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Abstract Understanding multiphase flow in porous media is of tremendous importance for
many industrial and environmental applications at various spatial and temporal scales. The
present study consequently focuses on modeling multiphase flows by the Volume-of-Fluid
method (sharp interface) in porous media with a simplified Darcy-scale approach and shows
simulations of Saffman-Taylor fingering. The simplification of the Darcy scale approach is
performed by assuming sharp interfaces between pure phases. The Volume-of-Fluid method
with octree mesh refinement is used. It is implemented in the Gerris code which allows
efficient parallel computations. We measure the scaling properties of the fractal viscous-
fingering patterns that appear in the numerical simulations. One of these properties is the
fractal or Hausdorff dimension DF . The other is the variation of the area A of the viscous-
fingering cluster with the length L of its perimeter, which varies as a simple power law
A∼ Lα . The injection of an intermediate-viscosity Newtonian fluid as a second step is also
simulated. We are thus able to observe an increase of recovery of the high-viscosity fluid
behind the fingering front, due to the reduction of the viscosity contrast. Some of these
results are compared to waterflooding experiments of extra-heavy oils in quasi-2D square
slab geometries of Bentheimer sandstone.
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1 Introduction

When a porous solid matrix is fully saturated with one fluid phase, the penetration of another
fluid phase displays fascinating physics. In this paper we consider this invasion problem nu-
merically in rectangular slab of moderate thickness, with one or two invading fluids and with
several drastic simplifying assumptions. A major simplifying assumption is to consider the
flow at a scale (the Darcy scale) much larger than the pore scale. The main motivation for
investigating the flow at this scale is the drastic simplification it allows, yielding a mathe-
matical problem that is much more amenable to analysis. When the invading fluid is injected
from one side of the slab, several physical effects cause the front to deviate from a flat shape.
The heterogeneity of the porous media, that is the variable shape and size of the pores, and
the spatial fluctuations of capillary forces make the interface rough. Moreover, when the
invading fluid is less viscous than the receding fluid, the flat front is subject to an instability
purely due to the viscosity difference. The instability is found theoretically in the small per-
turbation regime and is observed numerically and physically in a large perturbation regime
in which it leads to complex branched structures. It is usually called Saffman and Taylor
(1958) or viscous fingering instability.

In this paper we focus on the viscous fingering instability and neglect the other effects
such as the heterogeneity of the medium or capillarity. In addition, we neglect the thickness
of the front, that is we disregard the existence of a thick interface in which both phases
coexist. Moroever we assume that on each side of the front a single phase is present. While
these assumptions are not realistic, they allow to separate the various effects at play in the
real physical phenomenom and to discover what is purely the effect of the viscosity contrast
with a sharp front.

There is another interesting fact in favor of this simplifiation. There is a more complex
models in which regions of mixed phase are considered, the multiscale Darcy equations.
These have in 1D exact solutions, the Buckley-Leverett solution (Buckley and Leverett,
1942) that involves the formation of a sharp discontinuity in saturation and thus a sharp
discontinuity in mobility. Thus the evolution of a sharply discontinuous interface is not
completely irrelevant to the real-world physics with mixed phases at the Darcy scale.

The viscous fingering instability leads to complex structures which were most frequently
observed in model experiments performed in Hele-Shaw (1898) cells rather than in porous
media but are seen in both. These complex structures are similar to fractal sets and can be
characterized by several exponents such as the fractal dimension. We think it is of interest
to measure these exponents in simulations of our simplified model as in real experiments
in order to understand how much of the real world structures can be explained by a simple
viscous fingering model at the Darcy scale.

