in this work. In the 

experiment with synthetic EM maps (Experiment 1), lines are drawn to connect points 

following their ground-truth order (i.e. the synthesized sequence of states 5-4-1-2-3 and 9-8-

1-6-7), which was done to visualize the pattern that this ground-truth order makes in the 

obtained distance space. The summary of all pairwise point distances obtained by analyzing 

the sets with more than three EM maps is given in Supporting Material (Tables S1-S3). 

 

Figures in this section also show rigid-body aligned density maps (from the preprocessing 

step) that are complemented with arrows indicating the movements mainly contributing to the 

elastic transformation (deformation) between maps, and the arrow scale shows the distance 
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between maps in the distance space. This is additional information gained by using 

StructMap. 

 

Experiment 1: Analysis of synthetic EM density maps 

Here, we present the results of StructMap using the synthetic data set that was described in the 

Materials and Methods section. The goal of the experiment was to analyze the pattern created 

by the synthetic EM density maps in the resulting map of structures, in order to see how the 

synthesized conformational trajectories look like in this map (e.g., as two distinct trajectories 

or not). Recall that the synthesized conformational trajectories are completely imaginary, 

which means that the results presented here should not be interpreted in terms of experimental 

RyR1conformational changes. A pseudo-atomic model and its 20 normal modes were 

computed for each given synthetic density map. Then, each density map (via its pseudo-

atomic model) was elastically aligned with all other density maps and the obtained 9-by-9 

distance matrix was projected onto a space of three, two, and one dimensions (Figs. 2F and 

3A-B, respectively). 

 

 
Figure 2: Synthetic RyR1 data experiment using synthetic density maps representing symmetrical (B-C) and 

asymmetrical (D-E) structural changes of the complex (A). (A) Synthetic density map 1. (B) Map 1 (grey) 

overlapped with maps 2 (yellow) and 3 (cyan). (C) Map 1 (grey) overlapped with maps 4 (violet) and 5 

(magenta). (D) Map 1 (grey) overlapped with maps 6 (pink) and 7 (green). (E) Map 1 (grey) overlapped with 

maps 8 (brown) and 9 (blue). (F) Projection of density maps onto a 3D distance space. In A-E, all density maps 

are viewed from the same viewing direction. In each of panels A-E, arrows show main directions of deformation 

of map 1 (grey) when fitting the other two maps (overlapped), and the arrow scale shows the largest distance 

among these three maps after the deformation according to Table S1. In F, the density maps are marked with 

their indexes and circles, and the length of each dotted line segment is the distance between two conformations 

that is shown above the segment in arbitrary units. See also Figure 3.  

 

In the 3D distance space, one can note a two-trajectory configuration of points 1-9 that 

correspond to synthetic density maps 1-9, respectively (Fig. 2F). This two-trajectory 

configuration is visually emphasized by connecting points following their ground-truth order 

(i.e. 5-4-1-2-3 and 9-8-1-6-7). The different distances among neighboring points on the two 
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trajectories mean that the same deformation amplitude has a different impact on the two types 

of deformations, from the point of view of the mapped dissimilarity measure. More precisely, 

the larger distances on trajectory 9-8-1-6-7 than on trajectory 5-4-1-2-3 suggest that the same 

deformation amplitude has a larger impact on the asymmetrical deformation than on the 

symmetrical deformation. All pairwise point distances obtained in this experiment are 

summarized in Table S1.  

 

As 2D and 1D maps of structures could also be useful in practice, especially when analyzing a 

small number of EM maps, we projected the same set of synthetic density maps onto these 

two spaces as well. The results of projecting density maps onto a 2D distance space are 

consistent with those obtained by projecting the same density maps onto a 3D distance space 

(Fig. 3A). Regarding the projection of the same density maps onto a 1D distance space, there 

is a non surprising loss of information about the two-trajectory configuration (Fig. 3B); 

however, the 1D distance mapping still allows sorting out similar and dissimilar density maps. 

