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Abstract. Fluids loaded with motile bacteria enter in the category of
active matter, a new field currently developing at the convergence of
biology, hydrodynamics and statistical physics. Such suspensions were
shown recently to exhibit singular hydrodynamic transport properties.
In this paper we review some recent results, either theoretical or exper-
imental, on the active fluid rheology. We focus principally on bacteria
suspensions and the objective is to provide the basis for understanding
the emergence of the singular constitutive relations characterizing the
macroscopic transport properties of such an active fluid under flow.

1 Introduction

Animals locomotion displays fascinating collective properties originating from inter-
play between individual self-propulsion and interactions among individuals in the
group [1]. The notion of interaction is in itself a complex issue. It involves local order-
ing through contacts or longer range interactions mediated by the surrounding fluid
and also, something more behavioural implying chemical sensing or cognitive deci-
sion. In spite of the large lexical variety describing these phenomena (mobs, herds,
flocks, shoals, swarms), that applies to different animals moving in concert at different
scales, it is only recently that physicists have elaborated the paradigmatic concept of
active fluids. This notion enforces the statistical physics credo that more is different [2]
meaning that at some scales will emerge a unified physical entity ruled by macroscopic
transport equations associated with constitutive relations. However, the nature of the
emergent fields (stress, velocity, density), usually coupled with order parameters de-
scribing the local interaction processes, differs strongly from what is currently known
for the standard physics of fluids. Theoretically, the phenomenological approaches
highlight that due to the intrinsic symmetries of the microscopic interactions as well
as the biological activity stemming from self-propulsion, many well-accepted notions
describing matter at thermal equilibrium should be deeply revisited [3].
Fluids loaded with swimming micro-organisms are systems of choice to study these
problems[4]. In recent studies, bacterial fluids were shown to revisit classical equilib-
rium properties of matter such as Brownian motion [5–7], Ficks law [8,9,11], spon-
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taneous collective organization and low-Reynolds turbulence [13–16], and viscous re-
sponse [17,52,18,19]. Experimentally these systems are rather easy to control and
the recent advances in microfluidic technologies open the possibilities to fabricate
environments where the biological activity and the motion in a flow can be assessed
and controlled with great reliability [10–12]. Therefore, a true bottom/up approach
of those active suspensions can be undertaken in order to establish the micro/macro
passage on firm experimental ground.
The aim of the present course notes is to offer a synthetic presentation on bacterial
suspension viewed as an active fluid and also to describe some recent experimental
results illustrating the emergence of constitutive relations for bacterial suspensions
under flow. This presentation is made in the context of recent advances in statisti-
cal mechanics of active suspensions developed from microscopic kinetic models hence
providing a fundamental basis to describe the very peculiar rheology of active fluids
at a macroscopic scale.

2 The small force kingdom

2.1 Swimming strategies

Due to their sizen, micro-organisms or active colloids moving in a fluid, cannot rely
on inertia to propel autonomously. The fastest ones, can swim up to 10 times their
body size in a second. Consequently, the corresponding Reynolds number is quite
small (10−5 − 10−3). The motility is thus governed by the Stokes equations (see the
review by Winkler et al. [?] in this series ).

−∇P + η∇2u = 0 (1)

∇.u = 0 (2)

where P and u are the fluid pressure and velocity. The Stokes equation for which
time explicitly disappears, induces many important consequences for the propelling
strategies. The most striking one is that any reciprocal motion implying the swimmer
boundaries can not lead to net motion. This is called the ”reciprocal theorems” or
sometimes the ”scallop theorem” [20]. To beat the time reversibility there are few
strategies developed through evolution by the micro-organisms (For a review see for
ex. Lauga et al. [21] or the book by Childress [22] and refs inside). For example, the
production of a backwards undulation waves via the beating of a flagellum such as for
sperms (see the review by Kaupp et al. [?] in this series ), produces a forwards motion.
Generally, the production of waves, either tangential or normal to a body surface can
be used for swimming at zero Reynolds. Such a scheme is developed by paramecia that
can trigger metachronal surface waves of a cilia carpet in either direction, to move
forwards and backwards. Also, some micro-organisms such as the mono-cellular algae
Chlamydomonas Reinhardtii (eukaryotic organism, well studied by biologists) use two
frontal flagella to swim a ”breast-stroke” (see the review by Polin et al. [?] in this
series ), meaning that the flagellum shape changes in different parts of the swimming
cycle in order to induce a non-reciprocal motion. There is however another important
case developed by many prokaryotes (essentially bacteria) lacking the possibility to
activate internally a flagellum, contrarily to eukaryotic cells. Those micro-organisms
use the rotation of helicoidal flagella attached to the body via a nano scale rotary
motor [23]. The right association of the motor rotation and the flagellum helical
handedness creates a thrust on the body coming from the back. It is important to
see that, the case of Chlamydomonas Reinhardtii it is exactly the opposite, the body
is pulled forwards by the flagella apparatus. Therefore both situations corresponds
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respectively to ”pusher” and ”puller’ swimming strategies and we will develop in the
following, important hydrodynamical consequences based on this fact.

