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Discretization error cancellation in electronic structure calculation:

toward a quantitative study

Eric Cancès† Geneviève Dusson‡

June 2, 2017

Abstract

It is often claimed that error cancellation plays an essential role in quantum chemistry and first-
principle simulation for condensed matter physics and materials science. Indeed, while the energy of a
large, or even medium-size, molecular system cannot be estimated numerically within chemical accuracy
(typically 1 kcal/mol or 1 mHa), it is considered that the energy difference between two configurations
of the same system can be computed in practice within the desired accuracy.

The purpose of this paper is to initiate the quantitative study of discretization error cancellation.
Discretization error is the error component due to the fact that the model used in the calculation (e.g.
Kohn-Sham LDA) must be discretized in a finite basis set to be solved by a computer. We first report
comprehensive numerical simulations performed with Abinit [14, 15] on two simple chemical systems,
the hydrogen molecule on the one hand, and a system consisting of two oxygen atoms and four hydrogen
atoms on the other hand. We observe that errors on energy differences are indeed significantly smaller
than errors on energies, but that these two quantities asymptotically converge at the same rate when
the energy cut-off goes to infinity. We then analyze a simple one-dimensional periodic Schrödinger
equation with Dirac potentials, for which analytic solutions are available. This allows us to explain the
discretization error cancellation phenomenon on this test case with quantitative mathematical arguments.

AMS subject classifications: 65N25, 35P15, 65G99, 81-08
Key words: Electronic structure calculation; Schrödinger operators; Error analysis

1 Introduction

Error control is a central issue in molecular simulation. The error between the computed value of a given
physical observable (e.g. the dissociation energy of a molecule) and the exact one, has several origins.
First, there is always a discrepancy between the physical reality and the reference model, here the N -body
Schrödinger equation, possibly supplemented with Breit terms to account for relativistic effects. However, at
least for the atoms of the first three rows of the periodic table, this reference model is in excellent agreement
with experimental data, and can be considered as exact in most situations of interest. The overall error is
therefore the sum of the following components:

1. the model error, that is the difference between the value of the observable for the reference model,
which is too complicated to solve in most cases, and the value obtained with the chosen approximate
model (e.g. the Kohn-Sham LDA model), assuming that the latter can be solved exactly;
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2. the discretization error, that is the difference between the value of the observable for the approximate
model and the value obtained with the chosen discretization of the approximate model. Indeed, the
approximate model is typically an infinite dimensional minimization problem, or a system of partial
differential equations, which must be discretized to be solvable by a computer, using e.g. a Gaussian
atomic basis set, or a planewave basis;

3. the algorithmic error, which is the difference between the value of the observable obtained with the
exact solution of the discretized approximate model, and the value computed with the chosen algorithm.
The discretized approximate models are indeed never solved exactly; they are solved numerically by
iterative algorithms (e.g. SCF algorithms, Newton methods), which, in the best case scenario, only
converge in the limit of an infinite number of iterations. In practice, stopping criteria are used to
exit the iteration loop when the error at iteration k, measured in terms of differences between two
consecutive iterates or, better, by some norm of some residual, is below a prescribed threshold. If the
stopping criterion is very tight, the algorithmic error can become very small, ... or not! For instance,
if the discretized approximate model is a non convex optimization problem, there is no guarantee that
the numerical algorithm will converge to a global minimum. It may converge to a local, non-global
minimum, leading to a non-zero algorithmic error even in the limit of an infinitely tight stopping
criterion;

4. the implementation error, which may, obviously, be due to bugs, but does not vanish in the absence of
bugs, because of round-off errors: in molecular simulation packages, most operations are implemented
in double precision, and the resulting round-off errors can accumulate, especially for very large systems;

5. the computer error, due to random hardware failures (miswritten or misread bits). This component of
the error is usually negligible in today’s standard computations, but is expected to become critical in
future exascale architectures [24].

Quantifying these different sources of errors is an interesting purpose for two reasons. First, guaranteed
estimates on these five components of the error would allow one to supplement the computed value of the
observable returned by the numerical simulation with guaranteed error bars (certification of the result).
Second, they would allow one to choose the parameters of the simulation (approximate model, discretization
parameters, algorithm and stopping criteria, data structures, etc.) in an optimal way in order to minimize
the computational effort required to reach the target accuracy.

The construction of guaranteed error estimators for electronic structure calculation is a very challenging
task. Some progress has however been made in the last few years, regarding notably the discretization
and algorithmic errors for Kohn-Sham LDA calculations. A priori discretization error estimates have been
constructed in [3] for planewave basis sets, and then in [8] for more general variational discretization methods.
A posteriori error estimators of the discretization error have been proposed in [5, 7, 19]. A combined
study of both the discretization and algorithmic errors was published in [4] (see also [11]). We also refer
to [26, 9, 10, 23, 25, 17, 22, 30, 31, 33] and references therein for other works on error analysis for electronic
structure calculation.

In all the previous works on this topic we are aware of, the purpose was to estimate, for a given nu-
clear configuration R of the system, the difference between the ground state energy ER (or another ob-
servable) obtained with the continuous approximate model under consideration (e.g. Kohn-Sham LDA)
and its discretized counterpart denoted by ER,N , where N is the discretization parameter. The latter is
typically the number of basis functions in the basis set for local combination of atomic orbitals (LCAO)
methods [18], the inverse fineness of the grid or the mesh for finite difference (FD) and finite element (FE)
methods [16, 34, 29, 28], the cut-off parameter in energy or momentum space for planewave (PW) discretiza-
tion methods [14, 12, 21], or the inverse grid spacing and the coarse and fine region multipliers for wavelet
(WL) methods [27]. In variational approximation methods (LCAO, FE, PW, and WL), the discretization
error ER,N − ER is always nonnegative by construction. In systematically improvable methods (FD, FE,
PW, and WL), this quantity goes to zero when N goes to infinity with a well-understood rate of convergence
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depending on the smoothness of the pseudopotential (see [3] for the PW case). However, in most applica-
tions, the discretization parameters are not tight enough for the discretization error to be lower than the
target accuracy, which is typically of the order of 1 kcal/mol or 1 mHa (recall that 1 mHa ' 0.6275 kcal/mol
' 27.2 meV, which corresponds to an equivalent temperature of about 316 K). It is often advocated that this
is not an issue since the real quantity of interest is not the value of the energy ER for a particular nuclear
configuration R, but the energy difference ER1 −ER2 between two different configurations R1 and R2. It is
indeed expected that