For instance, Figure 3B clearly shows that density maps 1, 2, and 4 are the most similar ones, 

whereas maps 7 and 9 are the most dissimilar. Thus, 1D distance mapping may still be useful 

when analyzing a small number of EM density maps (e.g., 3-4 density maps), as in the case 

shown in Experiment 2. 

 

 
Figure 3:  Projection of synthetic RyR1 density maps onto a distance space of a lower dimension than 3. (A) 2D 

distance space. (B) 1D distance space. The density maps are marked with their indexes and circles. See also 

Figure 2. 

 

Experiment 2: EM density maps of Pol α – B 

In this experiment, we used three EM density maps of Pol α – B from Klinge et al (14). They 

correspond to different states of bending of the flexible linker between two lobes of the 

complex. The EM density maps have the size of 64  64  64 voxels, the voxel size of 3.8 Å 

 3.8 Å  3.8 Å, and the resolution between 23 Å and 25 Å. They are referenced by indexes 1, 

2, and 3, as obtained from the authors (14). A pseudo-atomic model and its 20 normal modes 

were first computed for each EM density map. Then, each density map (via its pseudo-atomic 

model) was elastically aligned with all other density maps, and the obtained 3-by-3 distance 

matrix was projected onto a 1D distance space (Fig. 4A). 

 

The 1D distance mapping results (Fig. 4A) show that EM density map 1 is almost equally 

distant from the other two EM density maps (the distance of map 1 to the other two maps is 

around 0.1). Thus, this sequence could be interpreted as a movement around conformation 1, 

in the order 3-1-2 or 2-1-3 (Fig. 4B). EM maps in the order 3-1-2 correspond to the unbending 

of the complex from conformation 3 to conformation 2 (Fig. 4B-C). These results are 
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coherent with previously published results (Fig. 6 of Klinge et al (14)) but, contrary to the 

previous study, they are here based on a quantitative distance analysis.   

 

 
Figure 4: Projection of three EM density maps of DNA polymerase Pol α - B complex onto a 1D distance space. 

(A) 1D distance space (EM maps are marked with circles and the length of each dotted line segment is the 

distance between two EM maps that is shown above the segment in arbitrary units). (B) Ordered rigid-body 

aligned EM density maps (3-1-2) according to their disposition in the distance space shown in A, together with 

dashed arrows showing different degrees of bending of the complex i.e. rotation of the upper lobe towards the 

lower lobe (the elastic transformation among these maps is mainly described by the bending movement). (C) 

Upper-lobe axis of overlapped maps 1-3, shown with the same color as the color of the upper-lobe axis in B (red: 

map 3; green: map 1; blue: map 2), together with solid arrows showing the deformation direction (the rotation of 

the upper lobe of map 2 towards map 1 and the rotation of the upper lobe of map 1 towards map 3). In C, the 

arrows do not show the amount of deformation but they show (by the arrow scale) the distance between maps in 

the map pairs (1,2) and (1,3) after the deformation according to panel A. Note that the vertical lines shown in B 

and C are not the same but they are parallel to each other.  

 

These results could be used in combination with HEMNMA to explore conformational 

changes of Pol α – B at a finer level of details, by a continuous analysis of 2D images using 

normal modes of a reference density map, as was done in (8). In this context, the results of 

StructMap could be used to select the reference density map for analyzing images by 

HEMNMA. Actually, in (8), 12000 Pol α – B single-particle images (used for computing 

maps 1-3) were analyzed using HEMNMA and map 3 was used as the reference map. The 

reference map was chosen to be map 3 because this map was obtained from the most 

populated class of images (maps 3, 1, and 2 come from classes with 42%, 30%, and 28% of 

the total number of images, respectively (14)). Though map 3 was reconstructed from the 

largest number of images, or exactly because of that, it is tempting to think that some 

heterogeneity could have been incorporated in that map. The fact that it is one of the two end 

points in the distance map (Fig. 4A) could support this hypothesis, meaning that some other 

conformations could exist even further to the left from map 3 in the distance map but they 

could not be identified (they were somehow hidden) because of splitting images in only three 

classes. Thus, the results of StructMap (distance map, Fig. 4A) show that it would be 

interesting to use map 3 for the images analysis with HEMNMA to identify conformations 

that could not be identified by splitting images in only three classes (e.g., those at the left side 

of map 3 in the distance map), which was actually done in (8). The second end point in the 

distance map, map 2, would be less interesting to use for the continuous analysis of images 

(as the reference map for HEMNMA) because it lacks some mass at the level of the linker 

between the lobes, which was explained by a strong heterogeneity of conformations in the 

corresponding class of images (14). 