While observations and measurements of the fractal nature of invasion have frequently
been performed in experiments both of Hele-Shaw type (Praud and Swinney, 2005) and
in actual porous media (Måløy et al., 1985; Feder, 1988), almost no numerical simula-
tions showing fractal structures, with or without the addition of surface tension, have been
performed. Almost the single exception are the works of Fast and Shelley (2006); Li et al.
(2007) on central injection but due to the high cost of the simulations only a moderately
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Fig. 1 2D imaging of waterflood in Bentheimer sandstone with 2.0 kg.m−1 .s−1 crude oil. Water is injected
from the top, in black is the injected water. From Skauge et al. (2012) after applying a threshold to the image

wide range of scales has been seen in these cases. Because of the moderate range of scales
an estimation of a fractal dimension DF would have been difficult in the already published
cases, and the authors resorted instead to the measurement of the correlation between object
area A and object perimeter L in the form A ∼ Lα . In recent work by us and other authors
(Lagrée et al., 2014) both DF and α are measured for central injection but not for lateral
injection, as we shall do below.

We compare the results of simulation in the frame of this model with an actual invasion
experiment by Skauge et al. (2012) shown in Figure 1. This experiment has the advantage
of being performed in a slab with square geometry with a moderate thickness so it matches
approximately our model. However the slab thickness is such that the variation of the sat-
urations in the transverse direction cannot be disregarded so we only expect a qualitative
agreement with the model.

In the first part of the paper we consider the invasion of one fluid by another, then in
a second part we consider the subsequent invasion by a third fluid, motivated by industrial
processes where such a second invasion is performed. Our paper is organized as follows:
in the second section we describe the simplified model and the instability, then in the third
section the numerical method. In the fourth section we discuss results.

2 Simplified viscous flow model

We study the development of viscous fingering in a porous slab with lateral injection. The
flow is supposed to be uniform in the transverse direction z and attention is focused on a
rectangular domain. This domain is initially filled with a Newtonian, high-viscosity fluid. A
less viscous fluid is injected from one side of the domain with a constant velocity U . The
two fluids then occupy two subdomains separated by a smooth, infinitely thin interface. The
side boundaries y =±Ly/2 are impermeable while the right boundary at x = Lx/2 allows a
constant pressure outflow condition for the fluids.
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We consider incompressible flow (∇ ·u = 0) that obeys Darcy’s law

u =− k
µ

∇p, (1)

with k the permeability of the porous domain and µ the viscosity of the fluid. Two viscosities
are considered µa for the advancing fluid and µr for the receding fluid.

In the case of simultaneous flow of two (or more) phases, boundary conditions must be
given at the interface. Mass conservation imposes that

[[n ·u]] = 0 (2)

Above [[X ]] denotes the jump X2−X1 of a variable X accross the interface between sub-
domains 1 and 2. When performing volume averaging, conserved quantities appear as flux
terms on the surface of the volume and these jump conditions remain valid even for a thick
front or at the Darcy scale. We disregard any effect of surface tension forces at the scale
described by our model as discussed above so that the pressure jump due to capillary forces
at the interface is constant

[[p]] =
σ

Rp
(3)

where σ is the surface tension and Rp is a constant having the dimension of a length. Re-
defining the pressure as

p′ = p+
σ

Rp
H(x) (4)

where H is the characteristic function of phase 2, so that H = 1 in phase 2 and H = 1 in phase
1, the new pressure p′ is continuous at the interface. Using the new, continuous pressure p′

surface tension entirely disappears from the equations and Darcy’s law (equation (1)) applies
to the entire domain in the so called one-fluid approach (Tryggvason et al., 2011).

Dimensional analysis can be performed as follows. Considering the material properties
and the flow variables, we have the permeability k of the porous medium, the injection veloc-
ity U and the viscosities of the fluids µi. However, as the permeability k and the viscosities µi
only intervene as the ratio k/µi, there is no intrinsic lengthscale in the idealized problem of a
perturbed interface in an infinite domain although extrinsic lengths appear such as the simu-
lation domain size. Similarly, the grid scale is invisible at the model scale. The grid spacing
h is thus the smallest resolved lengthscale, and as such the smallest lengthscale at which a
fingering process can be observed (the small lengthscale of the fractal). As in more realistic
models a flat interface is unstable with respect to small perturbations of wavenumber q. As
shown by Chuoke et al. (1959) the growth rate s is given by

s =
µr−µa

µr +µa
Uq (5)