|(ER1,N − ER2,N )− (ER1 − ER2)| � |ER1,N − ER1 |+ |ER2,N − ER2 |,

that is, the numerical error on the energy difference between the two configurations is much smaller than
the sum of the discretization errors on the energies of each configuration. This expected phenomenon goes
by the name of (discretization) error cancellation in the Physics and Chemistry literatures.

Obviously, for variational discretization methods, ERj ,N − ERj ≥ 0 so that both discretization errors
have the same sign, leading to

|(ER1,N − ER2,N )− (ER1 − ER2)| = |(ER1,N − ER1)− (ER2,N − ER2)|
≤ max (ER1,N − ER1 , ER2,N − ER2) ,

but this does not explain the magnitude of the error cancellation phenomenon. The commonly admitted
qualitative argument usually raised to explain this phenomenon is that the errors ER1,N −ER1 and ER2,N −
ER2 are of the same nature and almost annihilate one another.

The purpose of this article is to provide a quantitive analysis of discretization error cancellation for PW
discretization methods. First, we report in Section 2 two systematic numerical studies on, respectively, the
hydrogen molecule and a simple system consisting of six atoms. For these systems, we are able to perform
very accurate calculations with high PW cut-offs and tight convergence criteria, which provide excellent
approximations of the ground state energy ER. We then compute, for two different configurations R1 and
R2, the error cancellation factor

0 ≤ QN :=
|(ER1,N − ER2,N )− (ER1 − ER2)|
|ER1,N − ER1

|+ |ER2,N − ER2
| ≤ 1.

We observe that this ratio is indeed small (typically between 10−3 and 10−1 depending on the system and
on the configurations R1 and R2), and that it does not vary much with N . In Section 3, we introduce a toy
model consisting of seeking the ground state of a one-dimensional linear periodic Schrödinger equation with
Dirac potentials: (

− d2

dx2
−
∑
m∈Z

z1δm −
∑
m∈Z

z2δm+R

)
uR = ERuR,

∫ 1

0

u2R(x)dx = 1,

for which we can prove that the error cancellation factor QN converges to a fixed number 0 < Q∞ < 1
when N goes to infinity. Interestingly, it is possible to obtain a simple explicit expression of Q∞, which only
depends on z1, z2 and on uR1

(0)2, uR2
(0)2, uR1

(R1)2, uR1
(R2)2, i.e. on the values of the densities ρR1

= u2R1

and ρR1
= u2R2

at the singularities of the potential.

An alternative way to estimate the error on the energy difference between two configurations R1 and R2

is to integrate the error on the atomic forces on a smooth path linking R1 and R2. We conclude Section 2
by showing that the latter approach is not efficient in general.

2 Discretization error cancellation in planewave calculations

We present here some numerical simulations on two systems: the H2 molecule and a system consisting of
two oxygen atoms and four hydrogen atoms. The simulations are done in a cubic supercell of size 10×10×10
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bohrs with the Abinit simulation package [14, 15]. The chosen approximate model is the periodic Kohn-Sham
LDA model [20] with the parametrization and the pseudopotential proposed in [13]. Note that, in this work,
we consider the approximation consisting of replacing the original problem set on the whole space R3 with a
problem set on a cubic supercell with periodic boundary conditions as a model error. Alternatively, this error
could be regarded as a discretization error: the supercell problem can indeed be seen as a non-consistent,
non-conforming approximation of the original problem set on the whole space (see [6], in which this point of
view was adopted to study the case of a local defect embedded in a perfect crystal).

For each configuration R, we compute a reference ground state energy ER taking a high energy cutoff
Ecut = 400 Ha. We then compute approximate energies for N = Ecut varying from 5 to 105 Ha by steps of
5 Ha. The so-obtained energies are denoted by ER,N .

For two given configurations R1 and R2 of the same system, we compute SN , the sum of the discretization
errors on the energies of the two configurations (note that ER,N − ER ≥ 0 since PW is a variational
approximation method), and DN , the discretization error on the energy difference:

SN = (ER1,N − ER1) + (ER2,N − ER2) and DN = |(ER1,N − ER2,N )− (ER1 − ER2)| ,
as well as the error cancellation factor

QN =
DN

SN
=
|(ER1,N − ER2,N )− (ER1 − ER2)|
(ER1,N − ER1

) + (ER2,N − ER2
)
.

The two chemical systems considered in this section are very simple. We can therefore safely assume that for
each configuration, our numerical simulations provide good approximations of the Kohn–Sham ground state.
Besides, very tight convergence criteria are used, so that algorithmic errors are negligible. Implementation
and computer errors are not expected to be significant in this context.

2.1 Ground state potential energy surface of the H2 molecule

In all our calculations, the H2 molecule lies on the x axis and is centered at the origin. The parameter R is
here the interatomic distance in bohrs.

We numerically observe thatDN is smaller than SN by a factor of 10 to 100, and that the error cancellation
factor QN is smaller when the two interatomic distances are close to each other (R1 ' R2). Morevoer, QN
is almost constant with respect to the cut-off energy N .