 

Experiment 3: EM density maps of E. coli 70S-fMetVal-tRNAVal-tRNAfMet complex 

The EM density maps of different pre- and post-translocational states of E. coli 70S complex 

published by Fischer et al (15) were downloaded from EMDB database. Among them, we 



14 
 

have analyzed those that had the same size (128  128  128 voxels), the same voxel size (2.8 

Å  2.8 Å  2.8 Å), and that contained the entire 70S complex. The analyzed data set 

contained seven EM density maps of resolution between 12 Å and 20 Å (15). These EM maps 

correspond to the pre-translocational states pre2 to pre5 (EMD-1717 to EMD-1720, 

respectively) and the post-translocational states post1 to post3 (EMD-1721 to EMD-1723, 

respectively). A pseudo-atomic model and its 30 normal modes were computed for each EM 

density map, each density map (via its pseudo-atomic model) was elastically aligned with all 

other density maps, and the resulting 7-by-7 distance matrix was projected onto a 3D distance 

space (Fig. 5A). 

 

 
Figure 5: Projection of seven EM density maps of 70S ribosome (EMD-1717 to EMD-1723) onto a 3D distance 

space. (A) 3D distance space. (B-H) Overlap of rigid-body aligned EM density maps, with the same view for all 

overlapped maps. (B) 1718 vs 1717 (gray). (C) 1719 vs 1717 (gray). (D) 1720 vs 1717 (gray). (E) 1722 vs 1721 

(magenta). (F) 1723 vs 1721 (magenta). (G) 1717 vs 1721 (magenta). (H) 1720 vs 1721 (magenta). In A, the EM 

maps are marked with circles and the corresponding EMDB entry codes. Straight lines are used to connect 

subsequent states, according to the proposal by Fischer et al (15), and the length of each line segment is the 

distance between two maps that is shown above the segment in arbitrary units. In each of panels B-H, arrows 

show the movements that mainly contribute to the elastic transformation (deformation) between two overlapped 

maps, and the arrow scale shows the distance between these maps in the distance space. Bi-directional arrows 

were used to recall that StructMap computes the elastic transformation between two maps in both directions. 

Note that the arrow scale shows dissimilarity between maps after the deformation but the amount of deformation 

(movement amount) is not represented by arrows. However, note that the type of movement is represented by 

arrows (i.e., rotation of 30S with respect to 50S and L1 stalk motion in B-D and G-H, rolling/unrolling of the 

complex in E, and rolling/unrolling of the complex and L1 stalk motion in F).   

 

The 3D map of structures and pairwise map distances (Fig. 5A, Table S2) show that most 

distances among maps 1717-1720 (four distances of 0.11, one distance of 0.2, and one 

distance of 0.21 (arbitrary units)) are smaller than distances of maps 1717-1720 to maps 1721-

1723 (three distances of 0.2 and nine distances greater or equal to 0.25 (arbitrary units)). This 

means that maps 1717-1720 correspond to similar conformational states as well as that these 

states are generally less different with respect to each other than with respect to states 1721-

1723, which is also visible when the maps are overlapped. For instance, the orientation of the 

30S subunit is generally more similar between maps 1717-1720 (Fig. 5B-D) than is the 30S 

orientation between these maps and maps 1721-1723 (Fig. 5G-H). This is consistent with the 

findings of Fischer et al (15), indicating that maps 1717-1720 correspond to similar, pre-

translocational states, whereas maps 1721-1723 correspond to similar, post-translocational 
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states. Our results complement the results of Fischer et al (15) by providing a quantitative 

analysis of the conformational differences. For instance, the results (Fig. 5A, Table S2) 

additionally show that maps 1721 and 1722 are more similar (the distance of 0.13) than maps 

1722 and 1723 (the distance of 0.25) or maps 1721 and 1723 (the distance of 0.25), which is 

also visible in Figure 5E-F. 

