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Abstract.

Resonant ultrasound spectroscopy is an experimental technique for measuring the

stiffness of anisotropic solid materials. The free vibration resonant frequencies of

a specimen are measured and the stiffness coefficients of the material adjusted to

minimize the difference between experimental and predicted frequencies. An issue of

this inverse approach is that the measured frequencies are not easily paired with their

predicted counterpart, leading to ambiguities in the definition of the objective function.

In the past, this issue has been overcome through trial-and-error methods requiring the

experimentalist to find the correct pairing, or through involved experimental methods

measuring the shapes of the normal vibration modes in addition to their frequencies.

The purpose of this work is to show, through a Bayesian formulation, that the inverse

problem can be solved automatically and without requiring additions to the usual

experimental setup. The pairing of measured and predicted frequencies is considered

unknown, and the joint posterior probability distribution of pairing and stiffness is

sampled using Markov Chain Monte Carlo. The method is illustrated on two published

data sets. The first set includes the exact pairing, allowing validation of the method.

The second application deals with attenuative materials, for which many predicted

modes cannot be observed, further complicating the inverse problem. In that case,

introduction of prior information through Bayesian formulation reduces ambiguities.

Keywords : RUS, anisotropy, stiffness tensor, vibration modes, damping, frequency

pairing, Markov Chain Monte Carlo.
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1. Introduction

Resonant ultrasound spectroscopy (RUS) is an experimental technique for measuring the

stiffness of anisotropic solid materials [1, 2, 3, 4]. In RUS, the free vibration resonant

frequencies of a material specimen of simple shape (e.g. cylinder, sphere, parallelepiped)

are measured and the stiffness coefficients adjusted until model-predicted frequencies

match the experimental results. This inverse approach gives accurate elastic parameters

because the resonant frequencies, which are entirely determined by elasticity, specimen

dimensions and material mass density, can be measured with high accuracy.

An issue of that inverse approach is that each measured resonant frequency taken

individually does not carry information about which of the many predicted normal

vibration modes it corresponds to [5, 6, 3, 7]. As the inversion relies on the minimization

of the differences between pairs of predicted and measured frequencies, ambiguities

in the identification of the frequencies lead to ambiguities in the stiffness estimation.

Identification, or pairing, is particularly difficult if the initial guess of the stiffness

coefficients is far from the actual values and if some predicted resonant modes are not

observed experimentally. It is usually argued that without knowledge of the pairing,

RUS cannot lead to accurate estimates of the stiffness coefficients. One purpose of this

work is to show, through a Bayesian formulation of the inverse problem, that knowledge

of the exact pairing is not necessary to get precise and accurate stiffness estimates.

Several experimental solutions have been proposed to find the frequency pairing,

the most popular being that of Ogi et al. [7]. They proposed to image the vibration

patterns of the resonant modes on a face of the specimen using a laser interferometer. For

homogeneous materials and moderate stiffness anisotropy ratios (< 10), these patterns

are determined mainly by the specimen shape. Hence, the observed resonant modes

can be identified and the stiffness coefficients evaluated from fitting of the resonant

frequencies, even in the case of a bad initial guess of their values. This method has been

used by several groups [8, 9, 10, 11, 12, 13] but suffers from a number of limitations.

(1) It requires specimens with a plane face large enough to be correctly sampled by the

laser dot. In consequence, it is not adapted to very small (sub-millimeter) specimens nor

to complex shapes. (2) The scanned face must be perfectly plane and highly reflective,

which is not always the case, particularly for biological materials such as dentin [14] or

bone [15, 16]. (3) The use of a Laser interferometer considerably increases the cost and

difficulty of implementation of RUS, preventing its use as a routine method for material

characterization in some contexts, e.g. industrial or biomedical. Although difficulties

(1) and (2) can be tackled respectively by using optical microscopy and by sputtering an

aluminum thin film on the surface of the sample, this further complicates the application

of RUS. The growing interest in applications of RUS where the above limitations are

problematic motivates the development of an alternative method.

Without measuring the modal shapes, the correct identification can be obtained

through trial-and-errors methods [2], or progressive approaches identifying modes one

after another [11, 16, 17]. Although each individual frequency does not bring information
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on its corresponding vibration mode, the distribution of the frequencies does. Indeed,

the correct pairing is expected to lead to the best match between the experiment and the

model. These methods however are time-consuming and require the user to manually

identify the frequencies.

In this work we propose a Bayesian formulation of the inverse problem that

introduces probability distributions for the possible pairings of predicted and measured

frequencies and for the stiffness coefficients. Estimating the joint posterior distribution

given a set of measured frequencies then solve the combined problem of finding the

correct pairing and estimating stiffness. This is done through Markov Chain Monte

Carlo (MCMC) sampling of the posterior distribution. It requires no input of the user,

except for the specification of a priori probability densities. We show on two examples

that the method leads to results that are almost as accurate and precise as with the

exact known pairing.

2. Method

2.1. Forward problem

The Rayleigh-Ritz method is efficient to predict the resonant frequencies of a solid of

simple shape given its stiffness, geometry and mass density. This method has been

extensively used in RUS [5, 1, 2, 3, 4]. The general principles of the method are

briefly presented here and some details regarding its implementation for rectangular

parallelepiped specimens are given, with an emphasis on mathematical properties

allowing an efficient computation.

The free-vibration natural frequencies of a solid body are the stationary points of

the Lagrangian L
L =

1

2

∫

V

[

ρω2u2
i − Cijklǫijǫkl

]

dV, (1)

where Cijkl are the stiffness coefficients, V and ρ are respectively the volume and mass

density, ui is a component of the displacement field, and ǫij is a component of the strain

tensor. The Rayleigh-Ritz method expands the displacement field as a finite sum of

known basis functions φλ with yet unknown coefficients αi,λ, i.e.

ui =
∑

λ

αi,λφλ. (2)

in order to solve the stationary equation ∂L = 0 as a generalized eigenvalue problem

ω2Mα = Kα. (3)

Sufficient details on the manipulations necessary to obtain Eq. (3) from the

Lagrangian (1) and the expansion (2) can be found in [1, 2, 3].

In Eq. (3), M and K are called respectively the mass and stiffness matrices of the

vibration problem. Their elements are

Miλ,kλ′ = ρδik

∫

V

φλφλ′dV, and (4)
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Kiλ,kλ′ =
3

∑

j,l=1

Cijkl

∫

V

ǫij(φλ)ǫkl(φ
′
λ)dV, (5)

where δij is the Kronecker symbol. For simple shapes and well-chosen basis functions,

Eqs. (4) and (5) reduce to simple analytical expressions and Eq. (3) is numerically

solved, giving the resonant pulsations ωn and the displacement patterns of the resonant

modes from the eigenvectors αn. The forward relation between the stiffness coefficients

and the vector containing the resonant frequencies fn = ωn/2π, denoted f = g(Cijkl), is

non-linear and has no analytical expression.