where the index r indicates the receding and a the advancing fluid. In real experiments, the
growth rate would be limited at large wavenumber q by any surface tension effects. Wave-
lengths smaller than a critical length of order (kσ/µU)1/2 will then not grow. In numerical
simulations modes of wavelengths close to the grid size h are also often damped. However,
one may wonder about the relevance of adding a very small surface tension to our model in
order to have a smoother of the interface at the grid scale. This was actually tried by Lagrée
et al. (2014) but did not provide any significant changes in the observed shapes, so that we
decided not to introduce surface tension in the current model.
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As a result complex structures grow and do not have any lengthscales, except near the
grid size h or the simulation domain size L. The structures must thus be scale invariant
between h and L, and the larger the ratio L/h the better the approximation of a fully scale-
invariant structure.

In what follows we rescale pressures by µrULx/k, lengths by Lx and times by Lx/U . In
the rescaled equations µr = 1 and the advancing fluid has viscosity M = µa/µr. All of the
developments below are in terms of the new, rescaled variables.

3 Method

3.1 Numerical simulation of the Darcy equations with interfaces

The model equations above are solved using the methods described in Popinet (2003, 2009);
Lagrée et al. (2011); Tryggvason et al. (2011), that is by discretizing the fields on an adaptive
quadtree grid, using a projection method for the pressure, the time stepping and the incom-
pressibility condition. The projection method results in an elliptic equation for the pressure,
sometimes called a Poisson Equation, which is solved using the multigrid method described
by Popinet (2003). It is the most time-consuming part of the whole procedure. The advec-
tion of the velocity fields is not necessary for the solution of the Darcy equations. We use
the relaxation method described in Afkhami and Renardy (2013) and Lagrée et al. (2014) to
approximate the solution of the Darcy equation. The interface is tracked using a Volume of
Fluid (VOF) method with a Mixed Youngs-Centered Scheme (Tryggvason et al., 2011) for
the determination of the normal vector and a Lagrangian-Explicit scheme for VOF advec-
tion. Viscosity is computed from the VOF fraction C by an arithmetic mean. This arithmetic
mean is followed by three steps of iteration of an elementary filtering. This whole set of
methods is programmed either in the GERRIS flow solver (Popinet, 2014), or in the gerris
scripts that were designed to launch these computations.

3.2 Measurement of the fractal dimension

3.2.1 Box-counting method

In the box-counting method, one determines the number N(`) of boxes of size ` necessary
to cover the entire object. Scaling is obtained if N(`)∼ (L0/`)

DF (Feder, 1988). Comments
on the results of this scaling are given in the next Section.

3.2.2 Correlation or spatial-density decay method

In the correlation dimension method, the probability p(r) of finding pairs x, x′ of points in
the fractal separated by less than a distance r is estimated by counting all the pairs of points
in a set of points chosen at random in the fractal (Grassberger and Procaccia, 1983). Then
the so-called Grassberger-Procaccia or correlation dimension is p(r)∼ rDF . In objects grow-
ing from a center, the probability of finding a point at the center is 1, while the probability
of finding a point away from the center is proportional to the integral of the density d(r).
Praud and Swinney (2005) thus measure the fractal dimension in Saffman-Taylor fingering
with injection at the center using d(r) ∼ rDF−2 . When considering lateral injection as in
our case instead of injection from a center, the same reasoning shows that the density d(x)
varies as d(x)∼ xDF−2.
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3.2.3 Time-density decay or tip-point method

The analysis of the average density of the fractal is correlated with its dimension as we
show below. We consider a lateral injection with a constant, unity flux from the side. We
then define the “average density” C(t) of the fingering pattern as follows. Consider the most
advanced point of the invading fluid, noted X(t). The actual area of the invading fluid is A(t)
and since the invading fluid is fed into the domain at a constant rate then A(t) = tLy = t.
(Recall that lengths were rescaled so Lx = Ly = 1). The rectangular slice of the domain
between x = 0 and X(t) has area X(t). Then we define the average density as the ratio of
areas

C(t) = A(t)/X(t) = t/X(t) (6)

To predict the behavior of C(t), the fractal cluster can be seen as a collection of dendrites
put one alongside the other in the y direction of the computational domain. Each dendrite
i is included in a rectangle of size λi(t)×Xi(t), where Xi(t) is the abcissa of the most ad-
vanced position and λi(t) is the vertical extend of the dendrite. As the pattern evolves, and
as observed above, some dendrites tend to dominate and inhibit the growth of the smaller
dendrites. so that the number of active dendrites decreases and the length λi(t) increases.
We only consider the case where there is still more than one dendrite so λi(t)< 1.