 

Experiment 4: EM density maps of native human 80S ribosomal complex from 

polysomes 

In this experiment, we used eleven EM density maps of native human 80S ribosomal 

complexes from polysomes, deposited in EMDB by Behrmann et al (25). They correspond to 

states along the elongation cycle of 80S (25). In the clockwise direction along the elongation 

cycle shown in Figure 1 from Behrmann et al (25), the EM density maps correspond to the 

following states: classical iPRE state (EMD-2907), classical-1 PRE state (EMD-2909), PRE* 

state (EMD-2906), rotated-1 PRE state (EMD-2904), rotated-2 PRE state (EMD-2905), 

POST-i3 state (EMD-2903), POST-i2 state (EMD-2902), POST state (EMD-2875), pre-

recycling state (EMD-2910), post-decoding/post-hydrolysis state (EMD-2908), and post-

decoding/post-dissociation state (EMD-2911). Note that the density maps of translocation and 

decoding-sampling/-recognition complexes were not used in our experiment, as these 

complexes were not observed experimentally in the original work (25). The density map 

EMD-2875 has the size of 400  400  400 voxels, the voxel size of 0.945 Å  0.945 Å  

0.945 Å, and the resolution of 3.5 Å according to the FSC0.143 resolution criterion (25). All 

other EM density maps have the size of 200  200  200 voxels, the voxel size of 1.89 Å  

1.89 Å  1.89 Å, and their resolution is between 5 Å and 10 Å according to the FSC0.5 

resolution criterion (25). We thus resized map EMD-2875 so that it has the same number of 

voxels and the voxel size as the other EM density maps, which is required by StructMap (see 

Materials and Methods). A pseudo-atomic model and its 30 normal modes were computed for 

each density map, each density map (via its pseudo-atomic model) was elastically aligned 

with all other density maps, and the obtained 11-by-11 distance matrix was projected onto a 

3D distance space (Fig. 6A). 

 

The 3D map of structures shows that conformations 2902, 2903, 2907, 2909, and 2910 are 

similar among each other and different from other conformations (Fig. 6A). Also, in a very 

simplified form, it seems that the other conformations are projected so that they belong to two 

different groups that are similarly distant from the central group (2902, 2903, 2907, 2909, and 

2910). One group comprises conformations 2904-2906, whereas the other group is made of 

conformations 2875, 2908, 2911 (Fig. 6A). The overlapped density maps (Fig. 7, together 

with Figs. S1 and S2 that are given in the Supporting Material) show that the three different 

coarse groups can be explained by the existence of at least two different types of changes in 

conformation and composition of the complex. One of them is a rotation of the small subunit 

(40S) with respect to the large subunit (60S), which could explain the group 2904-2906 (40S 

is rotated in these maps, with different amounts of rotation, as shown in panels L-O in Fig. 7 

and Fig. S1). The other is rolling of the complex, which could explain the central group of 

maps. Indeed, different degrees of rolling of the complex can be noticed in maps 2902, 2903, 

2907, 2909, and 2910 (panels A-H in Fig. 7 and Fig. S1). The remaining group is comprised 

of maps of complexes with slightly different degrees of unrolling and different compositions 

(2875, 2908, and 2911) (panels I-J in Fig. 7 and Fig. S1). More precisely, in 2875, the A and 

F sites are empty; in 2908, they are occupied by A/T tRNA (A site) and eEF1A (F site); 

finally, in 2911, the F site is empty and the A site is occupied by A/T tRNA (Fig. 7I-K). Note 

here that we used a mask that suits the shape of 2875 to compute pseudo-atomic models, 
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implying that computations were done using density maps with partly removed additional 

mass from the A and F sites (panels A-E of Fig. S2). The contribution of masking in this case 

was, thus, not only in removing the background noise, but also in focusing the analysis onto 

the conformational changes (by minimizing compositional differences while preserving the 

associated conformational differences).    