2.2 Scale of the driving forces

If a micro-organism swims autonomously in a fluid, the necessary momentum con-
servation implies that there can not be any net force nor net torque acting on the
fluid. Therefore, if there is a pushing (or pulling) force acting externally on the body
there has to be an exactly opposite force acting on the propelling apparatus, essen-
tially coming from the body drag resistance to motion. The same reasoning stands
for torque. By law of action and reaction a thrust with a force f means of course
a similar force counteracting on the surrounding fluid (with the opposite sign). At
this point, it is important to notice that for any fluid, there is an intrinsic force scale
F associated with the value of the viscosity η0 and the mass density ρ : F = η20/ρ.
Therefore, motion at finite Reynolds number requires forces of typical magnitude:

f = Re F = Re η20/ρ (3)

Since the motion takes place at low Reynolds numbers, these forces are generically
small with respect to the intrinsic fluid force scale (i.e. the ”small force kingdom”).
From the biological point of view, it is a source of energetic expense, crucial to assure
motility and survival of the micro-organism. However, quantitatively, one must realize
that the propulsive power is not likely to burden the global metabolic budget of
the cell, only few percent [20]. Put in the pleasant phrasing of E.M.Purcell - in the
midst of the 1970’s oil crisis- a motile bacterium would feel ”like driving a Datsun in
Saudi Arabia”. Indeed this has practical importance for the “minimal media” usually
used as the surrounding fluid in which the bacterial suspension is prepared. This
preparation is essentially composed of amino-acids and low sugar sources for energy.
In response to this thinning regime, the bacteria would rather give-up splitting or
making biofilms out of extracellular matrix production, two energetically expensive
activities, but keep on swimming actively. This is how in practice controllable active
suspensions are prepared. Let us consider for example, a bacterium like Escherichia
Coli (E.coli) propelled via a bundle of half a dozen of rotating flagella at a velocity
around V0 = 25µm/s. The body size is typically a = 2µm. Therefore in water, the
Reynolds number being Re ≈ 10−4 the propelling force is f ≈ 0.1pN . The energy
needed to move fluid elements on the order of a bacterium size l ≈ 10µm (including
the flagella ) is :

σ0 = fl ∝ η0V0l2 (4)

This important energy scale is often called the ”dipolar strength”, a name which jus-
tification will be exposed in the next sub-chapter. From the mechanical point of view
the dipolar strength is a central characterization of the organism motile activity. E.coli
for example, yields σ0 ≈ 10−18J , a value overcoming by 2-3 three orders of magnitudes
the thermal energy scale (kBT ) and typically of the order of the Hamaker constants
the characterizing the high energy surfaces. Consequently, very often bacteria stick
to glassy surfaces unless some polymeric coating is used (then the Hamaker constant
≈ kBT ≈ 10−21J). For such bacteria, the propulsion velocity, is directly associated
with the motor rotation rate: V0 ∝ Ω. The proportionality factor is a microscopic
length scale depending only on the geometrical characteristics of the swimmer. It is
important to see that the fluid viscosity scales-out of this picture provided that the
motor rotation rate can be held constant by the bacterium activity. This is almost
the case in nominal functioning conditions and thus, in a large range of viscosities,
a bacterium is able to provide enough torque to maintain a fixed rotation rate and
thus a constant swimming velocity (see Martinez et al.[24] and refs inside).
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Fig. 1. Swimming E.coli bacterium (a) image of the swimming E.coli (ATCC9637) by
fluorescent labelling of the body and the flagella. The body size is a ≈ 1.8µm and the total
length, including the flagella bundle l ≈ 10µm . (b) hydrodynamic representation of the
bacterium as a ”pusher” force dipole. (c) Resulting flow field created by the force dipole
acting on the fluid. The blue arrows represent the main directions of the flow induced by
the swimmer.

2.3 Autonomous swimmers as force dipoles

The fluid velocity field created by a moving bacterium is a-priori difficult to esti-
mate in full details (see however, remarkable micro PIV measurements around micro-
organisms E.coli [27] and Chlamidomonas [25,26]). As a generic feature for the Stoke’s
equations solutions for an isolated swimming bacterium, the flow field can be ex-
panded asymptotically at large distances, as a series of force multipoles. At the lowest
order of expansion, the dominant term is a force dipole (a stresslet), inducing in the
bacterium reference frame, a flow field :

u = ε
σ0

8πη0r3
(1− 3cosθ2)r (5)

and a pressure :

P = ε
σ0

4πr3
(1− 3cosθ2) (6)

where θ is the angle between the swimming direction and the radius vector r,
centred on the bacterium. The magnitude of the dipole is characterized by the dipolar
strength σ0. It is equivalent to two opposite forces of magnitude f acting on the
fluid along the motion direction and separated by a distance l; the centre is at a
mid-distance from the points of application of the forces. Hence, σ0 = fl and the
two possible directions for the forces are given by the sign of ε. For “pusher type”
swimmers ε = −1 and for pullers ε = 1. The structure of the fluid motion surrounding
the swimming bacterium is a crucial element to keep in mind as it has important
consequences on the emerging properties of the active fluid. For pusher swimmers, the
induced fluid motion goes along the swimming direction in the front and is opposite in
the tail. Also, the flow moves laterally towards the centre of the bacterium. Sometimes,
such flow is called ”extensile” (see Fig.1). For puller it is the reverse flow direction,
and the situation is called ”contractile’. Also, in some cases, the effective dipolar term
may cancel and higher order multipolar contributions should come into play.