For a rectangular parallelepiped, it is convenient to use the normalized Legendre

polynomials of the scaled Cartesian coordinates xi, i.e.

ui =

a+b+c≤Λ
∑

a,b,c=0

αi,abcPa

(

2x1

L1

)

Pb

(

2x2

L2

)

Pc

(

2x3

L3

)

(6)

where Pa is the normalized Legendre polynomial of order a, and Li is the length

of the parallelepiped in the direction i. Due to the orthogonality of the Legendre

polynomials over the interval [−1, 1], M is the unit matrix and Eq. (3) simplifies to

a standard eigenvalue problem, easier to solve numerically. Moreover, many elements

of K are equal to zero and the matrix turns to be block-diagonal, splitting Eq. (3) in

several independent smaller problems [5, 2, 3]. For an orthotropic elastic symmetry,

involving three orthogonal symmetry planes, the problem splits in eight smaller ones,

each corresponding to a different combination of symmetry or antisymmetry in the

three directions of space. This split drastically reduces the computation cost and allows

labeling of the resonant modes according to their belonging to one of the eight symmetry

groups [18]. Additionally, we note that the matrix K has a linear dependence to the

stiffness constants, as it can be seen from Eq. (5). Hence, in an iterative computation

of the resonant frequencies for different sets of elastic properties and a given geometry,

elements of K are linearly obtained instead of being computed from scratch.

A RUS measurement usually focuses on a limited frequency band containing a few

tenth of resonant frequencies. Hence, it is not necessary to consider all the solutions of

the approximation (3) in the inverse problem, but only a number K slightly superior to

the number N of frequencies measured in the investigated band (K > N to account for

the possibility of non-observed frequencies). For polynomials up to an order Λ = 10, the

accuracy on the K = 40 − 50 first resonant frequencies is sufficient [3] (i.e. errors due

to the truncation order are much smaller than other sources of error, such as imperfect

geometry and measurement uncertainty) and the computing time is of the order of a

few hundredths of a second.

2.2. Bayesian formulation of the inverse problem

The Bayesian formulation of the inverse problem includes the estimation of the stiffness

coefficients from measured resonant frequencies, as well as the estimation of the correct
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pairing of the frequencies. We only briefly review the required concepts of Bayesian

inference. Extensive descriptions can be found elsewhere [19, 20].

The purpose of Bayesian inference is to evaluate the posterior probability density

function (pdf) p(m|f) of a d-dimensional vector of parameters m of a probabilistic

model, given some measured data f and some prior information on the parameters

p(m). In our problem, m is a vector of elastic parameters defined from the stiffness

coefficients Cijkl (see section 2.3.2 and Appendix A) and f is a vector containing N

measured resonant frequencies fn. Bayes’ theorem expresses the posterior pdf as a

normalized product of the prior density and the likelihood p(f |m) (the probability of

having obtained the data given the parameters)

p(m|f) = p(m)p(f |m)

p(f)
. (7)

The normalizing term is the marginal likelihood of the data and does not depend on

the parameters. The solution of the inference problem can then be obtained from the

simpler equation

p(m|f) ∝ p(m)p(f |m). (8)

The likelihood p(f |m) describes both the physics of the problem – the assumed

relation between the parameters and the measured data f = g(m) – and the statistics

of measurement and modeling errors. It is usually not possible to separate the

sources of errors and their distribution is therefore difficult to specify. A common

and convenient practice is to assume a multivariate normal distribution of the errors

[19]. We further assume that the errors are uncorrelated and that the variance of

each particular frequency is proportional to the squared frequency, with a unique

proportionality factor σ2. This assumption of a constant relative error on the frequencies

is popular in the usual formulation of the inverse problem in RUS [3, 16], although

the hypothesis of a constant absolute error was also used by some authors [11]. In

the present framework, choosing this last hypothesis would lead to a slightly different

expression of the likelihood (9), but would not implies changes in the sampling method

that is described in the following sections.

As previously stated, we do not know which of the overnumerous predicted

frequencies in the investigated band correspond to the measured frequencies. A

correspondence between the predicted and measured frequencies is called a pairing and is

defined as follows: 1) N predicted frequencies among K are selected, and are considered

as present in the measurement and 2) each of these selected frequencies is uniquely

identified to one of the N measured frequencies. Formally, the possible pairings are

represented by a vector a of K integers. The n-th component of a is equal to 0 if the

corresponding predicted frequency is not paired to a measured frequency (frequency not

observed during the experiment) and equal to k if the corresponding frequency is paired

to the k-th measured frequency (see Fig. 1). With this notation, the likelihood is

p(f |m, σ2, a) ∝ (σ2)−N/2 exp

[

− 1

2σ2

N
∑

n=1

(

gn(m, a)− fn
fn

)2
]

, (9)
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predicted freq.

measured freq.

a = [1, 2, 4, 3, 0, 5, 0, 6, 0]

f 1 f 2 f 3 f 4 f 5 f 6

Figure 1. Example of a possible pairing for a simple fictitious case with N = 6

measured and K = 9 predicted frequencies. The illustrated pairing a shows missing

of some predicted mode during measurement and different orders of appearance of the

vibration modes in the experiment and the model.

where gn is the predicted frequency paired to the nth measured frequency fn for the

pairing a.

If we want to estimate the pairing from the data and if we ignore the magnitude

of the errors, the inference problem is threefold. We want to obtain the joint posterior

pdf of m, a, and σ2,

p(m, σ2, a|f) ∝ p(m)p(σ2)p(a)p(f |m, σ2, a), (10)

where we also introduce prior information on the pairing and the error term.

As often in Bayesian inference, the posterior pdf is too complex for being studied

analytically. A convenient strategy is then to sample the pdf using Monte Carlo

simulations. Then, from a large sample of the pdf, any quantity of interest (e.g. mean

and covariances) can be calculated. In the present work we use Gibbs sampling.

Ideally, the prior distributions should reflect our exact state of knowledge on the

parameters before the data has been collected. However, because that knowledge

can be difficult to translate perfectly into probability distributions and because some

families of distribution are more mathematically convenient for the sampling of the

posterior distribution, the prior distributions are constructed as a compromise between

convenience and introduced information. We describe the prior distributions p(m),

p(a), and p(σ2) in the next sections along the description of the sampling strategy.