In Figure 1, we present detailed results for two different pairs of configurations. On the top, the con-
figurations are rather close since the interatomic distances are R1 = 1.464 and R2 = 1.524 bohr. For
this approximate model, the equilibrium distance is about Req ' 1.464 bohrs (the experimental value is
Rexp

eq ' 1.401 bohrs). The energy difference is better approximated by a factor of about 50 compared to
the energies (QN ' 0.02). Moreover the log-log plots of SN and DN are almost parallel, which suggests
that there is no improvement in the order of convergence when considering energy differences instead of
energies; only the prefactor is improved. This is confirmed by the plots of the error cancellation factor QN ,
showing that this ratio does not vary much with N . On the bottom, the configurations are further apart.
The interatomic distances are R1 = 1.344 and R2 = 1.704 bohrs. We observe a similar behavior except that
the error cancellation phenomenon is less pronounced (QN ' 0.1).

We then compare in Table 1 the values of SN and DN for different pairs of configurations and for two
values of N = Ecut: a rather coarse energy cut-off N = 30 Ha, and a quite fine one N = 100 Ha. One
configuration is kept fixed (R1 = 1.284 bohrs), while the second one varies from R2 = 1.344 bohrs (close
configurations) to R2 = 1.764 bohrs (distant configurations). We also report, for each pair of configurations,
the minimum, maximum, and mean values of QN over the different tested energy cutoffs 5 ≤ N ≤ 105 Ha.
We also observe that QN increases with R2 −R1 on the range R2 = [1.344, 1.764].

2.2 Energy of a simple chemical reaction

In this section, we consider the energy difference between two very different configurations of a system
consisting of two oxygen atoms and four hydrogen atoms. The first configuration, denoted by R1, corresponds
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Figure 1: Convergence plots of the quantities SN and DN (left) and of the error cancellation factor QN =
DN/SN (right) for two different pairs of interatomic distances for the H2 molecule. Top: R1 = 1.464 and
R2 = 1.524 bohrs. Bottom: R1 = 1.344 and R2 = 1.704 bohrs.

to the chemical system 2 H2O (two water molecules) and the second one, denoted by R2, to the chemical
system 2 H2 + O2, all these molecules being in their equilibrium geometry (see Figure 2). The energy
difference between the two configurations thus provides a rough estimate of the energy of the chemical
reaction

2 H2 + O2 −→ 2 H2O.

We can observe on Figure 3 and Table 2 a similar behavior as for H2, but with a better error cancellation
factor (QN ' 0.005).

3 Mathematical analysis of a toy model

We now present a simple one-dimensional periodic linear Schrödinger model for which the discretization error
cancellation phenomenon observed in the previous section can be explained with full mathematical rigor.

We denote by
L2
per :=

{
u ∈ L2

loc(R)
∣∣ u is 1− periodic

}
the vector space of the 1-periodic locally square integrable real-valued functions on R, and by

H1
per :=

{
u ∈ L2

per

∣∣ u′ ∈ L2
per

}
the associated order-1 Sobolev space. For two given parameters z1, z2 > 0, we consider the family of problems,
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R1 R2 SN=30 DN=30 SN=100 DM=100 min(QN ) max(QN ) mean(QN )
1.284 1.344 9.410 0.1985 0.09157 0.00112 0.0103 0.0340 0.0212
1.284 1.404 9.268 0.3408 0.08990 0.00279 0.0216 0.0633 0.0413
1.284 1.464 9.160 0.4491 0.08772 0.00497 0.0375 0.0895 0.0610
1.284 1.524 9.065 0.5436 0.08552 0.00717 0.0544 0.1107 0.0802
1.284 1.584 8.969 0.6394 0.08380 0.00889 0.0713 0.1285 0.0985
1.284 1.644 8.863 0.7456 0.08274 0.00995 0.0841 0.1455 0.1151
1.284 1.704 8.744 0.8646 0.08213 0.01056 0.0983 0.1642 0.1302
1.284 1.764 8.615 0.9937 0.08154 0.01115 0.1072 0.1802 0.1440

Table 1: Comparison of SN , DN and QN for different atomic configurations of the H2 molecule. Distances
are in bohrs, energies in mHa.

Figure 2: Graphical representation of the two atomic configurations whose energies are compared. Oxygen
atoms are in green, hydrogen atoms in black.

indexed by R ∈ (0, 1), consisting in finding the ground state (uR, ER) ∈ H1
per × R of

(
− d2

dx2
−
∑
m∈Z

z1δm −
∑
m∈Z

z2δm+R

)
uR = ERuR,∫ 1

0

u2R(x)dx = 1, uR ≥ 0,

(1)

where δa denotes the Dirac mass at point a ∈ R. A variational formulation of the problem is: find the ground
state (uR, ER) ∈ H1

per × R of
∀v ∈ H1

per,

∫ 1

0

u′R(x)v′(x)dx− z1uR(0)v(0)− z2uR(R)v(R) = ER

∫ 1

0

uR(x)v(x)dx,∫ 1

0

u2R(x)dx = 1, uR ≥ 0.

(2)

Remark 1. The ground state eigenvalue ER is negative. Indeed, using the variational characterization of
the ground state energy, we get

ER = min
v ∈ H1

per \ {0}

∫ 1

0

v′(x)2dx− z1v(0)2 − z2v(R)2∫ 1

0

v2(x)dx

< 0,
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Figure 3: Convergence plots of the quantities SN and DN (left) and of the error cancellation factor QN =
DN/SN (right) for the two different configurations displayed on Figure 2.

SN=30 DN=30 SN=100 DN=100 min(QN ) max(QN ) mean(QN )
1403 5.726 15.12 0.0485 0.0005036 0.008986 0.004640

Table 2: Comparison of SN , DN (in mHa) and QN for the two different configurations displayed on Figure 2.

since the Rayleigh quotient is equal to −z1 − z2 < 0 for the constant test function v = 1.