2.4 Run & tumble strategy for chemotaxis

As wild-type species (i.e. not genetically modified), most micro-organisms organize
their motility as regular changes of swimming directions. The aim of this wandering
motion is to explore and harvest the environmental resources and eventually find



Will be inserted by the editor 5

the right ecological niche. At low Reynold’s number such a directional change has to
be accompanied with a shape modification suited to produce a torque on the body.
The alternation of directed motion and directional changes is called ”run & tumble”.
For E.coli this strategy has been extensively studied. Following a biological signal,
some motors changes their rotation direction provoking a partial or complete un-
bundling of the flagella; hence resulting in a reorientation of the swimming direction.
In chemically homogeneous conditions, the run times and tumble times are distributed
stochastically as Poisson variables with typical values trun ≈ 1s and ttmb ≈ 0.1s [23].
Qualitatively, for the run and tumble strategy to make any sense, the bacteria has
to move straight during the run time such as to overcome the molecular diffusion
process. This argument provides a lower bound for the run length (lrun >

√
Dmtrun)

which means a minimal value : lrun > Dm/V0, typically 100µm for an E.coli, which is
indeed the right magnitude observed. Interestingly, using tumbling mutants Saragosti
et al. [28] have shown that the reorientation dynamics appears as a random walk on a
unit sphere characterized by a rotational diffusion coefficient Dr. For a wild type, the
resulting angular distribution for the redirection angles after tumbling P (θ) as mea-
sured originally by Berg [30], is a solution of this diffusion equation for Drttmb ≈ 0.5
(Dr = 3.5rd2/s for a tumbling time ttmb = 0.14s). The mean tumbling direction is
< θ >≈ 68◦ . In those conditions, the compound of run & tumble motions induces
on the long run, a diffusive motion characterized by a translational diffusivity:

Dt =
1

3

V 2
0 trun

1− < cosθ >
≈ V 2

0 trun
6Drttmb

(7)

Thus following the trajectories of individual bacteria (or other micro-organisms) and
averaging their mean-square displacements is a useful way to assess and characterize
their activity. For non biased 3D isotropic motion, the mean-square displacement
< R2 > increases with the time-lag τ , as :

< R2 >= 6Dt(τ − τc(1− e−τ/τc)) (8)

At long times, the diffusive motion : < R2 >= 6Dtτ , is recovered. However, at short
times, a ballistic regime such that < R2 >= V 2

0 τ
2, is observed and Dt = 1

3V
2
0 τc where

τc is the crossover time. In practice, using a 2 parameter fit equation (as equ.(8) ) the
mean swimming velocity can be characterized as well as the long time diffusivity of
the micro-organisms as a function of the environmental conditions (see examples of
such measurements displayed in Fig (4)).

Note another useful complementary technique developed recently to character-
ize and monitor the mean activity of micro-organism suspensions. This technique
called Differential Dynamic Microscopy (DDM), is based on the measurement of the
spatio-temporal fluctuations of the average emitted light intensity and allows for high
though-put measurements (see for ex. Martinez et al. and refs inside [29]).

For wild type E.coli, in nominal conditions, the translational diffusivity is Dt ≈
100µm2/s. This is to be related to the typical Brownian motion, computed for a 2µm
diameter sphere (at 300K) : DB = 0.2µm2/s, a typical value for inactive E.coli.The
rotational diffusivity (Dr ≈ 3rd2/s) can be compared to the typical values under-
taken by an elongated passive rod of size l ≈ 5 − 10µm: Drod

r ≈ kBT/η0l
3 ≈

10−2 − 10−3rd2/s. Therefore, in spite of the fact that it is not totally clear what
should be the actual length contributing to the rotational viscous damping, for wild
type species, the disorientation process is essentially controlled by the tumbling ac-
tivity . Note that for some micro-organisms, the tumbling motion can be triggered by
a mechanism different from a de-bundling process. For example, for marine bacteria
Vibrio alginolyticus a flow triggered flagellar bucking is responsible for the change of
direction [31] whereas for Chlamydomonas Reinhardtii a desynchronising process in
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the beat of the frontal flagella [32] triggers the reorientation (see the review by Polin
et al. [?]in this series ) .
In a non uniform chemical environments, for example in a gradient of chemical attrac-
tants, micro-organisms adapt the run and tumble times to the result of the environ-
mental exploration [23]. E.coli possesses a fine biochemical sensing equipments which
trigger internal biological cascades and control the rate of reversal for the rotation
of the nano-motor driving the flagella [33]. Thus, by enhancing the run time and/or
diminishing the tumble time, the micro-organism is able to produce a net motion in
the direction of gradients of attractants (or against if it is a repellent). This ability to
follow chemical gradients is called chemotaxis [36]. For an extensive account of models
describing mathematically the chemotactic behaviour see for example [34] and [35]
and refs inside.