2.3. Gibbs sampling

MCMC methods provide a way to sample complicated and multidimensional probability

distributions such as the pdf (10). The idea of MCMC methods is to generate dependent

samples during a random exploration of the posterior pdf. At a given state, a move
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is proposed based only on the current values of the variables (Markov property),

and accepted or rejected based on probabilistic rules. Different set of rules exist to

generate and accept moves, such as the Metropolis and Metropolis-Hasting algorithms

[21, 22, 23], and Gibbs sampling [24, 25, 23]. All ensure that the resulting Markov chain

asymptotically samples the target distribution.

In Gibbs sampling only one variable or sub-group of variables is moved at a time.

The new state of the updated variable is generated from the conditional distribution

of this variable given the data and all other variables at their current values. Our

algorithm is initialized at (m0, σ
2
0) and then samples alternatively from each conditional

distribution:
step 1: a1 ∼ p(a|f ,m0, σ

2
0),

σ2
1 ∼ p(σ2|f ,m0, a1),

m1 ∼ p(m|f , σ2
1, a1),

step 2: a2 ∼ p(a|f ,m1, σ
2
1),

. . .

(11)

After an appropriate number of iterations, the (an,mn, σ
2
n) are samples of the joint

pdf (10). One advantage is that there is no need to choose and fine tune a rule to

generate new states, on which the efficiency of many MCMC algorithms is dependent

[23]. Particularly, we want to sample jointly continuous (m, σ2) and discrete (a)

variables, and it might be difficult to find efficient jumping rules. However, there

are convenient ways to sample from the conditional distributions, which make Gibbs

sampling a sensible choice. The three following sections expose how we sample from the

conditional distributions p(a|m, σ2, f), p(m|σ2, a, f), and p(σ2|m, a, f)

2.3.1. Sampling the conditional distribution of a

The conditional distribution of a is proportional to the product of the likelihood (with

known m and σ2) and the prior on a:

p(a|m, σ2, f) ∝ p(a)p(f |m, σ2, a). (12)

Due to the complicated dependence of the likelihood on a, there is no simple way

to sample from this distribution directly. A solution is to sample it using a MCMC

method embedded inside Gibbs sampling (i.e. called at each iteration of the Gibbs

sampler). Because a is a discrete vector, finding the best a or exploring its distribution

is a combinatorial problem which is in some aspects similar to classical combinatorial

problems such as the traveling salesman problem [26] (TSP; find the shortest route that

visits each city in a given list exactly once and returns to the origin city). An efficient

way to solve this kind of problem is simulated annealing [27, 26], briefly explained here.

From an initial state (a route in the TSP, a pairing in our problem), a new state

is generated and randomly accepted or rejected based on the ratio of the probabilities

of the proposed and current states and on an additional temperature parameter T . For

high temperature, almost all states can be reached, even those of low probability, while
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for low temperature only the moves leading to states of higher probability are accepted.

Temperature is then slowly reduced from high to low values, mimicking the cooling of

materials and ensuring convergence to the global optimum of the problem. Here, we are

not interested only in the best solution but in the distribution of the solutions. We will

therefore stop the temperature decrease at T = 1, the value for which the chain samples

the target distribution, much before “freezing” of the chain in the most probable state.

From a given state aj , a new state aj+1 is generated by inverting two randomly

selected successive components of aj . For that purpose a random integer n is uniformly

generated in [1, N ] and the index i of the component n in a is determined. Then this

component is moved to the right or left with probability 1/2. For a move to the right

we have










aj+1[i+ 1] = aj [i] = n,

aj+1[i] = aj [i+ 1],

aj+1[l] = aj [l] ; ∀ l 6= (i, i+ 1).

, (13)

and similarly for a move to the left. If i = 1 or i = K, the moves to the left and right

respectively are not possible; the only possible move is then selected with probability 1.

The chain moves to the new state with probability

P = min

{

1,
p(aj+1 → aj)p(aj+1)p(f |m, σ2, aj+1)

1/T

p(aj → aj+1)p(aj)p(f |m, σ2, aj)1/T

}

. (14)

The ratio of the proposal probabilities p(• → •) is equal to 1 except for moves involving

a component at index 1 or K, in which cases it can be 1/2 or 2. In all other cases, only

the ratio of the prior probabilities p(aj+1)/p(aj) and the ratio of the likelihoods need

to be calculated. We start the chain at T = 1000 and then decrease T using a scheme

similar to that of Kirkpatrick et al. [27]: after 10 × N accepted moves or 100 × N

attempted moves (first reached) T is multiplied by 0.9. This is iterated until T = 1, the

temperature for which the chain samples the conditional distribution of a. The same

stopping criterion is used at T = 1 and the last sampled pairing is then selected as the

sample from the conditional posterior of a (12).

Since it is done for fixed elasticity, running the simulated annealing algorithm

requires no evaluation of the forward problem, but only computation of the squared

difference in Eq. (9), a much less costly operation. Therefore, running a simulated

annealing chain long of ∼ 104 samples at each step of the Gibbs sampling only accounts

for a small portion of the total computation time.

The formal representation of the pairings considers a fixed number K of predicted

frequencies, that is superior to the number of measured frequencies N to account for the

possibility of non-observed frequencies. However, the number of frequencies that have

been actually missed during the measurement is not always K −N = the total number

of zeros in a. The number of missed frequencies is equal to the number of zeros before

the last non-null component of a. Indeed, the zeros after this component represents

resonant modes whose frequency is higher than the highest measured frequency, so that

they are beyond the investigated frequency band. For example, on the simple case
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depicted on Fig. 1 there is three zeros in the vector a, but the last one does not count

as a missed frequency because it corresponds to a frequency predicted above the last

measured frequency. Another approach could have been to consider a fixed frequency

band instead of a fixed number of frequencies. However, this would have made the

length of the paring vector variable, which would not have been convenient for the

implementation.

Our prior distribution on a depends on the (positive) number k of missed resonant

frequencies, i.e. on the number of zeros in a before its last non-null component. This

prior is a truncated Poisson’s distribution







p(k) ∝ λk

k!
exp(−λ) if k ≤ kmax,

p(k) = 0 if k > kmax,

(15)

where kmax = K−N and λ is the expected number of missed frequencies. The Poisson’s

distribution describes the number of occurrences of a random event in a fixed interval of

time if this event occurs at random, independently of the time since the last occurrence.

In our case, this means that we consider the probability of missing the frequency to

be equal for all modes and independent of whether the preceding has been missed or

not. For a given k, all the possible pairings are considered equiprobable a priori, at the

exception of pairings that identify the first predicted frequency as missed, which are not

considered, i.e p(a) = 0 if a(1) = 0. Indeed, in our experience with RUS measurement,

the first resonant mode is usually easy to observe, hence we excluded the possibility of

having missed it in our treatment of the inverse problem.

