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Abstract

Blood pulsatility, aneurysms, stenoses and general low shear stress hemody-

namics lead to non-Newtonian blood effects which generate local changes in the

space-time evolution of the blood pressure, flow rate and cross-sectional area of

elastic vessels. Even though these local changes are known to cause global unex-

pected hemodynamical behaviors, all one-dimensional (1D) blood flow models

are built under the Newtonian fluid hypothesis.

In this work, we present a 1D generalized time-dependent non-Newtonian

blood flow model able to describe local space-time variations of the viscous

behavior of blood. The rheological model is based on a simplified Maxwell vis-

coelastic equation for the shear stress with structural dependent coefficients.

We compare the numerical predictions of the 1D model to experimental rheo-

logical data available in the literature. Specifically, we explore three well docu-

mented shear stress protocols and we show that the results predicted by the 1D

non-Newtonian model in a single artery accurately compare, both qualitatively

and quantitatively, to the time evolution of the shear stress measured using a

rheometer. We then use the 1D non-Newtonian model to compute the flow in

idealized healthy and pathological symmetric and asymmetric networks of in-

creasing size. We show that in such networks aggregation occurs, leading to

non-Newtonian blood behaviors especially in the presence of stenoses.
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This 1D generalized non-Newtonian blood flow model will be useful in the

future to improve our understanding of the global blood hemodynamics in micro

and macro-circulation networks.

Keywords: arterial network, 1D model

1. Introduction

One-dimensional (1D) blood flow models are used in medical applications to

provide physiological insights on hemodynamics in large networks of the macro-

and micro-circulations. They capture the pulse wave propagation dynamics in

large networks and enable for example patient-specific surgical planning [1, 2, 3].

The success of one-dimensional modelling relies on the speed and accuracy at

which 1D models compute blood pressure, flow rate and cross-sectional area in

elastic arteries and arterioles. In comparison, three-dimensional approaches are

much more costly and time-consuming, especially in deformable elastic vessels

and are therefore restricted to small networks of only a few arteries [4, 5, 6, 7].

Reduced-order models such as 1D models are also used to provide physiological

boundary conditions to 3D approaches [8, 9, 4, 10].

In many regions of the systemic network, low shear regimes are reached (typ-

ically the shear rate γ̇ ≤ 1 s−1) as a consequence of the pulsatility of blood flow,

of recirculation areas created by stenoses, aneurysms and bifurcations and of the

decrease in shear with vessel ramification. In low shear regions, blood behaves as

a non-Newtonian fluid and exhibits shear-thinning, viscoelastic and thixotropic

behaviors. At low shear rates, molecular mechanisms trigger the aggregation

of red blood cells (RBCs) into long column-like structures called ”rouleaux”,

whereas at higher shear rates, these structures are deformed, disaggregated and

the RBCs re-align in the direction of the flow. This reversible aggregation-

disaggregation process is responsible for the shear-thinning behavior of blood.

The different timescales of the aggregation and disaggregation processes are at

the origin of the thixotropic response of blood. Finally, viscoelasticity stems

from the elasticity of RBCs and the change of dissipation mechanisms at low
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and high shear rates [11, 12, 13, 14, 15].

There exists strong evidence that the non-Newtonian behavior of blood influ-

ences the evolving of several cardiovascular pathologies, such as atherosclerosis,

through local modifications of the hemodynamics [16]. Developing constitutive

models of blood rheology is therefore of critical importance in cardiovascular

simulations.

Existing non-Newtonian constitutive models can be roughly categorized as

either time-independent or time-dependent models. Time-independent consti-

tutive models describe only for the shear-thinning behavior of blood and are par-

ticularly relevant in shear-dominated steady flows [17, 18, 19]. Due to their sim-

plicity, they are the most commonly used non-Newtonian blood flow models in

two-dimensional (2D) and three-dimensional (3D) numerical simulations. Time-

independent models have been applied to study intracranial aneurysms [20, 21],

stenoses [22, 23], coronary arteries [24], idealized arterial trees [25, 26, 27, 28]

and heart valves [29]. In most of these works, non-Newtonian effects were ob-

served proving the relevance of modeling the complex rheology of blood. Time-

dependent constitutive models include viscoelastic and thixotropic effects as

well as shear-thinning effects in the steady flow limit. They were developed

based on an analogy between blood and a viscoelastic Maxwell material [30].