Denoting by kR =
√−ER, we have{

uR(x) = AekRx +Be−kRx, ∀x ∈ [0, R],
uR(x) = CekRx +De−kRx, ∀x ∈ [R− 1, 0),

(3)

where A, B, C, and D are real-valued constants. Since the function uR is 1-periodic and continuous on R
and its derivative satisfies the jump conditions u′R(m+ 0)− u′R(m− 0) = −z1uR(m) and u′R(m+R+ 0)−
u′R(m+R− 0) = −z2uR(m+R) for all m ∈ Z, the coefficients A, B, C, D solve the linear system

1 1 −1 −1
ekRR e−kRR −ekR(R−1) −e−kR(R−1)

kR + z1 −kR + z1 −kR kR
(kR − z2)ekRR −(kR + z2)e−kRR −kRekR(R−1) kRe

−kR(R−1)


︸ ︷︷ ︸

M(kR)


A
B
C
D

 =


0
0
0
0

 .

The wave vector kR is the lowest positive root of the function k 7→ det(M(k)). The coefficients (A,B,C,D)
are then uniquely determined by the normalization condition ‖uR‖L2

per
= 1 and the positivity of uR. Exact

solutions for two different values of the triplet of parameters (z1, z2, R) are plotted in Figure 4.
An approximate solution of the problem is obtained using the PW discretization method. Denoting by

XN := Span

vN (x) =
∑

k∈Z, |k|≤N
v̂ke

2πikx

∣∣∣∣ v̂k ∈ C, v̂−k = v̂k

 ⊂ H1
per,

the variational approximation of problem (2) in XN consists in computing the ground state (uR,N , ER,N ) ∈
XN × R of

∀vN ∈ XN ,

∫ 1

0

u′R,Nv
′
N − z1uR,N (0)vN (0)− z2uR,N (R)vN (R) = ER,N

∫ 1

0

uR,NvN ,∫ 1

0

u2R,N = 1,

∫ 1

0

uR,N ≥ 0.

(4)
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Figure 4: Plot of the exact solutions of (1) for two sets of parameters.

The conditions v̂−k = v̂k in the definition of XN is equivalent to imposing that the elements of XN are
real-valued functions. For convenience, the discretization parameter N here corresponds to the cut-off in
momentum space. As above, we consider the error cancellation factor

QN =
|(ER1,N − ER2,N )− (ER1

− ER2
)|

(ER1,N − ER1) + (ER2,N − ER2)
(5)

associated with the pair of configurations (R1, R2).

Note that imposing the condition
∫ 1

0
uR,N ≥ 0, we ensure that the discrete eigenfunction uR,N will

approximate the positive eigenfunction uR to the continuous problem (1) and not −uR.

Theorem 1 (Asymptotic expressions of the energy error and of the error cancellation factor). For all
z1, z2 > 0 and R ∈ (0, 1), we have for all ε > 0,

ER,N − ER =
αR
N
− αR

2N2
+
β
(1)
R,N

N
+
γR
N
ηR,N + o

(
1

N3−ε

)
, (6)

where

αR :=
z21uR(0)2 + z22uR(R)2

2π2
, γR :=

z1z2uR(0)uR(R)

π2
, ηR,N := N

+∞∑
k=N+1

cos(2πkR)

k2
,

β
(1)
R,N :=

z21uR(0)(uR,N (0)− uR(0)) + z22uR(R)(uR,N (R)− uR(R))

2π2
.

In addition

|ηR,N | ≤ min

(
1,

2 + π3

8

| sin(πR)|N

)
,

and for all ε > 0, there exists Cε ∈ R+ such that

|β(1)
R,N | ≤

Cε
N1−ε .

As a consequence, we have for all z1, z2 > 0 and all R1, R2 ∈ (0, 1),

lim
N→+∞

QN =
|αR1

− αR2
|

αR1 + αR2

=

∣∣z21 (uR1(0)2 − uR2(0)2
)

+ z22
(
uR1(R1)2 − uR2(R2)2

)∣∣
z21(uR1(0)2 + uR2(0)2) + z22(uR1(R1)2 + uR2(R2)2)

. (7)
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The proof of the above theorem is given in Appendix. We deduce from (6) that the discretization error
ER,N − ER on the energy of the configuration R is the sum of

1. a leading term αRN
−1 of order 1 (in N−1);

2. three terms −1/2αRN
−2, β

(1)
R,NN

−1, and γRN
−1ηR,N which are roughly of order 2;

3. higher order terms which are roughly of order 3 and above.

The leading term αRN
−1 has a very simple expression and the prefactor αR does not vary much with respect

to R (see Figure 5). This explains the phenomenon of discretization error cancellation. Regarding the second
order corrections on ER,N − ER, we have observed numerically (see Figure 6) that

• the terms − 1
2αRN

−2 and γRN
−1ηR,N are of about the same order of magnitude in absolute values,

that the former is always negative (since αR > 0), but that the latter can be either positive or negative,
so that the sum of these two contributions can be either significant or negligible;

• the term β
(1)
R,NN

−1 is smaller in absolute value than the other two terms, and seems to be always
negative. Our numerical calculations indeed show that uR,N (0) < uR(0) and uR,N (R) < uR(R), which
is not very surprising since the function uR has cusps at points x = 0 and x = R (see Figure 4). These
inequalities have not been rigorously established though.

0 0.2 0.4 0.6 0.8 1
0

5 · 10−2

0.1

0.15

0.2

R

α
R

(z1, z2) = (1, 0.2)

(z1, z2) = (1, 0.5)

(z1, z2) = (1, 1)

Figure 5: Plots of the function R 7→ αR for three sets of parameters (z1, z2).

Finally, we observe on Figure 7 that QN converges to the asymptotic value Q∞ when N goes to infinity
very smoothly for large values of R, and with oscillations when R becomes close to zero. Moreover, QN−Q∞
is of order N−2.

