Entropic Ricci curvature bounds for discrete interacting systems

Abstract : We develop a new and systematic method for proving entropic Ricci curvature lower bounds for Markov chains on discrete sets. Using different methods, such bounds have recently been obtained in several examples (e.g., 1-dimensional birth and death chains, product chains, Bernoulli–Laplace models, and random transposition models). However, a general method to obtain discrete Ricci bounds had been lacking. Our method covers all of the examples above. In addition, we obtain new Ricci curvature bounds for zero-range processes on the complete graph. The method is inspired by recent work of Caputo, Dai Pra and Posta on discrete functional inequalities.
Type de document :
Article dans une revue
The Annals of Applied Probability : an official journal of the institute of mathematical statistics, The Institute of Mathematical Statistics, 2016, 26 (3), pp.1774-1806. <10.1214/15-AAP1133>
Liste complète des métadonnées

http://hal.upmc.fr/hal-01358648
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : jeudi 1 septembre 2016 - 11:14:31
Dernière modification le : lundi 29 mai 2017 - 14:27:00

Identifiants

Collections

UPMC | INSMI | USPC | PMA

Citation

Max Fathi, Jan Maas. Entropic Ricci curvature bounds for discrete interacting systems. The Annals of Applied Probability : an official journal of the institute of mathematical statistics, The Institute of Mathematical Statistics, 2016, 26 (3), pp.1774-1806. <10.1214/15-AAP1133>. <hal-01358648>

Partager

Métriques

Consultations de la notice

92