Since the velocity entering the domain has been rescaled to 1, the area of a specific
dendrite is Ar = tλi(t). As the aspect ratio of the dendrite does not diverge, both dimensions
of the rectangle Xi(t) ∼ λi(t) are of the same order and represent the large scale of the
fractal. Moreover although each dendrite has a different extent their sizes are all of the same
order so that Xi(t)∼X(t). From the usual box-counting method, one has Ar = `2(X(t)/`)DF ,
with ` < X(t) an arbitrary fixed scale. Thus we obtain tX(t)∼ K(`)X(t)DF where K(`) is a
constant independent of t. Thus the variation in time of X is

X(t)∼ t1/(DF−1) (7)

We thus obtain from equations (6) and (7) the scaling C(t) ∼ t1−1/(DF−1) = t−δ with δ =
−1+1/(DF−1) = (2−DF)/(DF−1). The position of the tip, i.e. the most advanced point
of the fingering pattern is given by X(t)∼ t1/DF−1.

4 Results

4.1 Results in square geometry

The results of the first simulations, performed with the parameters in Table 1 are presented
in Figure 2. Two different refinements are used together with adaptive mesh refinement,
defining two different cases (see Table 1).

As expected from the stability theory above, the simulation shows an instability of
the interface, leading to finger creation. The fingers themselves are unstable and branch
into smaller fingers, so that a self-similar structure begins to develop. In time, some large
branched structures (“dendrites” or “trees”) tend to dominate and inhibit the growth of the
smaller dendrites. This successive branching leads to the formation of a self-similar struc-
ture with branches at several scales, except the smallest scale h of the numerical method.
Moreover the structures of the two simulations are similar to each other as expected in the
absence of a physical length scale. The only difference is that the smallest length scale h
is smaller in case 2 than in case 1, resulting in the observation of smaller structures in case
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Case 1 Case 2
Figure 2(a) Figure 2(b)

Domain size 1×1
Minimum size of a cell h1 = 2−11 h2 = 2−12

Viscosity ratio M 10−3

Interface Sharp

Table 1 Parameters of the simulation in square geometry

(a)

(b)

Fig. 2 Lateral injection of a less viscous fluid in a porous medium filled with a more viscous one for M = 10−3

(injection from the bottom): (a) case 1, (b) case 2.The characteristics of the simulations are presented in
Table1. The CPU time is the same in both cases

2. As expressed above we expect self-similarity and fractality for length h� `� Lx. This
can be verified in Figure 3 where we plot the measurement of the number of boxes N(`)
appearing in the box-counting method the fractal dimension in case 1 and in the experiment.
For comparison, we show in Figure 3(b) the box counting results in the experimental case
of Figure 1. In both cases we observe a remarkable power law scaling. The fractal dimen-
sion measured in the experimental case by box counting (Figure 3(b)) is DF ' 1.74 close
to the fractal dimension of Diffusion Limited Aggregation (DLA), DF = 1.713±0.003, see
Davidovitch et al. (2000). DLA is known to correspond to the fingering process (Praud and
Swinney, 2005). In the simulation case (Figure 3(a)) DF ' 1.92 which is relatively far from
the dimension of DLA. One explanation for that is that at the length scale corresponding
to the thickness of the fingers e, the objects are not branched thin structures but fully two
dimensional patches which result in a dimension of 2. To observe self similarity one must
investigate a range of scales `� e.

We also measure the fractal dimension by the correlation or density-decay method. The
plot of d(x) is on Figure 4. We find DF = 1.79 in case 1 and DF = 1.74 in case 2 although
the scaling does not work so well near the tip (the largest values of x) in case 2.