2.5 Swimmers in interactions

Swimming micro-organisms (pusher or puller) induce in their surrounding, a long-
range flow field scaling as ∝ σ0/r2. The effective interaction force decays rapidly with
distance but may become significant when the approaching distance is of the order
of few bacteria body size [37]. The sign of the interaction (attractive or repulsive)
depends on the relative angular position and on the orientation between the swim-
mer. An extensive discussion and references can be found in the review by Lauga et
al.[21]. Essentially, two side by side pusher swimmers are attracted whereas pullers
are repelled. This can be qualitatively assessed from an inspection of the flow field as
displayed for pusher swimmers in Fig.1(c) (for pullers, the flow lines are reversed). For
micro-organisms swimming in line along the same direction, it is the opposite : pullers
have the tendency to stay in lines while for pushers, this configuration is unstable as
they repel. Also, since hydrodynamic shear induces a solid rotation of elongated ob-
jects, two pushers moving along the same direction but with some relative angle, will
feel a torque that has the tendency to align them. Therefore they will finally swim,
for a while, in the same direction. This is indeed an important element participating
to the onset of collective motion as observed for concentrated suspensions of such
micro-organisms (see infra).
Similarly, for bacteria swimming close to a solid surface, the pusher/puller distinction
has a determinant influence. A bacterium moving close to a solid surface, for which
the fluid boundary condition is a zero velocity, will ”see” its hydrodynamic image.
Consequently, pusher swimmers have the tendency to align along the surface and be
attracted by hydrodynamic forces [47–49]. For puller swimmer, the perpendicular po-
sition is more favourable. Moreover, the elongated shape of most bacteria will further
contribute to a nematic alignment with the surface simply by steric interactions (due
to the impenetrability of the solid surface). Therefore, due to these effects, of both
hydrodynamics and kinetic origins, pusher bacteria spend a long time swimming in
the surface vicinity and thus their concentration displays a significant increase nearby
solid surfaces.

In the context of active swimmers suspensions, is important to notice that the
density of micro-organisms is often characterized by a volume fraction based on the
body volume Vb :

φ = nVbφ = nVb (9)

where n is the number density and in the following, we use this definition to char-
acterize the suspension concentration. For E.coli Vb = 1µm3. However, to assess a
situation that is really dilute, i.e. where interactions between bacteria can be seen as
marginal, it is important to keep in mind that it is better to consider an excluded
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Fig. 2. Collective organization of E.coli bacteria (top panels volume fraction φ = 8.0 10−3

and bottom panels φ = 2.0 10−2 in absence of flow. The left pictures correspond to the
bacteria velocity fields obtained by PIV measurements. The right pictures are the corre-
sponding orientations α with respect to the horizontal direction and displayed in a colour
map. Patches of similar colour of size much larger than a bacterium body size, witness of
the large scale collective motion (See Gachelin et al. [16]).

volume based on a sphere with a diameter l corresponding to the total swimmer size,
including the flagella :

ν = n
π

6
l3 ≈ φ(

l

a
)3 (10)

with a ≈ V1/3
b the typical body size. The transition from dilute to semi-dilute regime

is then occurring for the condition ν = O(1), which corresponds in practice, to very
small values of φ.

2.6 Collective organization

For bacteria suspensions, a natural aptitudes to undergo collective motion was iden-
tified by many experiments [13–16] and also by numerical simulations [38–40]. From
a theoretical point of view, the issue of collective organization for pushers is a natural
outcome of the hydrodynamic processes triggered by generic interactions between the
swimmers. It was addressed theoretically as a stability analysis of the hydrodynamic
modes and complemented by numerical simulations to understand the dynamics be-
yond the linear regime [41,38,39,42,40]. An important outcome of these studies is
that for rear-activated swimmers, a long range nematic ordering as well as a fully
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randomly oriented state are both unstable and essentially will lead to a mesoscopic
collective motion [41,40]. When concentration is increased, the existence of a well de-
fine volume fraction triggering the onset of collective motion (as predicted for example
by Subramanian and Koch [42]) is still debated. In a recent contribution Saintillan
and Shelley [40] studied numerically the emergence of a correlated dynamics solely
caused by hydrodynamic interactions (slender-body swimmers). For pushers, they
show a progressive increase with concentration of the velocity correlation lengths
when going from the dilute to the semi-dilute regime. This progressive appearance of
collective motion without a clear threshold, was recovered experimentally with E.coli
in 3D [16]. Qualitatively, the experimental observations witness a qualitative differ-
ence between the more dilute case showing small clusters of co-moving bacteria and
the higher concentration where large scale collective motion appears (see Fig. 2). Note
that in more confined environments (quasi 2D films or confined cells), the occurrence
of a density threshold for collective motion was reported [43,44]. The reasons for this
striking difference are still unclear but could be due to the nature of the hydrody-
namics interaction in confined situations which become of shorter range because of
the boundary screening effects.