Remark 2. The 1D model studied in this section involves Dirac potentials, for which the exact solutions (3),
as well as the lowest-order terms of the discretization error (6), can be computed explicitly. It would have
been possible to use more regular potentials with explicit solutions, such as piecewise constant potentials for
instance. However, the calculations would have been more tedious than for the Dirac case, and we anticipate
that, qualitatively, the results would have been similar. Loosely speaking, the faster convergence of the energy
difference originates from the fact that the leading term of the error depends on the nuclear configuration,
but not that much. This explains why the convergence rate is not improved, while the prefactor is improved.
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N
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Figure 6: Convergence plots of the four quantities αR
N , αR

2N2 ,
|β(1)
R,N |
N , and γR

N |ηR,N | (left) and plots of

|(αRN −
αR
2N2 +

β
(1)
R,N
N +

γR
N ηR,N )−(ER,N−ER)|

ER,N−ER and
|αRN −(ER,N−ER)|

ER,N−ER (right). Top: z1 = z2 = 1, R = 0.3. Bottom:

z1 = z2 = 1, R = 0.09.

For smoother potentials, as well as for pseudopotentials, it is expected that most of the error on the energy
remains concentrated in the vicinities of the core regions, where, for different nuclear configurations, the
electronic orbitals change, but not much.

Remark 3. Note that a variant of the projected augmented wave (PAW) method [2] was recently studied for
the 1D model considered here [1]: it is shown that the error on the energy has two contributions, the first
one scaling as r4N0

c N−1, and the second one as r−pc N−(p+1), where rc is the core radius, N0 the number of
pseudo-orbitals, p the degree of the (polynomial) pseudo-orbitals in the core region, and N the number of
planewaves. However, it is not clear how to use the estimates in [1] to obtain estimates on energy differences.
We intend to investigate this point in the future.

To conclude, let us comment on the alternative approach to estimate the error on the energy difference
between two configurations consisting in integrating the error on the atomic forces along a path in the nuclear
configuration space liking the two configurations. In this simple 1D setting, we have, for R1 < R2,

|(ER1,N − ER2,N )− (ER1
− ER2

)| =
∣∣∣∣∣
∫ R2

R1

(FR,N − FR) dR

∣∣∣∣∣ , where FN,R := −dER,N
dR

and FR := −dER
dR

.

The use of a variational method guaranties that the energy error ER,N − ER is nonnegative for all N and
all R. On the other hand, the error on the force FR,N − FR does not have a constant sign (it integrates to
zero on the interval [0, 1]), so that, in general,

|(ER1,N − ER2,N )− (ER1
− ER2

)| =
∣∣∣∣∣
∫ R2

R1

(FR,N − FR) dR

∣∣∣∣∣ ≤
∫ R2

R1

|FR,N − FR| dR.
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Figure 7: Plot of QN −Q∞ for three values of R.

The left hand-side of the above inequality can a priori be much smaller than the right hand-side. In this
case, using bounds on the error on the forces would lead to a dramatic overestimation of the error on the
energy difference. This is confirmed by our numerical simulations. The functions

(R1, R2) 7→
∣∣∣∣∣
∫ R2

R1

(FR,N − FR) dR

∣∣∣∣∣ and (R1, R2) 7→
∫ R2

R1

|FR,N − FR| dR, (8)

plotted in Figure 8, are very different and the latter one is not a good approximation of the former one.
Another interesting observation is the following. Numerical simulations show that the forces converge at the

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R1

R
2

0

1

2

3

4

·10−4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R1

R
2

0

2

4

6

·10−3

Figure 8: Colorplots of the functions defined in (8). The forces were computed with centered finite difference
with step size 10−6 and the integrals with Simpson’s rule with step length 10−2, chosen equal to the resolution
of the figure.

same rate as the energy, i.e. in 1/N (see Figure 9), and that, for each value of N in the range [10, 100], the
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derivatives of the functions

R 7→ ER,N − ER and R 7→ χR,N :=
αR
N
− αR

2N2
+
β
(1)
R,N

N
+
γR
N
ηR,N

agree up to very small correction terms. Nevertheless, the derivative of the fourth term in χR,N (i.e. of
γRηR,NN

−1) can be much larger than the derivative of the first term (i.e. of αRN
−1). The leading term

of the error on the force is therefore not in general (minus) the derivative of the leading term of the energy
error. In Figure 10, the above functions are plotted for N = 10 (top) and N = 100 (bottom).

101 102

10−3

10−2

10−1

1

-1

1

-1

N

max
R∈(0.1,0.9)

∣∣∣∣
dER,N

dR
− dER

dR

∣∣∣∣

max
R∈(0.1,0.9)

(ER,N − ER)

Figure 9: Convergence of the errors on the energy (in red) and on the forces (in blue).

4 Appendix: proof of Theorem 1

In the sequel, z1 and z2 are fixed positive real numbers. We endow the functional spaces L2
per and H1

per with
their usual scalar products

〈u|v〉L2
per

:=

∫ 1

0

u(x)v(x) dx and 〈u|v〉H1
per

:= 〈u|v〉L2
per

+ 〈u′|v′〉L2
per
.

More generally, we endow the Sobolev space

Hs
per :=

{
v(x) =

∑
k∈Z

v̂ke
2iπkx

∣∣∣∣ v̂k ∈ C, v̂−k = v̂k,
∑
k∈Z

(1 + (2πk)2)s|v̂k|2 <∞
}
,

s ∈ R, with the scalar product defined by

〈u|v〉Hsper
:=
∑
k∈Z

(1 + (2πk)2)s ûk v̂k.

Note that the above two definitions of 〈u|v〉H1
per

coincide and that H0
per = L2

per. We also denote by ΠN the

orthogonal projection on XN for the L2
per (and also Hs

per) scalar product and by Π⊥N = 1−ΠN .