The Poisson’s distribution (15) can be rather sharply peaked around λ, which may

not be adequate if only vague information is known about k. In that case, a gamma

prior probability can be attributed to λ instead of a determined value

p(λ) =
βα

Γ(α)
λα−1 exp(−βλ). (16)

In (16), α and β are positive parameters called the shape and rate parameter,

respectively. They determine the mean of the distribution (α/β) and its variance (α/β2,

for β > 0). Using α = 1/2 and β = 0 provide a non-informative prior distribution [28].

In the case where λ is not fixed, an additional Gibbs step must be done to update λ

according its conditional distribution. Given the pairing a (which sets the value of k),

it writes

p(λ|a) ∝ p(λ)
λk/k!

∑kmax

l=0 λl/l!
. (17)

2.3.2. Sampling the conditional distribution of m

The conditional distribution of m is proportional to the product of the likelihood

(with known a and σ2) and the prior on m

p(m|σ2, a, f) ∝ p(m)p(f |m, σ2, a). (18)
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For fixed a, g(m, a) is still a non-linear function and the conditional probability has no

simple exact analytical expression. However, non-linearities are moderate, particularly

around the point of maximal conditional probability for m. A sensible strategy for

this kind of situations, advocated by Tarantola [19], is to find the point of maximal

probability using an iterative gradient-based method and then to approximate the

distribution around this point using the partial derivatives of the function. This is indeed

what it is usually done in RUS, where the stiffness coefficients are found by minimizing

the differences between experimental and predicted frequencies in a least-square sense

using the Levenberg-Marquardt algorithm, and the uncertainties are obtained from an

expansion of the quadratic cost function around the solution [3].

A method to find the point maximizing the probability in Eq. (18) and to

approximate the conditional around this point for a multivariate normal prior on the

elastic parameters m was exposed in a previous work [17] based on Tarantola [19]. It

consists of a quasi-Newton iterative algorithm where m is updated using

mn+1 = mn + (Gt
nCf

−1Gn +Cm
−1)−1

[

Gt
nCf

−1(g(m)− f) +Cm
−1(mn −mprior)

]

,

(19)

where Gn is the matrix of partial derivatives of the resonant frequencies with respect

to each elastic parameter at step n, Cf is the (diagonal) covariance matrix of the data

and mprior and Cm are respectively the mean and covariance of the prior distribution

of m. The conditional (18) is then approximated by a multivariate normal centered on

mfinal with covariance

C̃m ≈ (GtCf
−1G +Cm

−1)−1. (20)

A sample of the approximate conditional can then be generated using the Cholesky

decomposition of C̃m [29]. The quasi-Newton method is stopped when the relative

change in m or in the misfit become smaller than a specified value, set to 10−2. Because

we generate a sample in a normal approximation of the conditional, a more precise

estimation of the center of the distribution (relative to its width) is useless. It usually

requires 1 to 8 computations of the forward problem. These few forward problem solving

steps at each iteration of the Gibbs sampler account for the main part of the total

computation time.

Due to the approximation, the random sample drawn that way is not a sample

of the full conditional (18), which causes the stationary distribution of the Gibbs

sampler to be different from the target distribution (10). To ensure that we sample

the target distribution, the approximation is corrected by introducing a Metropolis-

Hasting rejection step for the samples m, considering the approximation as a proposal

density [23, 30]. If we denote p̃(m) the proposal density, the probability of accepting

the move from m to m∗ is

P (m∗,m) = min

{

1,
p̃(m)p(m∗)p(f |m∗, σ2, a)

p̃(m∗)p(m)p(f |m, σ2, a)

}

. (21)

Strictly speaking, we no longer use Gibbs sampling but a Metropolis-Hasting-within-

Gibbs algorithm [23]. However, since the normal approximation of the full conditional is
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actually very good, the rejection rate is low and we continue to refer to Gibbs sampling

for simplicity.

The described approach requires a multivariate normal prior on the d-dimensional

vector of the elastic parameters m, where d depends on the elastic symmetry of the

material (e.g. for isotropic material d = 2). However, a normal prior on the components

of the elastic tensor tensor Cij is not consistent with the thermodynamical constraints on

the tensor. We therefore did not use the Cij coefficients, but a set of transformed elastic

parameters for which a normal prior is more consistent. The new elastic parameters are

described in appendix for symmetries ranging from isotropy to orthotropy (d = 9).

2.3.3. Sampling the conditional distribution of σ2

The conditional distribution of σ2 is proportional to the product of the likelihood

(with known a and m) and the prior p(σ2):

p(σ2|m, a, f) ∝ p(σ2)
1

σN
exp

[

−NS2

2σ2

]

, (22)

with the sum of squares

S2 =
1

N

N
∑

n=1

(

gn(m, a)− fn
fn

)2

. (23)

A convenient family of prior distribution p(σ2) is the scaled-inverse-chi-square

distribution, which is conjugate to the likelihood. It means that the conditional Eq. (22)

is scaled inverse-chi-square as well [30]. Formally if,

p(σ2) = Inv-χ2(σ2|ν, σ2
prior), (24)

where we use the notation from Gelman et al. [30], then the conditional writes

p(σ2|m, a, f) = Inv-χ2

(

σ2

∣

∣

∣

∣

ν +N,
νσ2

prior +NS2

ν0 +N

)

. (25)

This choice is particularly convenient since it is easy to sample directly from the Inv-χ2

distribution, as it is a particular case of the inverse gamma distribution [30], allowing

one to build a sampler from any routine sampling the gamma distribution. For ν → 0

the prior distribution is p(σ2) = 1/σ2 and is nonimformative, as the conditional (25)

then depends only on N and S and the parameter σprior becomes irrelevant. This value

(ν = 0) was used in the applications (sections 3 and 4).

In practice, we found useful to truncate the prior on σ2 to an upper bound. It

is useful in the early states of the chain, when no pairings producing good fit have

yet been reached. The sampled values of σ2 then tend to be large, which makes the

likelihood flat and the chain to stay in states of poor fit. Truncating the prior on σ2

breaks this vicious cycle and prevents the chain from staying for a long time in states

of low probability before reaching by chance a state of good fit. The upper bound is set

larger than the expected misfit in a successful RUS experiment, so that truncation only

improves convergence with no effect on the stationary distribution.
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2.3.4. Initialization and convergence

To diagnose convergence, L parallel Gibbs chains starting from dispersed points were

run. Since the algorithm starts by sampling the distribution of the pairings (11), we

have to choose or generate L initial values m0 and σ2
0. The initial variance was set to

σ2
0 = 0.012 for each chain. It corresponds to an assumption of relative standard deviation

of 1% on the resonant frequencies, which is of the order of the misfit usually obtained

in RUS [4]. A simple way to generate initial stiffness coefficients is to sample the prior

distribution, but in the case of a broad prior, this starts the chains very far from the

high probability zone and leads to slow convergence. To overcome this problem, we

generated L initial values m0 using importance re-sampling [30]. M ≫ L samples were

generated in the prior distribution, and the distribution of the pairing explored for each

sample using the simulated annealing algorithm (section 2.3.1). The probabilities of all

the distinct pairings sampled at T = 1 were summed, giving an approximation of the

marginal probability of each proposed m0

p(m0|f , σ2
0) ∝

∑

a

p(a,m0|f , σ2
0). (26)

The marginal probabilities (26) were used as weights to randomly select L values among

the M proposed, each having a chance proportional to its weight to be selected.