3 Statistical mechanics of active suspensions: the emergence of an
”active fluid”

3.1 A simple kinetic model for dilute active suspensions : the ”bacterial gas”

There are different view points suited to handle the hydrodynamics of active fluids.
First the macroscopic phenomenology approach as exposed for example in the review
by Marchetti et al. [3]. In a nut shell, this type of approach identifies the relevant terms
in the momentum and density transport equations stemming from general symmetry
argument. It couples generically these fields with some relevant order parameters such
as the polar direction of motion or the nematic alignment tensor. To close the theory,
dynamical equations for the order parameter fields are added to the description. The
second approach is more ”bottom-up” or “micro/macro” in the statistical mechanics
jargon, as it describes the microscopic behaviour and possible interactions between
the swimmers to obtained by averaging, the macroscopic contributions to transport
(see review by Marenduzzo et al. [?] in this series for a more complete picture). At the
end, both approaches should provide similar macroscopic outcome, however the mi-
cro/macro path is clearly more difficult to handle when multiple interactions become
significant. On the other hand, it provides testable predictions for the constitutive
relations involving microscopic scale parameters.
Here we will only give an outlook for the simplest kinetic model aiming at estab-
lishing from the microscopic swimming properties, the viscosity of a dilute bacterial
suspension in a flow. We will follow essentially the approach developed by Haines
[53] and Saintillan [54] and provide qualitative and heuristic arguments to justify the
generic form of the viscous response. For the more technical details, we recommend
the reading those articles or for example, a summarized version developed in a review
by Saintillan and Shelley [45].

In the dilute limit, interactions between bacteria can be neglected and the trans-
port is modelled first by assuming that the local bacteria velocity is the vectorial sum
of the swimming velocity v0 and the flow velocity vF :

v(r) = v0 + vF (11)

In a flow, the local shear rate induces a rotation of the body. The motion of the
bacteria director p (the unit vector along the tail/head direction) can be represented
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at the most simple level, by a Fokker-Planck equation on the probability density for
the director orientation P (p) :

Ṗ +∇(ṗP )−Dr∇2P = 0 (12)

where Dr is an effective angular diffusivity.
Note here, the alternative and somehow more refined picture initially proposed by
Subramanian and Koch [42] accounting explicitly for the run & tumble process in
equation (12). They argue that this process is essentially different from the continu-
ous reorientation due to Brownian motion and introduce in equation (12) two terms,
one for the orientation loss at the tumbling rate and a second one, for the orientation
gain stemming from a kernel describing jumps in orientation. A generic form for this
kernel is proposed to encompass situations ranging from random motion to persistent
swimming. However in the simple and heuristic presentation of this review, we will
only consider an effective rotation diffusion term accounting for all disorientation con-
tributions either due to Brownian effects, to hydrodynamic instabilities or to active
tumbling processes.

The orientation kinematics (in absence of noise ) of an elongated axisymmetric
particle in a shear flow is usually modelled by the Bretherton-Jeffery equation.

ṗ = (¯̄1− pp)(β ¯̄E + ¯̄W )p (13)

β = r2−1
r2+1 is the Bretherton constant characterizing the shape via the aspect ratio

r = l/a; ¯̄E and ¯̄W are respectively the shear and the rotation rate tensors. For a simple
shear, characterized b¡y the shear rate γ̇, the most salient outcome of such a model
is an interplay between the shear rate aligning the bacteria along the flow direction
at a time scale γ̇−1 and the active tumbling processes disorienting the bacteria at a
time scale D−1

r . The mean orientation of the bacteria under shear is thus controlled
by a rotational Peclet number :

Pe =
γ̇

Dr
(14)

The mean desorientation angle (i.e. not along the flow) θ̄ is actually maximal when
Pe = O(1). At large Pe a bacterium is oriented preferentially along the flow and the
mean angle goes to zero with a scaling :

θ̄ ∝ P−1
e , Pe >> 1 (15)

similarly, at low Pe, the disorientation process due to the tumbling dominates and
the mean orientation angle vanishes but with a linear scaling :

θ̄ ∝ Pe, Pe << 1 (16)

An illustration of this scaling behaviour is displayed in fig.3(c). The mean orientation
angle is extracted from solving numerically a Bretherton-Jeffery equation with a ran-
dom reorientation noise [51] which occurs at a Poissonian distribution of run times.
The Bretherton constant used in this example is β = 0.6.
For confined flows, bearing a non-homogeneous shear-gradient field a family of quasi-
periodic trajectories comes out as a consequence of the shear gradient experienced by
the bacteria [46]. This result indicates that the transport and dispersion properties of
active suspensions are in this case non trivial. This is currently a very open problem
which outcome turns out to be qualitatively different from the standard hydrody-
namic transport of passive colloidal species [50] .
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Fig. 3. Swimming and tumbling in a simple shear flow. (a) Schematic representation of
a bacterium swimming at an angle θ with respect to the shear direction. (b) Result of
numerical simulations of the Bretherton-Jeffery equation [51] in a simple shear and for
a Poisson distribution of run times (average trun) and random reorientation. The mean
orientation angle θ̄ is displayed as a function of the Peclet number Pe = γ̇trun. The two
regimes low shear (∝ Pe) and high shear (∝ P−1

e ) are displayed. The dotted horizontal line
is θ̄ = π/4. (c) Schematics of the flow induced by a ”pusher” swimmer oriented at an angle
θ and acting on the shearing process. Qualitatively, when the swimmer is oriented with an
angle π/4, the motive action of the flow ”helps” to shear, therefore the effective viscosity
decreases.