We first recall some useful results on the convergence of (uR,N , ER,N ) to (uR, ER).
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Figure 10: Plots of the functions R 7→ dER,N
dR − dER,N

dR and R 7→ dχR,N
dR , and of the derivative of each of

the four components of χR,N , for N = 10 (top) and N = 100 (bottom). The derivatives were computed
numerically by centered finite differences with step size 10−6.

Lemma 1. Let R ∈ (0, 1). Let (uR, ER) be the ground state of the continuous problem (2), and (uN,R, ER,N )
be a ground state of the discretized problem (4). Then, for all ε > 0 and all 0 ≤ s < 3/2, there exists Cs,ε ∈ R+

such that

‖uR,N − uR‖Hsper
≤ Cs,ε
N3/2−s−ε . (9)

In addition, there exist 0 < c ≤ C <∞ such that

c‖uR,N − uR‖2H1
per
≤ ER,N − ER ≤ C‖uR,N − uR‖2H1

per
, (10)
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and for all ε > 0, there exists Cε ∈ R+ such that

|uR,N (0)− uR(0)|+ |uR,N (R)− uR(R)| ≤ Cε
N1−ε . (11)

Proof. We denote by C0
per the space of continuous 1-periodic functions from R to R endowed with the norm

defined by
∀u ∈ C0

per, ‖u‖C0
per

:= max
x∈R
|u(x)|.

Recall that Hs
per is continuously embedded in C0

per for all s > 1/2. In particular, H1
per ↪→ C0

per and there
exists K ∈ R+ such that

∀u ∈ H1
per, ‖u‖C0

per
≤ K‖u‖

H
3/4
per
≤ K‖u‖3/4H1

per
‖u‖1/4L2

per
. (12)

In particular, the bilinear form

∀(u, v) ∈ H1
per ×H1

per, aR(u, v) =

∫ 1

0

u′v′ − z1u(0)v(0)− z2u(R)v(R)

is well-defined, symmetric, and continuous on H1
per ×H1

per, and we have

∀u ∈ H1
per, aR(u, u) ≥ ‖u‖2H1

per
− (z1 + z2)K2‖u‖3/2H1

per
‖u‖1/2L2

per
− ‖u‖2L2

per

≥ 1

2
‖u‖2H1

per
−
(

1 +
27

32
(z1 + z2)4K8

)
‖u‖2L2

per
,

using Young’s inequality. The quadratic form H1
per 3 u 7→ aR(u, u) ∈ R therefore is bounded below and

closed. We denote by HR the unique self-adjoint operator on L2
per associated to aR(·, ·) (see e.g. [32, Theorem

VIII.15]). Formally,

HR = − d2

dx2
− z1

∑
m∈Z

δm − z2
∑
m∈Z

δm+R.

The domain of HR being a subspace of H1
per, which is itself compactly embedded in L2

per, the spectrum of
HR is purely discrete: it consists of an increasing sequence of eigenvalues of finite multiplicities going to +∞.
It is easily seen that its ground state eigenvalue ER is simple. Let us denote by µR > 0 the gap between the
lowest two eigenvalues of HR. A classical calculation shows that

ER,N − ER = aR(uR,N − uR, uR,N − uR)− ER‖uR,N − uR‖2L2
per

= 〈uR,N |HR|uR,N 〉 − ER.

First, since ER < 0, we have

ER,N − ER ≤ aR(uR,N − uR, uR,N − uR) ≤MR‖uR,N − uR‖2H1
per
,

where MR is the continuity constant of aR, which proves the second inequality in (10). Second, since
‖uR‖L2

per
= ‖uR,N‖L2

per
= 1, we have on the one hand

ER,N − ER = 〈uR,N |HR|uR,N 〉 − ER ≥
(
ER|〈uR,N |uR〉L2

per
|2 + (ER + µR)

(
1− |〈uR,N |uR〉L2

per
|2
))
− ER

= µR

(
1− |〈uR,N |uR〉L2

per
|2
)
≥ µR

(
1− 〈uR,N |uR〉L2

per

)
=
µR
2
‖uR,N − uR‖2L2

per
,

and, on the other hand,

ER,N − ER ≥
1

2
‖uR,N − uR‖2H1

per
−
(

1 +
27

32
(z1 + z2)4K8 + ER

)
‖uR,N − uR‖2L2

per
.
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Combining the above two inequalities yields the first inequality in (10). Hence, (10) is proved.
We deduce from the min-max principle that for each vN ∈ XN such that ‖vN‖L2

per
= 1, we have

ER,N − ER ≤ aR(vN , vN )− ER = aR(vN − uR, vN − uR)− ER‖vN − uR‖2L2
per

≤ (MR − ER) ‖vN − uR‖2H1
per
.

Since z1
∑
m∈Z δm+ z2

∑
m∈Z δm+R ∈ H−1/2−εper for all ε > 0, we have that uR ∈ H3/2−ε

per . Applying the above

estimate to vN = ‖ΠNuR‖−1L2
per

ΠNuR, we get ER,N − ER ≤ Cε
N1−ε . Combining with (10), we obtain (9) for

s = 1. Together with (12), this implies in addition that (uR,N )N∈N converges to uR in C0
per. Since

−u′′R,N = z1uR,N (0)ΠN

(∑
k∈Z

δm

)
+ z2uR,N (R)ΠN

(∑
k∈Z

δm+R

)
+ ER,NuR,N ,

and the right hand-side converges to −u′′R in H
−1/2−ε
per for all ε > 0, the sequence (uR,N )N∈N converges to

uR in H
3/2−ε
per for all ε > 0. By interpolation, we then obtain (9) for all 1 ≤ s < 3/2. We finally obtain (9)

for s = 0 by a classical Aubin-Nitsche argument, and we conclude by interpolation that the result also holds
true for all 0 ≤ s < 1.