After letting the chains run for a while, we assessed convergence using the criterion

from Gelman et al. [30]. For each scalar parameter, a ratio R of the between-chain

to within-chain variance was computed. A ratio close to one indicates that all the

chains are sampling the same area of the posterior pdf. Although it is not our purpose

to discuss the difficult problem of assessing convergence of MCMC, we note that it is

only an indication of possible convergence, but in no way a proof. We considered that

convergence was reached when R < 1.1 for all scalar parameters (stiffness and variance).

All the computations in this paper were performed on a desktop computer with

8 computing cores (2 quad-core Intel Xeon E5620 @2.4GHz processors), with a chain

running independently on each core. The algorithm was coded using Matlab R©. To

assess convergence, it was necessary to regularly pause the chains and pool them to

compute the ratios R. This was done after each segment of 100 iterations. The L = 8

starting points were selected from M = 1000 draws from the prior.

3. Application 1 - Data from Ogi et al., 2002

For the first illustration of the proposed method we used the resonant frequencies

published by Ogi et al. [7] for a specimen of polycrystalline aluminum alloy (isotropic

symmetry). The paper contains all the necessary information about the specimen:

dimensions, mass, and the values of the 42 first measured resonant frequencies.

Additionally, the exact mode identification obtained by laser interferometry is given, in

the form of a group symmetry label identifying uniquely each measured resonant mode

[18]. The group symmetry labels are an output of the forward model (section 2.1), and



Bayesian approach to the inverse problem in resonant ultrasound spectroscopy 13

can be unambiguously attributed to the experimental frequencies in laser-based RUS

from a comparison of the predicted and experimental modal shapes. This application

is an interesting test for our method, since this dataset was initially presented to

demonstrate the ability of laser-based RUS to solve the inverse problem in a case where,

according to the authors, it would have been very difficult with the measurement of

the frequencies alone. We report here that the method presented above can be used to

estimate accurate stiffness coefficients without using the laser data and without requiring

an informative prior on the stiffness.

3.1. Prior distributions

Ogi et al. [7] emphasize on the ability of laser-based RUS to find the correct pairing

of frequencies even in difficult situation by starting with very unrealistic guess of the

stiffness constants: C11 = 300 and C44 = 50 Gpa (“true” values are close to 109 and

27 Gpa, respectively). We therefore centered our prior distribution on these values by

fixing mprior = [0 ; 0], with (see appendix)

m1 = log

(

C11 − 4
3
C44

300− 4
3
50

)

, (27a)

m2 = log

(

C44

50

)

. (27b)

We then constructed a weakly informative prior by choosing the covariance matrix to be

0.1 times the 2-by-2 identity matrix I2, which gives a broad distribution in the stiffness

space (Fig. 2).

For the pairing, we considered the K = 50 first predicted frequencies, letting room

for up to kmax = 8 potentially non-observed frequencies. The expectation λ was set to

1. It gave equally high prior probability (≈ 0.37) of having missed k = 0 and k = 1

resonant frequencies and a decreasing probability for larger k, thus reflecting our prior

knowledge that the frequencies are easily measured on a very low damping material.

We used the noninformative prior p(σ2) = 1/σ2 for the variance by setting ν = 0

in Eq. (25). We set an upper boundary of σ2 < 0.032, corresponding to a misfit of 3%

between predicted and measured frequencies, much larger that what can be expected

from a successful RUS experiment.

3.2. Results and discussion

The 8 starting points generated from the procedure described in Section 2.3.4 are located

by crosses in Fig. 2. We see that the 8 starting values of C44 are close. This is due to

the fact that the first predicted mode is usually an almost pure shear mode, depending

mainly on C44. Since this mode is always paired with the first measured frequency, it

has the effect of almost fixing the shear coefficient C44 close to the correct value. The

coefficient C11 remains largely undetermined at this step.
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corresponding to the bivariate normal prior distribution on m, centered on m1 and m2
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Figure 3. Application 1: values of C11 sampled for the 100 first iterations of the 8

Gibbs chain. After 40 iterations, all the chains have converged to the same location.

Convergence of the 8 parallel chains was observed at the first convergence test,

after 100 iterations of the Gibbs sampler, but we let them run for 900 more iterations

(∼ 4 min of computation time). The convergence was indeed reached after about 40

iterations, as it can be seen on Fig. 3. After discarding the 100 first samples, chains

were pooled and the sampled m transformed back to stiffness coefficients to evaluate the

posterior distribution. Any other elastic modulus (e.g. Young’s modulus or Poisson’s
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Figure 4. Application 1: Histograms of the stiffness coefficients and error term

σ obtained from Gibbs sampling using the frequency data of the alluminium alloy

specimen from Ogi et al. [7].

Table 1. Application 1: parameters estimated from the proposed Gibbs sampling

method for the data from Ogi et al. [7], compared to estimations knowing the exact

pairing of the frequencies.

Gibbs Exact pair. Ogi et al. [7]

Nb freq. 42 42 > 80

C11 (GPa) 108.8 (0.9) 109.0 (0.7) 109.26

C44 (GPa) 26.68 (0.03) 26.68 (0.02) 26.72

std (%) 0.24 0.23 0.2

ratio) could also have been calculated.

The histograms for C11, C44, and σ are plotted on Fig. 4. It can be observed that

the marginal posterior distributions of the stiffness constants have a normal shape while

the marginal for σ is asymmetric. The posterior means and standard deviations for C11,

C44 were respectively taken as the estimate of the stiffness constant and uncertainties.

For σ, the point of maximum marginal posterior probability was estimated from the

histogram. The results are given in Table 1, and compared to the estimates obtained

assuming the exact pairing. These estimates were obtained from the quasi-Newton

method described in section 2.3.2. In that case the estimated standard deviation is the

relative root-means-square error between measured and predicted frequencies at the end

of the fit. The result obtained with uncertain and exact pairing are almost identical and

the uncertainties are only slightly larger in the first case, which shows that the approach

proposed here produces results that are almost as accurate and precise as the results

obtained using the exact pairing deduced from laser measurements. We also recall the

values obtained by Ogi et al. using more than 80 frequencies with exact pairing (only

the 42 first frequencies were given in the paper). The values are slightly different but

agree with the uncertainty intervals.