In [31, 32], a generalized Maxwell model was derived based on polymer network

theory, and successive improvements enabled the description of the Fahreus and

Fahreus-Lindquist effects. In [33, 34, 35], a generalized Oldroyd-B model was

proposed and improved based on a thermodynamics approach. Time-dependent

models were successfully incorporated into 3D simulations [36, 37, 38, 39, 35]

and good agreement was found with experimental data in simple steady and

pulsatile flows.

However, in almost every application previously mentioned, the mechanics

and distensibility of the vessel wall were neglected. Moreover, non-Newtonian

effects in large networks of arteries have seldom been studied. Even in 1D appli-

cations blood is almost always assumed Newtonian. Only in [40, 41] the authors

considered the non-Newtonian behavior of blood, respectively using a model
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proposed in [42] and a power-law model. In [43], the authors have proposed a

reduced-order non-Newtonian model with a particular focus on the thixotropic

behaviors of the yield stress. However, the authors obtained a semiquantitative

agreement with experimental data from Bureau [44, 14] and Sousa [45] and the

model was not coupled to a blood flow numerical solver.

The goal of this work is to provide a simple and accurate 1D time-dependent

non-Newtonian blood flow model and apply it to study large networks of elastic

arteries. The rheological model we propose involves a simplified viscoelastic

Maxwell model with shear and structure dependent coefficients and a kinetic

equation describing the aggregation-disaggregation of RBCs which are consid-

ered as a homogeneous single phase.

In Section 2 we present the 1D blood flow model, the non-Newtonian shear

stress model and its integration in the 1D blood flow model. In section 3,

we describe analytic solutions of the rheological model in different flow condi-

tions exhibiting shear-thinning, thixotropic and viscoelastic behaviors. Then,

in section 4 we compare the results of the model to published experimental

rheological data. Finally, in sections 5 and 6 we investigate the influence of

the non-Newtonian model on blood flow in synthetic arterial networks with and

without stenoses.

2. One-dimensional time-dependent non-Newtonian blood flow model

2.1. Derivation of the one-dimensional blood flow model

Assuming that blood is an incompressible fluid, blood flow is governed by

the 3D incompressible Navier-Stokes equations:

{∇ · u = 0

ρ [∂tu+ u ·∇u] + ∇ · [pI− τ ] = 0,

(1a)

(1b)

where ρ is the density, supposed constant, p is the pressure, u is the velocity

vector, I is the identity tensor and τ is the stress tensor.
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Two main hypotheses are involved in the derivation of the 1D blood flow

model. First, the flow is assumed to be axisymmetric, implying that the ge-

ometry and both the inlet and outlet boundary are also axisymmetric. Second,

the radius R of the artery is considered small with respect to the wavelength

λ of the cardiac pulse wave, which is the characteristic axial lengthscale. In

physiological conditions, R = 1 cm and λpulse = 100 cm, and we refer to this

assumption as the long-wave hypothesis. Combining both hypotheses we ob-

tain the reduced Navier-Stokes-Prandtl (RNS-P) equations [46], describing the

conservation of mass and the balance of axial momentum:





1

r

∂

∂r
[rur] +

∂ux
∂x

= 0

∂ux
∂t

+ ur
∂ux
∂r

+ ux
∂ux
∂x

= −1

ρ

∂p

∂x
+

1

ρr

∂

∂r
(rτrx)

p = p (x, t) .

(2a)

(2b)

(2c)

It is important to note that due to the long-wave hypothesis, the pressure p de-

pends only on the axial position x and the only non zero shear stress component

of τ is τrx.

We then integrate the RNS-P equations (2a) and (2b) over the cross-sectional

area of an artery of length L (see Figure 1) . Through this exact integration or

averaging process, we obtain the 1D mass and momentum equations expressed

at time t in the axial position x:





∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
ψ
Q2

A

]
+
A

ρ

∂p

∂x
=

2πR

ρ
τrx|r=R.