 

Although a combined conformational and compositional heterogeneity is a very difficult case, 

the proposed method showed very interesting results such as the observed grouping of density 

maps into three coarse but interpretable groups, in the same space of distances, as well as a 

closed trajectory formed by connecting points in the distance space following the original 

proposal (Fig. 6). Interestingly enough, the trajectory form could be described as 8-like, 

particularly in the 2D distance space (Fig. 6B). 

 

 
Figure 6: Projection of eleven EM density maps of 80S ribosome (EMD-2875 and from EMD-2902 to EMD-

2911) onto 3D and 2D distance spaces. (A) 3D distance space. (B) 2D distance space. The density maps are 

marked with circles and the corresponding EMDB entry codes. The length of each dotted line segment is the 

distance between two density maps that is, in A, shown above the segment in arbitrary units. The dotted lines are 

used to connect subsequent states according to the proposal by Behrmann et al (25). In A, different colors are 

used for map numbers to represent complexes with different compositions, according to Behrmann et al (25). 

The same colors are attributed to the maps with the same or similar composition, which resulted in the use of 6 

different colors for the following types of composition: 1) 2904-2905 (two tRNAs but slightly different, P/E, A/P 

in 2905 and P/E, A/A in 2904); 2) 2906-2909 (three tRNAs: E/E, P/P, A/A); 3) 2902-2903 and 2875 (two 

tRNAs: E/E, P/P); 4) 2911 (three tRNAs: E/E, P/P, A/T); 5) 2908 (eEF1A and three tRNAs: E/E, P/P, A/T), 6) 

2910 (eRF1, ABCE1, and two tRNAs: E/E,P/P). The classical iPRE state (EMD-2907) is marked with a red 

point in A-B. See also Figure 7. 
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Figure 7: Overlap of rigid-body aligned EM density maps of 80S ribosome (EMD-2875 and from EMD-2902 to 

EMD-2911), with the same view for all overlapped density maps. (A) 2902 (yellow) vs 2903.  (B) 2907 (green) 

vs 2909. (C) 2902 (yellow) vs 2907. (D) 2903 (cyan) vs 2909. (E) 2875 (grey) vs 2902. (F) 2875 (grey) vs 2903. 

(G) 2875 (grey) vs 2910. (H) 2902 (yellow) vs 2910. (I) 2875 (grey) vs 2908. (J) 2908 (brown) vs 2911. (K) 2911 

(orange) vs 2907. (L) 2906 (pink) vs 2909. (M) 2906 (pink) vs 2904. (N) 2904 (blue) vs 2905. (O) 2905 

(magenta) vs 2903. In each of panels A-O, arrows show the movements that mainly contribute to the elastic 

transformation (deformation) between two overlapped maps, and the arrow scale shows the distance between 

these maps in the distance space. Bi-directional arrows were used to recall that StructMap computes the elastic 

transformation between two maps in both directions. Note that the arrow scale shows dissimilarity between maps 

after the deformation but the amount of deformation (movement amount) is not represented by arrows. However, 

note that the type of movement is represented by arrows (i.e., rolling/unrolling of the complex in A-K, rotation 

of 40S with respect to 60S in M-N, and combination of rolling/unrolling and 40S rotation in L,O). See also 

Figure 6 and Figures S1 and S2. 

DISCUSSION AND CONCLUSION 

In this paper, we presented StructMap that is, to the best of our knowledge, the first 

methodology allowing visualizing conformational differences among sets of EM density maps 

in a common and quantitative space while involving elastic alignment of these EM maps for 

conformational modeling. The elastic alignment of two EM maps is done by flexible 

deformation, using normal modes, of one map until it fits the other map. The elastic alignment 

allows building a matrix of distances among density maps, which is then analyzed to represent 

all density maps in the common distance space that is also referred to as “map of structures”.  