The instability inducing the fingering process is initialized by “numerical” noise (result-
ing from the imperfect convergence of the Poisson solver). This noise is axis-dependent, due
to the oct-tree structure of the mesh (Popinet, 2003).

It is thus interesting to investigate the effect of a random heterogeneity in the domain
by adding random perturbations of the local mobility k/µ (see Table 2 and Figure 5). This
random perturbation has standard deviation

∆(k/µ)

< k/µ >
= 5%. (8)
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Fig. 3 A log-log plot of the number of boxes N(`) versus the size ` of the boxes used in the box-counting
algorithms (a) for simulation case 1, (b) for the experiment in Figure 1
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Fig. 4 A log-log plot of the density d(x) versus x appearing in the correlation dimension algorithm (a) for
simulation case 1, (b) for the experiment in Figure 1

Figure 5(a) Figure 5(b)
Domain size 1×1

Minimum size of a cell h = 2−10

Viscosity ratio M 10−3

Interface Sharp
Noise origin “Mesh-induced” Viscosity perturbation

Table 2 “Mesh-induced” noise (Lagrée et al., 2014) vs. perturbations of the local mobility k/µ

The shape of the fingering patterns is clearly different. Without noise, the dendrites are more
aligned with the x axis, have less branching, and have smaller extent in the y direction. This
can be explained by the fact that noise promotes the branching of the dendrites. This may
be related to a faster growth of the instability and a more intense splitting at the tip of the
dendrite.

Since the advancing fingering patterns are not static objects characterized by a single
fractal dimension but dynamic objects developping in time we introduce several “dynamic”
measures of this growth process below. In Figure 6 we show the “average density” C(t)
of the fingering pattern. The connection of the average density with the fractal dimension
was described in Section 3.2.3 above. As explained in that section a power-law scaling is
expected for C(t). Figure 6 shows indeed a power-law scaling after an initial regime where
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(a) (b)

Fig. 5 Effect of the noise on the initiation of the fingering process (a) with uniform mobility. (b) with per-
turbations of the local mobility. The shape of the fingering patterns is clearly different. The characteristics of
the simulations are presented in Table 2

 1

 1  10  100

 1

 1  10  100

(a) (b)

Fig. 6 The average density C(t) of the fingering pattern versus time t (see text). The fit C(t)∼ t−δ is shown.
(a) case 1 (δ =−0.27), (b) case 2 (δ =−0.31)

C(t) is constant. The constant C(t) results from the initial condition in which the interface is
flat, and is valid for the initial times before the instability has grown. The scaling is obtained
with δ = 0.27 in case 1 and 0.31 in case 2 yielding respectively the time decay estimate
DF = 1.79 and DF = 1.76. These values are close to, but not identical to the values obtained
above by the box counting method applied directly to the images. Recall that with the box
counting method we found DF = 1.92. It can be of interest to remark that the time decay
values of DF are quite close to the fractal dimension of the DLA.

This was of course expected but has not been shown previously for lateral injection.
Moreover the fact that the fractal dimension of the experiment is also close to that observed
in DLA is an a posteriori validation of our simplified model.

Another characteristic of the development of branched patterns in time is the relation
between the area of the invading fluid and the length of the interface. This relation has
been shown numerically in Lagrée et al. (2014); Fast and Shelley (2006); Li et al. (2007)
to be approximately a power law. For the simulations in this paper, the scaling is shown
in Figure 7, with the following results: in case 1, (α1,α∞) = (0.54± 0.01,0.80± 0.004),
while (α1,α∞) = (0.38±0.005,0.76±0.01) in case 2. The exponent α∞ is close to the one
observed in Lagrée et al. (2014); Fast and Shelley (2006); Li et al. (2007).