To prove (11), we infer from the Sobolev embedding H
1/2+ε
per ↪→ C0

per, that

|uR,N (0)− uR(0)|+ |uR,N (R)− uR(R)| ≤ 2‖uR,N − uR‖C0
per
≤ 2C ′ε‖uR,N − uR‖H1/2+ε

per
,

and we conclude using (9) with s = 1/2 + ε.

The following lemma provides an expression of the leading term of the energy difference ER,N − ER.

Lemma 2. Let z1, z2 > 0. Let R ∈ (0, 1). Let (uR, ER) be the ground state of the continuous problem (2),
and (uR,N , ER,N ) be a ground state of the discretized problem (4). Then, for all ε > 0,

ER,N − ER = z1uR,N (0)(Π⊥NuR)(0) + z2uR,N (R)(Π⊥NuR)(R) + o

(
1

N3−ε

)
, (13)

when N goes to +∞.

Proof. The variational formulation (2) with v = uR,N gives

ER

∫ 1

0

uR,NuR =

∫ 1

0

u′R,Nu
′
R − z1uR,N (0)uR(0)− z2uR,N (R)uR(R).

The variational formulation (4) with vN = ΠNuR gives

ER,N

∫ 1

0

uR,N (ΠNuR) =

∫ 1

0

u′R,N (ΠNuR)′ − z1uR,N (0)(ΠNuR)(0)− z2uR,N (R)(ΠNuR)(R).

Subtracting these two equalities, and noting first that

∫ 1

0

uR,N (ΠNuR) =

∫ 1

0

uR,NuR, and second that∫ 1

0

u′R,N (ΠNuR)′ =

∫ 1

0

u′R,Nu
′
R, since uR,N ∈ XN and the orthogonal projection ΠN and the derivation

commute, we get

(ER,N − ER)

∫ 1

0

uR,NuR = z1uR,N (0)(Π⊥NuR)(0) + z2uR,N (R)(Π⊥NuR)(R).

15



Moreover, since

∫ 1

0

u2R =

∫ 1

0

u2R,N = 1, we have

∫ 1

0

uR,NuR = 1− 1

2

∫
u2R −

1

2

∫ 1

0

uR,N
2 +

∫ 1

0

uR,NuR = 1− 1

2
‖uR,N − uR‖2L2

per
.

Hence,

(ER,N − ER)

(
1− 1

2
‖uR,N − uR‖2L2

per

)
= z1uR,N (0)(Π⊥NuR)(0) + z2uR,N (R)(Π⊥NuR)(R).

Using estimates (9) for s = 0 and (10), we obtain that for all ε > 0,

1− 1

2
‖uR,N − uR‖2L2

per
= 1 + o

(
1

N3−ε

)
, when N → +∞.

This concludes the proof of Lemma 2.

The following lemma provides an explicit expression of the quantities (Π⊥NuR)(0) and (Π⊥NuR)(R) ap-
pearing in (13).

Lemma 3. Let z1, z2 > 0. For all R ∈ (0, 1), all N ∈ N, and all x ∈ R,

(Π⊥NuR)(x) =

+∞∑
k=N+1

2

k2R + 4π2k2
(z1uR(0) cos(2πkx) + z2uR(R) cos(2πk(x−R))) . (14)

Proof. In order to estimate (Π⊥NuR)(x), we first need to compute the Fourier coefficients of uR

∀k ∈ Z, ûR(k) :=

∫ 1

0

uR(x)e−2iπkx dx. (15)

Using the periodicity of uR, we can rewrite the first equation in (1) as

−u′′R − z1uR(0)

(∑
m∈Z

δm

)
− z2uR(R)

(∑
m∈Z

δm+R

)
= ERuR.

Taking the Fourier transform, and using the relation ER = −k2R, we obtain

4π2k2ûR(k)− z1uR(0)− z2uR(R)e−2iπkR = −k2RûR(k).

Hence, for all k ∈ Z,

ûR(k) =
1

k2R + 4π2k2
(
z1uR(0) + z2uR(R)e−2iπkR

)
. (16)

Consequently,

(Π⊥NuR)(x) =
∑

k∈Z, |k|>N
ûR(k)e2iπkx =

∑
k∈Z, |k|>N

1

k2R + 4π2k2
(
z1uR(0) + z2uR(R)e−2iπkR

)
e2iπkx

=

+∞∑
k=N+1

2

k2R + 4π2k2
(z1uR(0) cos(2πkx) + z2uR(R) cos(2πk(x−R))) ,

which completes the proof of Lemma 3.

The last technical lemma we need provides an estimates of the series in (14) for x = 0 and x = R.
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Lemma 4. Let R 3 R 7→ kR ∈ R be a positive bounded function and M = supR∈R k
2
R. We denote by

fN (R) :=

+∞∑
k=N+1

1

k2R + 4π2k2
and gN (R) :=

+∞∑
k=N+1

cos(2πkR)

k2R + 4π2k2
.

For all R ∈ R \ Z we have

fN (R) =
1

4π2N
aN + φN (R), with aN = N

+∞∑
k=N+1

1

k2
, |φN (R)| ≤ M

48π4N3
, (17)

and

gN (R) =
1

4π2N
ηN,R + ψN (R), with ηN,R = N

+∞∑
k=N+1

cos(2πkR)

k2
, |ψN (R)| ≤ M

48π4N3
. (18)

Besides,

aN = 1 +
1

2N
+O

(
1

N2

)
and |ηN,R| ≤ min

(
1,

2 + π3

8

| sin(πR)|N

)
. (19)

Proof. The function fN can be decomposed as

fN (R) =
1

4π2N
aN + φN (R),

where

φN (R) = fN (R)− 1

4π2N
aN = − k2R

4π2

+∞∑
k=N+1

1

k2(k2R + 4π2k2)
.