 

StructMap does not impose any requirements regarding the mass of the complex or the size of 

its dynamic part. The only requirement is that all EM maps have the same size (number of 

voxels) and the same voxel size. Also, the work of StructMap will be facilitated if the 

complex is masked in the density maps to suppress the background noise. Masking of density 

maps is a part of common data processing workflows, and we expect that it will be done 

before starting StructMap. Otherwise, masking can be performed with the HEMNMA 

graphical interface. Masking can also be used to minimize the impact of compositional 

differences of complexes (e.g., due to ligand binding) onto the analysis of conformational 

differences among these complexes. The method works with EM maps that are usually 

available at different resolutions due to the use of different numbers of particles for their 

reconstruction and other experimental imaging related issues. In this article, we showed that 
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StructMap yields reliable results (in agreement with previously published results) for EM 

maps of different resolutions, more precisely, different resolution ranges (5-10 Å, 12-20 Å, 

23-25 Å) of EM maps reconstructed from negative stain images (Pol α – B) or cryo images 

(70S and 80S). A higher resolution homogeneity of a set of EM maps is expected to yield a 

better resolution of conformational differences for the average level of details in that set of 

maps. Also, a higher resolution of all EM maps in the set is expected to yield a more precise 

analysis of smaller conformational changes. 

 

Beyond discrete states 

Results obtained with synthetic and experimental data show a great potential of the proposed 

method. Results obtained with experimental data of Pol α – B, 70S, and 80S complexes are 

fully consistent with previously published results. Moreover, the results presented here 

complement the previous results with a quantitative analysis of given density maps, which 

produces an original graphical representation of dissimilarities among the density maps.  

 

The experiment with EM density maps of human 80S ribosomal complexes from polysomes 

shows a particularly challenging case of heterogeneity, which clearly demonstrates the 

usefulness of the proposed method. Indeed, the EM density maps used in that experiment 

represent 11 states of the ribosome during the elongation cycle and the EM maps differ among 

each other in both conformation and composition of the complex. With this data set, we 

observed a grouping of EM density maps in three coarse but interpretable groups and we 

obtained a closed trajectory by connecting the EM maps in the obtained distance space 

following the sequence proposed by the authors of the maps (25). 

 

Possible trajectories of points in the map of structures 

In some cases, trajectories of points can be inferred by connecting points in the map of 

structures, which suggests a possibility to explore potential sequences of conformational 

changes. The points can be connected in many different ways and, here, we would like to 

discuss possible ad hoc alternatives, or “rules”, to analyze the cloud of points, especially in 

the absence of a priori information about conformational changes of the studied complex. 

One of such rules could be to identify the shortest trajectory between two most extreme or 

distant points, taking into account the assumption that the shortest trajectory corresponds to 

the lowest “energy” or “effort” required to go from one extreme state to the other (e.g., states 

3 and 5 on the 3-2-1-4-5 trajectory in Experiment 1 are the two most distant states and they 

correspond to maximally closed and maximally open synthetic symmetric conformations of 

the complex). Another possible rule is to identify the trajectory of points corresponding to 

those EM density maps that result from the largest numbers of single particle images, taking 

into account the assumption that a larger number of images used to reconstruct an EM map 

means a higher probability that the complex adopts this state. One could also think of 

combining such rules or even analyzing longer trajectories, taking into account possible 

random thermal motions of the complex in solution (9). 

 

Network and graph analysis of conformational transitions has been also proposed in the 

context of analyzing protein conformational ensembles obtained by sampling the 

conformational space during molecular dynamics simulation of an atomic-resolution (X-ray 

or NMR) structure, the sampled conformations and transitions being considered as nodes and 

links of the network, respectively (38-40). The analysis of potential sequences of 

conformational changes is particularly difficult in the case of experimental EM maps and can 

additionally be hindered by a combined conformational and compositional heterogeneity of 

complexes, as observed in the experiment with the 80S ribosomal complex. Thus, though ad 
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hoc rules could help to start the analysis, additional information about the complex should be 

employed to ascertain the structural processes that actually take place. This is the reason why 

we did not use such rules in this article. We instead decided to complement the original work 

by analyzing similarities and dissimilarities among density maps based on their distances in 

the obtained distance space as well as by showing the pattern obtained after connecting the 

density maps in this distance space following the sequence proposed in the original 

publication. 