The 42 published frequencies correspond to the actual 42 first resonant modes

of the specimen (no missed frequencies). Our algorithm correctly and unambiguously

identified that no frequency was missed, i.e. we obtained p(k = 0) = 1. Moreover,

since the exact pairing is known we can compare the pairings obtained through Gibbs
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sampling to the correct pairing. In Table 2, the sampled group symmetry labels for

each mode are listed against the exact label obtained from Laser interferometry. We

can see that 18 out of 42 modes are uniquely paired and that a total of 32 modes are

confidently identified (> 95% probability) with the correct predicted mode. The other

modes are identified with larger uncertainties and with up to 4 possibilities of pairing.

However, the most probable mode label is always the correct one, except for two pairs

of modes that were inverted (modes 38 − 39 and 41 − 42). All cases of uncertain or

inexact identifications correspond to resonant frequencies that are very close to each

others, compared to the estimated standard deviation of the experimental frequencies

(0.24%). It is then not surprising that these frequencies cannot be confidently paired

to a unique predicted frequency. But we argue that it is precisely in those cases that

the exact pairing matters the less. Indeed, inverting two or more frequencies that are

separated by less than the standard deviation can only have a negligible influence on

the estimated stiffness.

The correct pairing was obtained by the method (except for some very close modes)

using only the frequencies, which shows that the information on the vibration modes is

indeed contained in the distribution of the frequencies. Then, getting the modal shapes

experimentally only provides redundant information here.

3.3. Additional results

We solved the inverse problem for the same data set but for a more general assumption

of orthotropic elastic symmetry. The prior distribution was centered on C11 = 100,

C22 = 150, C33 = 200, C12 = 70, C13 = 60, C23 = 50, C44 = 20, C55 = 30, C66 = 40,

with a covariance matrix again equal to 0.1 times the identity matrix. After about 1000

iterations the 8 chains were eventually sampling the same peak of the pdf and were run

for 20000 additional samples. The sampled values of the orthotropic elastic coefficients,

presented in Table 3, are very similar to the isotropic ones and to those obtained with

the exact pairing. It shows that the proposed algorithm is able to accurately and

automatically estimates 9 orthotropic stiffness constants, without requiring to measure

the modal shape of the modes nor to specify an informative prior. Convergence could

have been greatly improved with the use of an informative prior, which may actually be

available in many practical applications.

We also applied the method to two additional data sets, published in another paper

proposing an experimental method for the measurement of the modal shapes of the

modes [6]. The data consists in 15 resonant frequencies measured on an isotropic Ni80P20

alloy specimen and 31 frequencies measured on a cubic YbAl specimen. In both case the

algorithm performed very well and accurately estimated the stiffness constants, starting

from a broad prior distribution (results not shown). The first of these two data sets is

particularly interesting since three predicted resonant frequencies were not measured.

The algorithm unambiguously identified k = 3 missing frequencies: p(k = 3) = 1.

Finally, we tested the robustness of the method to the expected number of missed
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Table 2. Application 1: experimental resonant frequencies and group symmetry

label from Laser-based RUS measurement [7] and group symmetry labels proposed

during Gibbs sampling with their percentage of occurrence. Labels indicate belongings

to one of the 8 distinct symmetry groups and the ordering in each group, following the

notation introduced by Mochizuki [18].

# fmeas (kHz) Mode (Laser) [7] Modes Gibbs (% of occurrence)

1 116.716 Au-1 Au-1 (100) - - -

2 143.783 Au-2 Au-2 (100) - - -

3 158.081 B1u-1 B1u-1 (100) - - -

4 166.500 B2u-1 B2u-1 (100) - - -

5 169.523 B1g-1 B1g-1 (100) - - -

6 177.846 B2g-1 B2g-1 (100) - - -

7 183.875 B3u-1 B3u-1 (99.2) B3g-1 (0.8) - -

8 186.047 B3g-1 B3g-1 (99.2) B3u-1 (0.8) - -

9 190.341 Ag-1 Ag-1 (100) - - -

10 197.386 B1u-2 B1u-2 (100) - - -

11 201.136 Ag-2 Ag-2 (100) - - -

12 207.386 B3g-2 B3g-2 (100) - - -

13 209.836 Ag-3 Ag-3 (100) - - -

14 214.753 B2g-2 B2g-2 (100) - - -

15 223.548 B3u-2 B3u-2 (100) - - -

16 231.266 B2u-2 B2u-2 (100) - - -

17 233.538 B3g-3 B3g-3 (99.1) B1g-2 (0.9) - -

18 234.717 B1g-2 B1g-2 (99.1) B3g-3 (0.9) - -

19 250.980 Ag-4 Ag-4 (55.0) Au-3 (44.7) B2g-3 (0.3) -

20 251.256 Au-3 Au-3 (54.6) Ag-4 (44.7) B2g-3 (0.7) -

21 252.742 B2g-3 B2g-3 (99.0) Au-3 (0.7) Ag-4 (0.3) -

22 256.122 B1u-3 B1u-3 (98.4) B3u-3 (1.5) Ag-5 (0.1) B2u-3 (0.0)

23 257.595 B3u-3 B3u-3 (72.6) Ag-5 (19.6) B2u-3 (6.3) B1u-3 (1.5)

24 258.118 Ag-5 Ag-5 (51.0) B2u-3 (25.9) B3u-3 (23.0) B1u-3 (0.1)

25 259.035 B2u-3 B2u-3 (67.9) Ag-5 (29.3) B3u-3 (2.8) -

26 268.540 B1g-3 B1g-3 (100) - - -

27 277.113 B2u-4 B2u-4 (99.9) B3u-4 (0.1) - -

28 278.762 B3u-4 B3u-4 (99.9) B2u-4 (0.1) - -

29 282.311 B1u-4 B1u-4 (100) - - -

30 293.686 B3u-5 B3u-5 (100) - - -

31 304.159 B2u-5 B2u-5 (58.9) B1u-5 (41.1) - -

32 304.464 B1u-5 B1u-5 (58.9) B2u-5 (41.1) - -

33 310.109 B1u-6 B1u-6 (100) - - -

34 316.197 B1g-4 B1g-4 (97.7) B2g-4 (2.3) - -

35 317.392 B2g-4 B2g-4 (97.7) B1g-4 (2.3) - -

36 326.462 Au-4 Au-4 (100) B3g-4 (0.0) - -

37 329.034 B3g-4 B3g-4 (100) Au-4 (0.0) - -

38 332.441 Ag-6 B2u-6 (70.9) Ag-6 (29.1) - -

39 333.364 B2u-6 Ag-6 (70.9) B2u-6 (29.1) - -

40 336.650 B1g-5 B1g-5 (69.6) Ag-7 (18.8) B2g-5 (11.6) -

41 337.359 B2g-5 Ag-7 (38.1) B2g-5 (36.7) B1g-5 (25.1) -

42 338.276 Ag-7 B2g-5 (51.7) Ag-7 (43.1) B1g-5 (5.2) -
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Table 3. Application 1: stiffness constants (in GPa) estimated from the data from

Ogi et al. [7] for a more general orthotropic elasticity assumption (see section 3.3).