4.2 Rectangular geometry

It can be observed that fingers in the simulated patterns as well as in experiments are elon-
gated in the direction of the flow. In order to observe a single branched finger with the widest
possible range of scales we chose to reshape the computational domain to a rectangular do-
main of size 1×1/4.
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Fig. 7 Variation of the dimensionless area of the fingering process with respect to the dimensionless length
of its interface: (a) case 1, (b) case 2

(a)

(b)

Fig. 8 Injection of a less viscous fluid in a rectangular porous medium with M = 10−3 (injection from the
left-hand side): (a) the tracer (i.e. a marker-function such that the lower-velocity fluid is represented by one
color and the higher-viscosity one by another), (b) the velocity field (closer to black: low velocity; closer to
white: higher velocity)

The boundary conditions are the same as in subsection 4.1 The simulation is realized
with the same parameters as case 2 above. The result is shown in Figure 8. The fractal
dimension is measured by the correlation dimension method. We find DF = 1.74±0.02. One
can observe the formation of relatively thick water channels, as observed experimentally by
Skauge et al. (2012) (see the velocity field in Figure 8(b)).

In order to save computational time the simulation was repeated with a reduced refine-
ment so the parameters are now those of case 1 above. The simulation is then continued
until breakthrough time and the result is shown in Figure 9 The thick water channels are still
present.

These simulations reproduce the fact that the post-breakthrough production rate is close
to the pre-breakthrough one. The simulation yields that the post-breakthrough flux of the
more-viscous fluid q+ is q+ ≈ 0.8q− (with q− the pre-breakthrough flux) at times close to
breakthrough time in our simulations, as opposed to q+ ∼ 0.6q− in Skauge et al. (2012) (the
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(a)

(b)

Fig. 9 Injection of a less viscous fluid in a rectangular porous medium till breakthrough with M = 10−3

(injection from the left-hand side): (a) the tracer, (b) the velocity field (closer to black: low velocity; closer to
white: higher velocity)

experimental coefficient is only an approximate one, due to a lack of precision of the data
we obtained from the curve). Consequently, as recovery continues after breakthrough, the
pressure drop accross the domain after breakthrough is of the same order of magnitude as
before breakthrough: The ration of pressure drops is (∆ p)+/(∆ p)− = 0.53.

Both our results and those of Skauge et al. (2012) contradict the conventional view.
Indeed, according to this view for sharp interfaces (i.e. when saturations are either 0 or 1),
when injecting a less-viscous fluid with µinjected =M� 1 at a constant massflux, the pressure
difference between the injection and exit sides is expected to decrease continuously towards
0. For a viscous finger of width w and length L, one can expect the post-breakthrough pres-
sure difference ∆ p+ between the injection and exit faces to be of order (w/L)−1M×∆ p−,
i.e. for M = 10−3 and (w/L)−1 = 10, ∆ p is expected to be divided by 100. The divergence
between our results and the conventional view is a result of the pinching process and the
creation of several disconnected bubbles (see Figure 10). The origin of these bubbles, also
seen in simulations of fingering with central injection by Lagrée et al. (2014) is not yet well
understood. Indeed in the limit where M = 0 it may be shown using the maximum principle
that the interface should never recoil into the advancing fluid region (Lagrée et al., 2014).
Thus the formation of bubbles is numerical or an effect of non-zero M.

The proportion of lower-viscosity phase was also obtained at several abscissae for dif-
ferent dimensionless times. The results are presented in Figure 11 for a viscosity ratio
M = 1/2500. These results are not consistent with those obtained in real quasi-2D exper-
iments. In the experiments, the proporition of low viscosity phase at each abcissa is much
lower than in simulations. This happens for the same reasons as presented above. The 3D
aspect of the experiments introduces fingering in the third dimension, and the fronts in a real
medium have regions of mixed phases behind and ahead of them.

The proportion of lower-viscosity phase at several abscissae for different times was com-
pared for two different viscosity ratios: M = 1/2500 and M = 1/7000. The results are shown
in Figure 12. In order to enhance the readability of the plots, the profiles at times t3 and t5
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(a)

(b)