 

Combination with “continuous” analysis of images 

StructMap could be combined with techniques for “continuous” analysis of  images, such as 

HEMNMA (8, 29), to explore continuous conformational changes more extensively. In this 

context, EM maps obtained by discretizing flexibility analysis would be analyzed by 

StructMap to better understand differences among maps and select a few of them for their use 

as the reference conformations for the “continuous” image analysis. HEMNMA, providing an 

overall view of the conformational distribution based on a 3D-to-2D elastic alignment of 

images with a given reference EM density map, would be used to perform a fine analysis of 

the dynamics around the reference conformations identified with the help of StructMap. This 

approach would be less computationally expensive than performing a fine analysis around 

every map from the given set of EM density maps. As StructMap performs an automatic 

analysis and projection of EM density maps onto a common distance space, it would be 

especially useful if the given set of density maps is large (e.g., containing more than 5 maps). 

Though the number of density maps obtained in the same experiment is typically smaller than 

10, some studies result in much larger numbers of EM density maps (e.g., 50 maps were 

obtained in (15)). In the same context, StructMap could be combined with other approaches 

for exhaustive analysis of continuous conformational changes. For instance, StructMap could 

be used to select reference density maps to rigid-body align images before their analysis by 

the method proposed in (9).   

 

The work presented in this article opens doors for further developments of such combined 

discrete-continuous approaches. To allow an easy and broad use of StructMap, this 

methodology is currently implemented in Scipion (http://scipion.cnb.csic.es). 

  

SUPPORTING MATERIAL 

Supporting Material includes three supplementary tables (Tables S1-S3) and two 

supplementary figures and their legends (Figs. S1-S2). 
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SUPPLEMENTARY FIGURE LEGENDS: 

 

Figure S1: Overlap of rigid-body aligned EM density maps of 80S ribosome (EMD-2875 and 

from EMD-2902 to EMD-2911), with the same view for all overlapped density maps but a 

different view with respect to Figure 7. (A) 2902 (yellow) vs 2903.  (B) 2907 (green) vs 2909. 

(C) 2902 (yellow) vs 2907. (D) 2903 (cyan) vs 2909. (E) 2875 (grey) vs 2902. (F) 2875 (grey) 

vs 2903. (G) 2875 (grey) vs 2910. (H) 2902 (yellow) vs 2910. (I) 2875 (grey) vs 2908. (J) 

2908 (brown) vs 2911. (K) 2911 (orange) vs 2907. (L) 2906 (pink) vs 2909. (M) 2906 (pink) 

vs 2904. (N) 2904 (blue) vs 2905. (O) 2905 (magenta) vs 2903. In each of panels A-O, arrows 

show the movements that mainly contribute to the elastic transformation (deformation) 

between two overlapped maps, and the arrow scale shows the distance between these maps in 

the distance space. Bi-directional arrows were used to recall that StructMap computes the 

elastic transformation between two maps in both directions. Note that the arrow scale shows 

dissimilarity between maps after the deformation but the amount of deformation (movement 

amount) is not represented by arrows. However, note that the type of movement is represented 

by arrows and it is the same as in Figure 7 (i.e., rolling/unrolling of the complex in A-K, 

rotation of 40S with respect to 60S in M-N, and combination of rolling/unrolling and 40S 

rotation in L,O).   