Gibbs Exact pairing Ogi et al. [7]

C11 108.9 ± 0.8 109.3 ± 0.6 109.26

C22 108.7 ± 0.6 109.0 ± 0.5

C33 109.3 ± 0.6 109.5 ± 0.4

C12 55.5 ± 0.7 55.9 ± 0.5 55.82

C13 55.5 ± 0.7 55.8 ± 0.5

C23 56.3 ± 0.6 56.6 ± 0.4

C44 26.95 ± 0.06 26.96 ± 0.05 26.72

C55 26.52 ± 0.06 26.52 ± 0.05

C66 26.85 ± 0.05 26.84 ± 0.04

frequencies λ. We attributed to λ a noninformative prior, in the form of a gamma prior

– Eq. (16) – with α = 1/2 and β = 0 [28]. For all the applications described above, the

algorithm converged to the same results, although convergence was somewhat longer. It

shows that the method is weakly sensitive to λ for these data sets. Hence, setting λ = 1

or another low value should be adequate for applications to low damping materials.

4. Application 2 - Data from Bernard al., 2013

The second application deals with the recently developed application of RUS to highly

attenuating materials [17] and in particular to cortical bone [16]. This application leads

to an even more difficult identification problem. Indeed, due to the high amount of

vibration damping, the spectrum of the specimen is not composed of sharp resonant

peaks, but of broad and overlapping peaks. The frequencies must then be estimated

through signal processing [31, 16, 17]. Due to overlapping, it is likely that some

frequencies are missed during the measurement and there is no simple way to tell which

modes are more likely to be missed [17]. We do not discuss here signal processing and

we consider the resonant frequencies as given input data.

We applied the method described above to the 20 resonant frequencies measured by

Bernard et al. [16] for a specimen of human femoral cortical bone. In that case, the exact

pairing of the measured frequencies was not known, but an independent measurement

of the stiffness coefficients was available to evaluate the results.

4.1. Prior distributions

The measured specimen was taken in a population of 21 femoral bone specimens whose

diagonal elastic coefficients (Cii, i = 1, ..., 6) were previously measured using ultrasonic

bulk waves velocities [32]. It was then possible to construct a prior distribution using

the previous results obtained for the whole population. For the transformed parameters

m corresponding to the diagonal coefficients (see Appendix A) the center of the prior
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Figure 5. Application 2: prior probability in the space of the stiffness coefficients

corresponding to the multivariate normal prior distribution on m. The contour lines

embed respectively 10, 68, 95, 99, and 99.99 % of the distribution. The cross locate

the randomly generated starting points of the 8 Gibbs chains.

distribution was fixed using the mean values of the measured coefficients, which are

C11 = 19.3, C22 = 19.8, C33 = 29.2, C44 = 5.8, C55 = 5.6, and C66 = 4.3 (in GPa). Since

the three off-diagonal coefficients C12, C13, and C13 were not measured, their prior were

centered on Cij = C11−2×C66 = 10.7 GPa. Variances and covariances of the parameters

corresponding to the diagonal coefficients were estimated from the population results.

No covariances were assumed between the off-diagonal and the diagonal coefficients, nor

between the three off-diagonal coefficients. Their variances were fixed to 0.05. This

gives the following prior covariance matrix for m:

0.01×

































C11 C22 C33 η12 η13 η23 C44 C55 C66

1.35 1.24 1.19 0 0 0 1.41 1.71 1.72

1.24 1.40 1.19 0 0 0 1.48 1.63 1.79

1.19 1.19 1.27 0 0 0 1.42 1.66 1.64

0 0 0 5 0 0 0 0 0

0 0 0 0 5 0 0 0 0

0 0 0 0 0 5 0 0 0

1.41 1.48 1.42 0 0 0 1.84 1.93 2.04

1.71 1.63 1.66 0 0 0 1.93 2.48 2.40

1.72 1.79 1.64 0 0 0 2.04 2.40 2.58

































. (28)

Three 2D sections of the prior distribution are plotted on Fig. 5. The assumed a

priori correlation between C11 and C33 on one hand, and C55 and C66 on the other hand,

can be observed.

For σ2, the same nonimformative prior as in application 1 was used. The expected

number of missed frequencies λ was not fixed, but an noninformative prior was attributed

to it (section 3.3).
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4.2. Results and discussion

The 8 randomly generated starting points are shown on Fig. 5. In that case, all

coefficients show some scattering. This is due to anisotropy. Indeed, although the

first predicted mode is still an almost pure shear mode, it depends on a combination of

the three shear coefficients.

Convergence of the Gibbs chains was indicated after about 500 iterations, but the

chains were stopped after 5000 samples (about 20 minutes of computing time). The

values of the elastic parameters sampled after convergence were transformed back to

the coefficients Cij. Histograms of the 9 stiffness coefficients and the standard deviation

σ are represented on Fig. 6. Again, the marginal posterior distributions for the elastic

coefficient look normal, while the distribution of σ is asymmetric. The mean values of

the Cij are given in Table 4. They are compared to the results obtained for a fixed

pairing, that was obtained manually [16] and to the independent results obtained from

wave velocities measurements. Good agreement is observed between the three results.

Particularly, no significant difference is observed between results from RUS with fixed

pairing and from Gibbs sampling.

Despite the non-informative prior on λ, the number of missed frequencies was

unambiguously identified to k = 10 [p(k = 10) = 0.988], the same number that was

obtained from manual pairing [16].

In this application to a highly attenuating material, an informative prior on the

stiffness is necessary for the identification of the pairing and then the estimation of the

stiffness. Due to the low number of measured frequencies (20) relative to the number of

elastic parameters (9), the pairing cannot be entirely determined from the distribution of

the frequencies, contrary to the previous application. This is a limitation of the proposed

approach, however compensated by the potential availability of prior information in

many applications.

The prior distribution of the elastic parameters was constructed from available

results for a population of similar samples. In some practical applications, this might

be done through review of reported elasticity for similar materials. In some context,

like composites materials, a prior distribution might also be obtained from theoretical

predictions of elasticity. If no prior is available, it might be necessary to perform

preliminary measurements, for instance of ultrasonic bulk wave velocities in some

material directions.