Fig. 10 Pressure field during the injection of a less viscous fluid in a rectangular porous medium with M =
10−3 (injection from the left-hand side): (a) before breakthrough, (b) after breakthrough. The color scale is
identical in both pictures
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Fig. 11 Proportion of low-viscosity phase as a function of dimensionless abscissa for several dimension-
less times. The data are average values over thin slices of porous medium between two specific abscissae
(corresponding to the boundaries of the error bars)
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Fig. 12 Proportion of lower-viscosity phase as a function of abscissa for several times and different viscosity
ratios (M = 1/2500 and M = 1/7000). The data are average values over thin slices of porous medium between
two specific abscissae (corresponding to the boundaries of the error bars)

were extracted from the series and replotted on Figure 13. The numerical results are consis-
tent with the trend of the experimental results: indeed, for higher viscosity contrast the tip
of the fingering process moves slightly more rapidly, ensuring breakthrough at shorter time.
The expected recovery ratio at breakthrough is thus smaller for the case M = 1/7000 than
when M = 1/2500, as was observed by Skauge et al. (2012). The difference between the
dynamics for the two M values is slight however.

It is worth discussing this result with reference to on one hand equation (7) which states
that the advance of the tip depends only on the fractal dimension which in turn does not
depend on M. On the other hand we have seen in figure 4 that the scaling does not work so
well near the tip.

More generally the statistical properties of the fingering pattern, be they DF or the expo-
nent α , do not depend on M. Thus the observed dependence on M is likely a second-order
effect. The precise mechanisms involved remain to be investigated.

4.3 Injection of an intermediate-viscosity fluid as a second step

We finally consider the consecutive injection of both a low-viscosity fluid (hereafter called
Fluid 1) and an intermediate-viscosity one (Fluid 2) in a porous medium originally filled
with a high-viscosity fluid (Fluid 0). For this purpose, we focus on the same 1×1/4 domain
as in the previous Section.

In a first step, we simulate the injection of the least viscous fluid in the domain similarly
to what was presented beforehand. In their experiments, Skauge et al. (2012) waited till long
after breakthrough before beginning the injection of the intermediate-viscosity fluid. In our
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Fig. 13 Proportion of lower-viscosity phase as a function of abscissa for two specific times and different
viscosity ratios (M = 1/2500 and M = 1/7000). The data are average values over thin slices of porous
medium between two specific abscissae (corresponding to the boundaries of the error bars)

simulations, we choose to begin this injection before breakthrough, in order to reduce the
required CPU time.

The injection of Fluid 2 is realized from the same side as the one that was used to inject
Fluid 1. The different viscosity ratios are as follows

M1 =
µ1

µ0
=

1
2500

, (9)

M2 =
µ2

µ0
=

1
50

. (10)

Three different cases are considered:

– case A: fluids 1 and 2 are not miscible. Mass conservation implies (Tryggvason et al.,
2011), that the marker function c varies as

∂tc+u ·∇c = 0. (11)

– case B: fluids 1 and 2 are miscible and diffuse one inside the other. The marker function
thus obeys an advection-diffusion equation

∂tc+u ·∇c = D∆c (12)

with D > 0. In this case, it was checked that τDiffusion ∼ τViscosity� τCFL.
– case C: This is a control case, destined to check the effects of numerical diffusion. To

perform this control we discretize the same equation as in case B, with the same method,
but with a zero coefficient of diffusion (D= 0). This checks the magnitude of the numeri-
cal diffusion of the advection scheme used to solve equation (12). The advection scheme
is the Bell–Colella–Glaz second-order unsplit upwind scheme (Bell et al., 1989)).
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Fig. 14 Invasion of a porous medium by a single low-viscosity fluid. As no intermediate-viscosity fluid is
injected, the high-viscosity fluid is not mobilized much inside the rectangle.

Fig. 15 Injection of an intermediate-viscosity fluid as a second step in a rectangular domain (injection from
the left-hand side), case B. (with diffusion). In blue the phase containing both fluids 1 and 2, in red fluid 0.
Inside the rectangle, fluid 0 is mobilized by fluid 2, compared to Figure 14 and thus the receding-fluid ratio
decreases inside this slice of porous medium compared to the single-step case

In case B, the interfaces between fluids 0 and 1 for one part, and fluids 0 and 2 for an-
other part are still enforced to be sharp by the volume of fluid method. The interface between
fluids 1 and 2 is the only diffuse one. To formulate the model differently, in cases B and C,
there are two thermodynamic phases separated by a sharp interface. A tracer is dissolved in
the invading phase, and “fluid 1” contains a zero concentration c of the tracer while “fluid
2” contains a concentration c = 1 of the same tracer. Case B is the closest to what actu-
ally occurs in the experiments presented by Skauge et al. (2012). We emphasize that sharp
interfaces are in all cases a model. There is no change in the injection rate (constant mass-
flux u(−1/2,y) = ex) when switching from Fluid 1 to Fluid 2 occurs. The side boundaries
y = ±1/2 impose a slip condition, while the last side allows a “free” outflow condition for
the fluids.