In the following, we will review and discuss two situations. The first is an homoge-
neous shear which is the case of rheometric devices such as cone-plane geometries or
Couette shear cell. The second case is a microfluidic Hele-shaw channel displaying a
Poiseuille parabolic flow, a generic situation which opens the discussion on the more
general issue of transport in confined environments such as capillary tubes or porous
media.

3.2 Viscosity of active suspensions in the dilute regime : the outcome of the
kinetic models

Following the scheme of calculation developed by Hinch and Leal [59] to understand

the rheology of fibers, the shear stress contribution ¯̄Σ of the swimming dipole will
add-up to the viscous contribution of the solvant. In the dilute regime, if Brownian
motion is neglected, the stress tensor can be decomposed into two additive part :

¯̄Σ = ¯̄Σp + ¯̄Σa (17)

where ¯̄Σp is a passive contribution coming from the particle drag and (ii) and ¯̄Σa
is the active part which can be written, for a density n of bacteria bearing a dipolar
strength σ0 :

¯̄Σa ∝ nσ0
∫
dp(¯̄I/3− pp)P (p) (18)

where the average is taken over all the swimming orientations P (p). The inter-
pretation of the active shear stress contribution Σa is straightforward as nσ0 can be
seen as a volumic density of energy to move the fluid at the scale of a bacterium size.
Note that the prefactor’s sign in equation (18 ) is positive for pullers and negative for
pushers. The magnitude of the passive part Σp, due to the Stokes drag contribution,
is nη0l

3γ̇ and corresponds to the energy loss per unit volume for the bacteria moving
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in the fluid at a velocity γ̇l.

Now the question is to understand the relative contribution of both terms, active
and passive on the effective viscosity to be added to the solvant viscosity η0. For the
passive part , the contribution is Σp/γ̇ ∝ η0l

3 ∝ η0φ. For the active part Σa, the
contribution to viscosity is : nσ0/γ̇ and will depend on the effective mean orientation
of the bacteria in the flow. Since at low shear rate, the bacteria still orient in average
off the flow direction (see Fig.3) with a mean angle proportional to the shear rate
(equ.(16)), the active contribution to the suspension viscosity ηa = Σa

γ̇ → ε nσ0/Dr

converges to a constant value (cancellation of up and down γ̇’s). Note that the sign
ε of this contribution to viscosity differs for ”pusher” and ”puller” swimmers. At low
Pe, the active contribution to viscosity is positive for pullers [52] and negative for
pushers.
More quantitatively, using the previously exposed simple representation for the swim-
ming kinematics, several theories [53–55] were quantitatively developed for the dilute
regime. They predicted that the relative viscosity of the suspension η depends on two
dimensionless numbers via Ψ(Pe, P

b
e ) a dimensionless function and can be written as

: η

η0
= 1− Ψ(Pe, P

b
e )φ (19)

where Pe = γ̇/Dr is the previously defined Peclet number and :

P be =
V0
l Dr

(20)

is another dimensionless number involving the hydrodynamic time : tc = l
V0

,i.e.
the time for a bacterium to move over its own size. Also in their own framework,
Subramanian and Koch [42] derived and expression for the linear viscous response
of hydrodynamic modes. Their description eventually includes more details on the
run/tumble dynamics dependence but comes out as essentially similar.

The outcome of the theories are (i) at high shear rate (γ̇tc = Pe/P be > 1) the
active contribution to viscosity is negligible and a quasi-Newtonian plateau appears
akin to suspensions of passive particles of the same shape; (ii) below a shear rate value
γ̇ctc = O(1) the suspension viscosity is lower than the suspending fluid viscosity; (iii)
at low shear rate (Pe << 1), an active Newtonian plateau of viscosity ηp appears
such that: ηp

η0
= 1 +K(P be )φ (21)

where K ∝ (A + εBP be ) ; A and B are positive constants with the same order of
magnitude and solely determined by the micro-organism shape. Note that for pusher
swimmer as bacteria (ε = −1), K may become negative for large values of P be , yield-
ing a volume fraction above which, the plateau viscosity ηp becomes lower than the
suspending fluid viscosity η0. Note that Hatwalne et al. [56] also predicted using mean-
field phenomenological hydrodynamic equations for active suspensions of pushers, the
possibility for a viscosity decrease with concentration and the opposite behaviour for
pullers.

4 Viscosity of active bacterial suspensions : experiments

Experimental evidence for viscosity reduction were brought for Bacillus subtilis [17]
and E. coli [18]. It is only recently that a full rheological characterization (viscosity
versus shear rate) was provided as a direct test for the kinetic theory for the viscous
response under simple shear [19].
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Fig. 4. Activity characterization of a E.coli (ATCC9637) suspension under different environ-
mental conditions. From the mean square displacement of hundreds of tracks, the swimming
velocities and the translation diffusivity coefficients are extracted (see equ.8), without (a),(b)
and with (c),(d) L-serine. L-serine is an amino-acid that replaces the O2 respiration path.
In absence of L-serine and O2, the bacteria asphyxiate and the activity drops down in a few
minutes. However with L-serine, even in absence of O2, a significant activity is maintained
[51].