We have on the one hand

aN = 1 +N

+∞∑
k=N+1

(
1

k2
−
∫ k

k−1

dt

t2

)
= 1 +N

+∞∑
k=N+1

1

k2

∫ 1

0

(
1−

(
1− s

k

)−2)
ds = 1 +

1

2N
+O

(
1

N2

)
,

and on the other hand, by a sum-integral comparison,

|φN (R)| ≤ M

4π2

+∞∑
k=N+1

1

4π2k4
≤ M

48π4N3
.

Thus, (17) and the first statement of (19) are proved. For N ∈ N and R ∈ R, we set

hN (R) :=

+∞∑
k=N+1

cos(2πkR)

4π2k2
=

1

4π2N
ηR,N .

We have

|ψN (R)| = |gN (R)− hN (R)| =
∣∣∣∣∣−

+∞∑
k=N+1

k2R cos(2πkR)

4π2k2(k2R + 4π2k2)

∣∣∣∣∣ ≤M
+∞∑

k=N+1

1

16π4k4
≤ M

48π4N3
.

Taking the second derivative of hN in the distribution sense and using Poisson summation formula, we obtain

h′′N (R) =
d2

dR2

(
+∞∑

k=N+1

e2iπkR + e−2iπkR

8π2k2

)
= −1

2

 ∑
k∈Z | |k|>N

e2iπkR


= −1

2

(∑
k∈Z

e2iπkR −
N∑

k=−N
e2iπkR

)
= −1

2

∑
m∈Z

δm(R) +
1

2

sin ((2N + 1)πR)

sin(πR)
.
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Therefore, hN is smooth on R \ Z. Since it is 1-periodic, it suffices to study it on the open interval (0, 1).
Since hN

(
1
2 + t

)
= hN

(
1
2 − t

)
for all |t| < 1

2 , we have h′N
(
1
2

)
= 0, so that for all R ∈ (0, 1), and using Taylor

formula with integral remainder, we get

hN (R) = hN

(
1

2

)
+

∫ R

1
2

(R− t)h′′N (t) dt = hN

(
1

2

)
+

1

2

∫ R

1
2

(R− t) sin ((2N + 1)πt)

sin(πt)
dt

= hN

(
1

2

)
+

1

2(2N + 1)2π2

(
(−1)N − sin ((2N + 1)πR)

sin(πR)

)
− 1

2(2N + 1)2π2

∫ R

1
2

(
2π

cos(πt)

sin(πt)
+

(R− t)π2(1 + cos2(πt))

sin2(πt)

)
sin ((2N + 1)πt)

sin(πt)
dt.

Since ∣∣∣∣hN (1

2

)∣∣∣∣ =

∣∣∣∣∣
+∞∑

k=N+1

(−1)k

4π2k2

∣∣∣∣∣ ≤ 1

4π2(N + 1)2
≤ 1

4π2N2
,

and since, for all R ∈ (0, 1/2),∣∣∣∣ 1

2(2N + 1)2π2

(
(−1)N − sin ((2N + 1)πR)

sin(πR)

)∣∣∣∣ ≤ 1

8π2N2

(
1 +

1

sin(πR)

)
≤ 1

4π2N2 sin(πR)
,

∣∣∣∣∣
∫ R

1
2

2π
cos(πt)

sin(πt)

sin ((2N + 1)πt)

sin(πt)
dt

∣∣∣∣∣ ≤ 2π

∫ 1
2

R

cos(πt)

sin2(πt)
dt = 2

(
1

sin(πR)
− 1

)
,

and, using the inequalities 2t < sin(πt) < πt for all 0 < t < 1
2 ,∣∣∣∣∣

∫ R

1
2

(R− t)π2(1 + cos2(πt))

sin2(πt)

sin ((2N + 1)πt)

sin(πt)
dt

∣∣∣∣∣ ≤ 2π2

∫ 1
2

R

t−R
sin3(πt)

dt ≤ π2

∫ 1
2

R

2t

sin3(πt)
dt

≤ π2

4

∫ 1
2

R

1

t2
dt ≤ π2

4R
≤ π3

4 sin(πR)
,

we finally get

|ηN,R| =
∣∣4π2NhN (R)

∣∣ ≤ 1

N
+

1

N sin(πR)
+

1

N

(
1

sin(πR)
− 1

)
+

π3

8 sin(πR)N

=

(
2 +

π3

8

)
1

sin(πR)N
,

which concludes the proof.

We are now ready to prove Theorem 1.
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Proof of Theorem 1. Combining Lemmata 1, 2, 3 and 4, we get that for any R ∈ (0, 1),

ER,N − ER = z1uR,N (0)(Π⊥NuR)(0) + z2uR,N (R)(Π⊥NuR)(R) + o

(
1

N3−ε

)
(Lemma 2)

= z1uR,N (0) (2z1uR(0)fN (R) + 2z2uR(R)gN (R))

+ z2uR,N (R) (2z2uR(R)fN (R) + 2z1uR(0)gN (R)) + o

(
1

N3−ε

)
(Lemma 3)

=
(
2z21uR,N (0)uR(0) + 2z22uR,N (R)uR(R)

)
fN (R)

+ 2z1z2 (uR,N (0)uR(R) + uR,N (R)uR(0)) gN (R) + o

(
1

N3−ε

)
=
(
2z21uR,N (0)uR(0) + 2z22uR,N (R)uR(R)

) 1

4π2N
aN

+ 2z1z2 (uR,N (0)uR(R) + uR,N (R)uR(0))
1

4π2N
ηR,N + o

(
1

N3−ε

)
(Lemma 4)

=
αR
N
aN +

β
(1)
R,N

N
aN +

γR
N2

ηR,N + o

(
1

N3−ε

)
,

where we have used the bounds (11) and (19) to obtain the last equality. The proof of (7) easily follows.
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