We perform simulations of these models with D = 0.11 in dimensionless units. In all
cases, the results reproduce what can be obtained experimentally. Indeed, the volume of
Fluid 0 that remained inside the porous medium after the injection of Fluid 1 is mobilized
behind the fingering front by the invading Fluid 2, as can be seen in Figure 15. The result
obtained after invasion of only one low-viscosity fluid is recalled in Figure 14 to allow
comparison. Indeed in Figures 17 and 18 it looks like the tracer is diffusing in both phases.
The slight penetration of the tracer in the receding phase is however contained.

The mobilization of the receding fluid behind the fingering front is obvious when con-
sidering the proportion of Fluids 1 and 2 at a fixed dimensionless time for several values of x
(Figure 19). Indeed, for low x-values this proportion is increased by 10 to 20% for all cases
A, B and C. compared to the simulation of the invasion of the porous medium by Fluid 1
only. On the contrary, the invasion by fluid 1 alone better fills higher abscissae for a fixed
dimensionless time (especially abscissae 4 and 7 in the figure). In other words, injecting an
intermediate-viscosity ratio as a second step leads to higher recovery ratios, i.e. the remain-
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Fig. 16 Same simulation as in the previous Figure. In this figure, the receding fluid is in blue, and the mixture
of advancing fluids is plotted with a color palette representing the mixture concentration c, varying from for
c = 1 (pure fluid 2) to blue for (pure fluid 1 or pure fluid 0)

Fig. 17 Same simulation as in the previous Figure, with the same representation, but the position of the
interface between the receding and the advancing fluid is shown as a black line

Fig. 18 A zoomed view of the previous Figure. It is seen that very little of the mixture has diffused accross
the interface
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ing volume of Fluid 0 in the porous medium is lower after a double sweep by Fluid 1 then
Fluid 2, than when injecting Fluid 1 alone.

Finally, the asymptotic coefficient α∞ defined above is constant for the three cases
(α∞ ≈ 0.63± 0.02, see Figure 20), but is significantly lower than when injecting Fluid 1
alone (α∞ ∼ 0.8, see Figure 7). Consequently, when studying scaling properties of the two-
step invasion of a porous medium by first a low-viscosity fluid and then an intermediate-
viscosity one, one can choose any of the three modelings studied above (for example the
one presenting the best computational speed), with no lack of precision. This is once again
due to the absence of a physical lengthscale in the problem.
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5 Conclusion

In this work, a sharp interface model has been used as a heuristic model for the simulation
of viscous fingering in rectangular porous media with lateral injection. Both two- and three-
phase flows were investigated with a relatively large range of scales. The measured fractal
dimensions are close to those of the DLA and consistent with what is previously known.
The free solver Gerris was adapted for simulation of viscous fingering in rectangular porous
media with lateral injection and two- and three-phase flows. The accuracy of the simulations
was determined by comparing the computed fractal dimensions to the theoretical one of
DLA. The use of a finer mesh creates a smaller lengthscale.

The method allows to simulate invasion of porous media until after breakthrough with
interesting qualitative results. Indeed, the post-breakthrough rate at which the receding fluid
is recovered remains close to the pre-breakthrough one. When performing simulations at two
different viscosity ratios, the results are only slightly different, but the tip advance shows the
same trend as in experiments.

Finally the comparison of two different models of the injection of an intermediate-
viscosity fluid in a second step shows no difference between the models. This shows that
one can use either of them to study the scaling properties of such an injection. Indeed, the
qualitative aspect is in all cases consistent with the experiments (the high-viscosity fluid is
mobilized behind the fingering front).
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