5. Conclusion

We presented a method based on Bayesian inference and MCMC sampling to

automatically solve the inverse problem in RUS, including the identification of the

resonant frequencies, without requiring the measurement of the modal shapes associated

to each resonant frequency. The proposed statistical approach required more forward

problem solving than the conventional optimization method, but convergence was
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Figure 6. Application 2: histograms of the stiffness coefficients and error term σ

obtained from Gibbs sampling using the frequency data of the bone specimen from

Bernard et al. [16].

Table 4. Application 2: stiffness constants (in GPa) estimated using Gibbs sampling

and using a fixed pairing, and results from bulk wave velocity measurements. Data for

a human femoral cortical bone specimen [16].

Gibbs Fixed pairing [16] BWV [16]

C11 20.9 ± 0.6 20.3 ± 0.6 21.6

C22 21.3 ± 0.7 20.2 ± 0.6 21.4

C33 31.7 ± 0.9 31.7 ± 0.8 31.3

C12 11.6 ± 0.6 10.7 ± 0.6 -

C13 13.8 ± 0.6 13.4 ± 0.7 -

C23 14.1 ± 0.7 13.4 ± 0.7 -

C44 6.38 ± 0.06 6.38 ± 0.02 6.5

C55 6.31 ± 0.07 6.32 ± 0.03 6.5

C66 4.79 ± 0.04 4.80 ± 0.02 4.8

std (%) 0.43 0.30 -

obtained within a very reasonable time: about a few minutes or a few tens of minutes,

depending on the application. In our experience with RUS, this is less than the time

required for specimen preparation and spectrum measurement, so that computing time

should not be considered as a limitation.

Faster deterministic alternatives to MCMC exist, usually based on the

approximation of the posterior distribution in a parametric form. Such methods include

Variational Bayes methods, in which the parameters of the approximated posterior are

obtained iteratively, and the method we used in section 2.3.2 to sample the elastic

parameters by reaching the point of maximum posterior probability and approximating

the posterior around this point. Despite the fact that they are faster than MCMC,

these methods may not be viable alternatives here because they are less general, prone

to trapping into local optima, and might fail to take care of the discrete part of the
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problem at hand (i.e. finding the correct pairing).

In the context of RUS applied to weakly attenuative materials (application 1),

where many resonant frequencies are easily measured, we showed that the method

allows estimating the stiffness constants with high accuracy and precision, without

requiring introduction of prior information. For the more difficult application of RUS to

attenuating materials (application 2), less resonant frequencies can be measured. The

joint estimation of the pairing and stiffness constants can then be ambiguous. However,

the Bayesian formalism allows to including the available prior information to resolve the

ambiguities.

The method was illustrated for anisotropy up to the orthotropic symmetry

(9 stiffness coefficients). In principle, there is no restriction on the number of parameters

that can be estimated, and the method could therefore be generalized to lower elastic

symmetry and/or to the joint estimation of the Euler’s angles in the case of misoriented

specimens [33] (i.e. when the principal axis of elastic symmetry are not aligned with the

edges of the specimen) or to the measurement of piezoelectric properties of materials

[34, 8, 9]. In such applications, the simple sampling method proposed here might be

less efficient and the use of methods particularly dedicated to sampling highly complex

distributions, such as parallel tempering [35], could be necessary. This is a possible

direction for future research.
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Appendix A. Transformed elastic parameters

Appendix A.1. Isotropic symmetry

The isotropic stiffness tensor is, in the two index notation:

Cij =



















C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44



















, (A.1)

with the relation C12 = C11 − 2C44. It involves two parameters. Thermodynamics

constraints requiring the tensor to be positive-definite are

C11 >
4

3
C44 > 0. (A.2)
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The use of C11 and C44 as random variables in the Bayesian formulation implies two

difficulties in the definition of a prior distribution: 1) their positiveness is not consistent

with a normal distribution and 2) they must satisfy C11 > (4/3)C44, and should then

be statistically dependent variables. Constraints (A.2) transform to:

{

K = C11 −
4

3
C44 > 0 ; G = C44 > 0

}

, (A.3)

where K and G are respectively the bulk and shear modulus, two statistically

independent random variables. Their logarithms

m1 = log(K/K0), (A.4a)

m2 = log(G/G0), (A.4b)

with arbitrary constants K0 and G0 are consistent with a normal distribution on

m = [m1; m2].

Appendix A.2. Cubic symmetry

The cubic elastic tensor is (A.1), without the relation between C12 and the two other

parameters. Positive-definiteness is obtained with positiveness of the bulk modulus K

and of the two shear modulus G1 and G2, defined as [36]:

K = (C11 + 2C12)/3, (A.5a)

G1 = (C11 − C12)/2, (A.5b)

G2 = C44. (A.5c)

The logarithms m1, m2, and m3 of K, G1 and G2 are statistically independent variables

consistent with a normal distribution.

Appendix A.3. Transversely Isotropic symmetry

The transversely isotropic stiffness tensor is:

Cij =



















C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66



















, (A.6)

with the relation C12 = C11 − 2C66, and therefore involves five parameters. A necessary

and sufficient set of conditions for positive-definiteness is [37]

{

C11 > C66 > 0; C44 > 0; C33(C11 − C66) > C2
13

}

. (A.7)
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Denoting κ = C11 − C66, it transforms to

{κ > 0 ; C66 > 0; C44 > 0; C33 > 0} , and (A.8a)

−1 < x =
C13√
C33κ

< 1. (A.8b)

This last variable x can be transformed to a positive variable using η = (1+ x)/(1−x),

and we then have five independent positive variables {κ; C33; η; C44; C66} that can

be mapped onto variables mi (i = 1, ..., 5) defined from −∞ to +∞ by taking their

logarithm.

Appendix A.4. Orthotropic symmetry

The orthotropic stiffness tensor is:

Cij =



















C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66



















, (A.9)

with no relation between the coefficients. It involves nine parameters. The conditions

for positive-definiteness are that all the principal minors (determinants of the k × k

sub-matrices for k = 1, ..., 6) of (A.9) are positives [37]. Although it may exists a set of

nine independent real-valued variables that satisfies this conditions, we did not find a

simple transformation leading to such a parametrization. Instead, we use the logarithms

of the positives parameters {C11; C22; C33; η12; η13; η23; C44; C55; C66;} with

ηij =
1 + Cij/

√

CiiCjj

1− Cij/
√

CiiCjj

. (A.10)

This parametrization ensures that all the principal minors of order 1 and 2 are positive

but does not guaranty

det







C11 C12 C13

C12 C22 C23

C13 C23 C33






> 0. (A.11)

Hence the prior distribution on m must be a truncated normal, attributing zero

probability for non positive-definite tensors. It was obtained by rejecting the non

positive-definite samples during Gibbs sampling .
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