4.1 Maintaining the activity of a bacterial suspensions

As for any biological material, the question of maintaining a constant activity in a
controlled environment is a crucial issue to the completion of significant experimental
work. To perform laboratory experiments with bacteria suspension, it is important
to keep in mind that in a food rich medium, a population will double in typically
20 min(at 30oC). Thus to avoid such a Malthusian growth, one needs to suspend the
bacteria in a ”minimal medium” suited to provide enough trace elements to maintain
a swimming activity but discourage the cell growth. However, when deprived of O2

many bacteria strains such as E.coli can change their motility characteristics in a
few minutes and can even ”go to sleep”[58]. However, it is worth noticing that in
soft micro-fluidic devices made of PDMS, gases like O2can go through the polymeric
structure. So in a large range of concentration, bacteria can access O2 in sufficient
amount. Note also that some species such as Bacillus subtilis are quite sensitive to
O2 shortage and for this reason, are delicate to handle in microfluidic devices even in
PDMS. In the following, we will discuss essentially of E.coli strains.
To characterize the activity in various environments, by tracking hundreds of trajec-
tories, the mean square displacement was computed as a function of time and the
corresponding velocities V0 as well as the translational velocities Dt are reported in
Fig. 4. To keep a constant activity in a closed environment, L-serine can be added
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Fig. 5. Low shear rheometry [19]. (a) schematics of the Couette-shear apparatus (b) Re-
sponse of an E.coli suspension (φ = 2.0 10.3 to different shear rates γ̇ . (c) Rheogram for the
relative viscosity : η/η0 vs γ̇ at different concentrations φ . (d) Linear and non-linear viscous
response for two strains of E.coli (ATCC9637 and RP437) [19]. The active plateau relative
viscosity ηp/η0 is displayed as a function of the concentration φ. (e) Viscous response at
γ̇ = 4.0 10−2s−1 for ATCC9637 and RP437 in the non-linear regime.

to the suspension. This is an amino-acid allowing the bacteria to swim in absence of
oxygen [57,58]. Thus a good and constant activity level can be kept for at least half
an hour in a large concentration range. Note that the V0 and Dt values are lower than
the corresponding values in presence of O2. The results presented in the following,
were obtained with two wild type E.coli (ATCC9637 and RP437). These strains have
slightly different shapes and activities.

4.2 Low-shear rheometry

In Lopez et al. [19], to assess the full reological response of E.coli suspensions, rheo-
metric measurements were performed in a low-shear Taylor-Couette shear device. To
be able to reach the active plateau, one has a-priori to go to very low shear rates (
Pe < 1 implies γ̇ < 0.1s−1 ) and measure viscosities of the order or less than the
viscosity of water (10−3Pa.s). This is not possible with conventional rheometers. The
configuration of a low-shear viscometer allowing such measurements, is an external
cylinder that rotates at an angular rotation rate Ω. The inner cylinder is suspended
via a torsion wire and its angular position is maintained constant via a feedback
loop by exerting a compensating torque. Due to the feedback, the torque exerted on
the inner cylinder is obtained with very high precision. The gap is h = 500µm and
therefore at constant Ω, the shear rate is homogeneous and very well defined (for an
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homogeneous viscous fluid). Given a shear stress σ measured for an imposed shear
rate γ̇ an effective viscosity η = σ γ̇ is then obtained.

4.3 Viscous response

For the suspending fluid alone (a Newtonian fluid, η0 = 1.4mPa.s), stress time-
responses at the start or at the stop of the applied shear are fast and correspond
to the device compliance (grey and black lines in Fig.5b). A similar behaviour is
observed for the bacterial suspensions probed at high shear rates which moreover
displays a viscosity higher than η0 as generically observed for passive particles sus-
pensions. But for low shear rates, a strikingly different behaviour shows up. When
shear starts, the stress jumps to the value measured in the absence of bacteria and
then, after an exponential decrease lasting a few seconds, it reaches a steady effective
viscosity. When shear stops, the stress decreases abruptly to eventually change sign.
In this last case, the bacteria motion induces a motive stress on the Taylor- Couette
device. Thereafter, the trajectory randomization processes affect the swimming direc-
tion and stress relaxes exponentially to 0. In first approximation, the characteristic
time τr can be interpreted as stemming from a rotational diffusion of the bacteria ori-
entation with a coefficient such as Dr = 1

2τr
[28]. Here τr ' 2.4± 0.3 s corresponding

to a rotational diffusion value (Dr ≈ 0.5rd2/s) smaller than what has been currently
reported for wild-type E.coli undergoing run-tumble motion [28].

Fig.5c displays a full rheogram i.e. the suspension viscosity η as a function of γ̇
for different volume fractions ranging from φ = 0.11 % (1.1 × 109 bact/mL) up to
φ = 0.67 % (6.7×109 bact/mL). At low shear rate the ”active viscous plateau” ηp(φ)
appears. As predicted, ηp(φ) decreases linearly with the concentration (see Fig.5a in
the linear regime).