 

Figure S2: Overlap of rigid-body aligned EM density maps of 80S ribosome (EMD-2875 and 

from EMD-2902 to EMD-2911) as in Figure 7G-K (A-E, respectively) and panels G-K of 

Figure S1 (F-J, respectively) but with EM density maps masked using a mask suited to the 

shape of EMD-2875. (A,F) 2875 (grey) vs 2910. (B,G) 2902 (yellow) vs 2910. (C,H) 2875 

(grey) vs 2908. (D,I) 2908 (brown) vs 2911. (E,J) 2911 (orange) vs 2907. In each of panels A-

J, arrows show the movements that mainly contribute to the elastic transformation 

(deformation) between two overlapped maps, and the arrow scale shows the distance between 

these maps in the distance space. Bi-directional arrows were used to recall that StructMap 

computes the elastic transformation between two maps in both directions. Note that the arrow 

scale shows dissimilarity between maps after the deformation but the amount of deformation 

(movement amount) is not represented by arrows. However, note that the type of movement is 

represented by arrows and it is the same for the top and bottom rows of a column because the 

column contains two views of the same pair of overlapped density maps. Finally, note that the 

pairs of maps shown in this figure present only rolling/unrolling movement of the complex.  
 







 1 2 3 4 5 6 7 8 9 

1 0 0.03 0.06 0.03 0.06 0.04 0.07 0.04 0.06 

2 0.03 0 0.03 0.07 0.09 0.06 0.07 0.06 0.07 

3 0.06 0.03 0 0.09 0.12 0.08 0.09 0.07 0.08 

4 0.03 0.07 0.09 0 0.03 0.06 0.07 0.06 0.07 

5 0.06 0.09 0.12 0.03 0 0.07 0.09 0.07 0.09 

6 0.04 0.06 0.08 0.06 0.07 0 0.06 0.08 0.11 

7 0.07 0.07 0.09 0.07 0.09 0.06 0 0.11 0.13 

8 0.04 0.06 0.07 0.06 0.07 0.08 0.11 0 0.03 

9 0.06 0.07 0.08 0.07 0.09 0.11 0.13 0.03 0 

Table S1: Pairwise distances (in arbitrary units) among synthetic RyR1 density maps 1-9 

projected onto the 3D distance space shown in Fig. 2F. 

 



 1717 1718 1719 1720 1721 1722 1723 

1717 0 0.11 0.20 0.21 0.20 0.25 0.25 

1718 0.11 0 0.11 0.11 0.20 0.20 0.30 

1719 0.20 0.11 0 0.11 0.30 0.25 0.35 

1720 0.21 0.11 0.11 0 0.30 0.30 0.40 

1721 0.20 0.20 0.30 0.30 0 0.13 0.25 

1722 0.25 0.20 0.25 0.30 0.13 0 0.25 

1723 0.25 0.30 0.35 0.40 0.25 0.25 0 

Table S2: Pairwise distances (in arbitrary units) among seven EM density maps of 70S 

ribosome (EMD-1717 to EMD-1723) projected onto the 3D distance space shown in Fig. 5A. 



 2875 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 

2875 0 0.25 0.25 0.49 0.51 0.44 0.25 0.26 0.25 0.24 0.24 

2902 0.25 0 0.04 0.25 0.26 0.25 0.01 0.13 0.01 0.04 0.10 

2903 0.25 0.04 0 0.26 0.27 0.29 0.04 0.12 0.04 0.08 0.12 

2904 0.49 0.25 0.26 0 0.11 0.25 0.25 0.33 0.25 0.27 0.26 

2905 0.51 0.26 0.27 0.11 0 0.24 0.26 0.30 0.25 0.27 0.31 

2906 0.44 0.25 0.29 0.25 0.24 0 0.25 0.32 0.25 0.23 0.27 

2907 0.25 0.01 0.04 0.25 0.26 0.25 0 0.12 0.01 0.04 0.11 

2908 0.26 0.13 0.12 0.33 0.30 0.32 0.12 0 0.12 0.12 0.23 

2909 0.25 0.01 0.04 0.25 0.25 0.25 0.01 0.12 0 0.04 0.12 

2910 0.24 0.04 0.08 0.27 0.27 0.23 0.04 0.12 0.04 0 0.13 

2911 0.24 0.10 0.12 0.26 0.31 0.27 0.11 0.23 0.12 0.13 0 

Table S3: Pairwise distances (in arbitrary units) among eleven EM density maps of 80S 

ribosome (EMD-2875 and from EMD-2902 to EMD-2911) projected onto the 3D distance 

space shown in Fig. 6A. 




