Height representation of XOR-Ising loops via bipartite dimers

Abstract : The XOR-Ising model on a graph consists of random spin configurations on vertices of the graph obtained by taking the product at each vertex of the spins of two independent Ising models. In this paper, we explicitly relate loop configurations of the XOR-Ising model and those of a dimer model living on a decorated, bipartite version of the Ising graph. This result is proved for graphs embedded in compact surfaces of genus g. Using this fact, we then prove that XOR-Ising loops have the same law as level lines of the height function of this bipartite dimer model. At criticality, the height function is known to converge weakly in distribution to 1 √ π a Gaussian free field [dT07b]. As a consequence, results of this paper shed a light on the occurrence of the Gaussian free field in the XOR-Ising model. In particular, they prove a discrete analogue of Wilson's conjecture [Wil11], stating that the scaling limit of XOR-Ising loops are " contour lines " of the Gaussian free field.
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2014, 19, pp.80. <10.1214/EJP.v19-2449>
Liste complète des métadonnées


http://hal.upmc.fr/hal-01316626
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mardi 17 mai 2016 - 14:17:55
Dernière modification le : lundi 29 mai 2017 - 14:22:17
Document(s) archivé(s) le : vendredi 19 août 2016 - 16:51:59

Fichier

2449-18554-1-PB.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

UPMC | INSMI | USPC | PMA

Citation

Cédric Boutillier, Béatrice De Tilière. Height representation of XOR-Ising loops via bipartite dimers. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2014, 19, pp.80. <10.1214/EJP.v19-2449>. <hal-01316626>

Partager

Métriques

Consultations de
la notice

87

Téléchargements du document

43