4.4 The non-linear and semi-dilute regime

When the bacteria volume fraction is further increased, viscosity becomes independent
of the concentration (Fig.5d). This is suggesting a transition between a dilute and
a semi-dilute regime. Indeed, this last regime is not predicted by dilute suspension
theories for which the viscous response should remain linear in concentration. Non-
linear effects may come into play as the flow induced by the swimming bacteria may
strongly influence the mean shear flow responsible for the bacteria orientation. It
is also a regime where clustering interaction leading to collective motion could come
significantly into play [16]. For the ATCC9637 strain in a medium that doesn’t contain
oxygen, this regime appears at φ > 0.7% and ηp/η0 ∼ 0.2. In oxygenated conditions
and for highly motile strains, the viscosity ηp/η0 reaches a constant value ∼ 0 for
φ ∼ 0.5% and φ ∼ 0.4% for ATCC9637 and RP437 respectively. It means that over a
significant range of concentration, one obtains a viscous response such that the local
viscous dissipation is macroscopically entirely compensated by the swimming activity.

4.5 Microfluidic rheometry

The previous measurements where made in a device producing a simple shear (at
least for the dilute case). In a confined environment as a micro-fluidic Hele-shaw
channel, the basic flow profile is parabolic and the question is whether an active
viscous response as described before, can also manifest itself at low shear rate. To
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Fig. 6. Micro-fluidic rheometry of a wild-type ATCC9637 E.coli suspension( see [18]). (a)
Sketch of the set-up and methodology to extract the interface position. (b) Relative vis-
cosity as a function of volume fraction φ for different shear rate values. (c) Flow profile
Vx(z), obtained by tracking passive 2µm latex spheres at different flow rates Q. Bacteria
concentration profile n(z) at different flow rates Q.

probe the emergence of such an ”active viscosity”, a micro-fluidic system initially
proposed by Guillot and collaborators [60], was built. These authors have shown that
a Y shape micro-fluidic channel is well suited to compare the viscosities of two simple
liquids at low shear. An adaptation of such a device to bacterial fluids was done by
Gachelin et al. [18] (see Fig 6). On one arm, the active suspension is injected and on
the other arm, the suspending fluid in injected at the same flow rate Q. The channel
thickness is h = 100µm. From the position of the interface between the pure fluid and
the suspension, one may extract the suspension relative viscosity. The channel widths

being respectively d0 (pure fluid) and d1 (suspensions), one has Q = h3d0
12η0

∂P/∂x ==
h3d1
12η ∂P/∂x. Thus, by measuring the interface position, homogeneous in x, so that the

pressure gradients are identical on both sides , the relative viscosity is obtained as:

η

η0
=
d1
d0

(22)

This measured value of relative viscosity can be associated with a shear rate : ˙γM =
6Q/h2d1 . As displayed in fig.6, the effective viscosity rheogram shows a non-Newtonian
viscosity. Varying the bacteria density and the flow rate, one can observe a regime
specific to active fluids, where the relative viscosity is lower than the viscosity of the
suspending viscous fluid. Such micro-fluidic devices also have the advantage of allow-
ing a direct visualization of the bacteria in the fluid. Using a fast camera coupled to
the microscope, the vertical profiles for the bacteria density and the corresponding
velocity distributions for both the fluid (tracking passive tracers) and the bacteria,
can be obtained. The measurements show that the basic flow profile is not signifi-
cantly affected by the non-Newtonian character of the active suspensions. However,
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the technical limitations due to the dynamical stability of syringes undergoing stick-
slip motion at low flow rates, has prevented so far to explore the very low shear-rate
regime.

5 Conclusion

In conclusion, the aim of this paper was to establish an elementary connection be-
tween a a simple vision of active fluids statistical mechanics (a ”bacterial gas”) under
flow and recent experiments with bacteria suspensions. Interestingly, in the dilute
limit, a good agreement between model predictions and experimental measurements
was reached. The viscosity rheograms come out as similar. At low-shear, the viscosity
is found to decrease with concentration at values lower than the suspending fluid
viscosity. It is also interesting that such a peculiar behaviour can be found more
generally in microfluidic geometries where the shear-rate is not uniform. The most
striking feature of the experimental rheological response is indeed the emergence of a
viscousless ”superfluidity” regime, in a large range of concentrations. Presently, there
is no micro-macro micro-hydrodynamic calculation describing the impact of bacteria
interactions and the possible influence of collective organization on the macroscopic
rheology to predict such a regime. However, there are some arguments based on the
emergence of coupling terms in phenomenological transport equations, pointing on
the possibility of a transition to a zero-viscosity regime [61–63]. It would be inter-
esting to confront directly these predictions, and most of all, identify precisely the
spontaneous collective organization processes undertaken by the bacteria in the flow
when reaching the viscousless regime . In the framework of the low shear rheometric
device used by Lopez et al., it is so far impossible to visualise in-situ the organization
of the bacteria. However, the fact that an active viscosity regime was already identi-
fied for a micro-fluidic channel is encouraging. The experimental challenge would be
now to push the measurements towards the onset for a zero-viscosity transition if it
exists in this context.
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(2012).
64. R. Winkler et al. EPJST, this issue (2016).
65. U.B. Kaupp et al. EPJST, this issue (2016).
66. M. Polin et al. EPJST, this issue (2016).
67. D. Marenduzzo et al. EPJST, this issue (2016).