(3a)

(3b)

The variables A and Q are respectively the averaged cross-sectional area and

the axial flow rate defined as:

A = 2π

∫ R

r=0

rdr, Q = 2π

∫ R

r=0

uxrdr, (4)

where R is the instantaneous radius of the artery. Finally, the shape factor ψ

is defined as:

ψ = 2π
A

Q2

∫ R

r=0

ru2xdr, (5)
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and depends on the axial velocity profile lost in the averaging process. We there-

fore assume an a priori shape of the velocity profile and set ψ = 1 corresponding

to a flat velocity profile assumption.

Q

A

R

L

Figure 1: One-dimensional representation of the fluid domain contained in an axisymmetric

cylindrical artery. For clarity, only one-fourth of the artery of length L is represented. The

variable Q is the flow rate and A = πR2 is the cross-sectional area of the artery.

The closure relation connecting the cross-sectional area A and the pressure

p is provided by thin-cylinder theory:

p = pext +K
[√

A−
√
A0

]
+ νv

∂A

∂t
, (6)

where pext is the external pressure and A0 is the neutral cross-sectional area.

The viscoelastic behavior of the arterial wall is described by a Kelvin-Voigt

model where the coefficients K and νv model respectively the arterial rigidity

and the viscoelasticity of the wall. More details on the viscoelastic behavior of

the arterial wall can be found in [47].

The last remaining unknown is the wall shear stress (WSS) τrx|r=R and the

derivation for Newtonian and non Newtonian fluids will be the subject of the

following subsections 2.2 and 2.3.
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2.2. Stress model: Newtonian

We briefly discuss here the derivation of the WSS τrx|r=R in the case of a

Newtonian fluid in the 1D framework. Under Newtonian hypothesis, the shear

stress τrx can be expressed as a function of a constant viscosity µ and the shear

rate:

τrx = µ

[
∂ur
∂x

+
∂ux
∂r

]
. (7)

The long-wave approximation allows us to simplify the expression for the shear

rate at the wall γ̇|r=R:

γ̇|r=R ≈
∂ux
∂r
|r=R, (8)

and we obtain the following Newtonian WSS model:

τrx|r=R = µγ̇|r=R. (9)

Furthermore, the 1D closure hypotheses suggest that we may rewrite the axial

velocity ux as:

ux (x, r, t) = φ

(
r

R (x, t)
, t

)
U (x, t) , (10)

where U = Q/A is the averaged velocity and φ is the shape of the velocity

profile. The expression for the wall shear rate then becomes:

γ̇|r=R = U
∂φ

∂r
|r=R. (11)

The average velocity U can be computed using the 1D model (equations (3)).

However, as was mentioned before in 2.1 the shape of the velocity profile φ is

lost in the integration process and remains an unknown of the problem. We

must therefore once again assume an a priori shape of the velocity profile. For

example, for a Couette flow γ̇ = −U/R, for a Poiseuille flow γ̇ = −4U/R and

it is common in large arteries to use γ̇ = −11U/R [48, 49]. Without loss of

generality, we assume in the following that γ̇ = −U/R.

Combining the previous equations, we finally obtain a closed-form expression

for the Newtonian WSS:

τrx|r=R = −µU
R
, (12)
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and we recover the classical viscous contribution CfU in the 1D momentum

equation (3b), with Cf = −2πν. For clarity reasons, we drop the subscript |r=R
in the following and write the WSS as τrx and the shear rate as γ̇.

2.3. Stress model: non-Newtonian

Following the approach proposed in [31], we build a transient reduced-order

constitutive model for blood. We first split the WSS into a structural and a

Newtonian component:

τrx = τst + µ∞γ̇, (13)

where τst represents the structure dependent stress and µ∞ the viscosity of blood

in the high-shear asymptotic limit. We describe the time and space evolution of

τst using the generalized Maxwell equations involving the Jaumann derivative

of τst. Using the 1D long-wave and axisymmetric hypotheses, these equations

simplify into a 1D viscoelastic Maxwell equation, representing the combined

contributions of an elastic spring and a viscous dashpot:

λst
∂τst
∂t

+ τst = 2µstγ̇ (14)

where λst is a characteristic elastic relaxation time and µst is the structural

viscosity.

Next, we introduce a structure dependence in the Maxwell equation (14). We

assume that the whole structure of blood, comprising of RBCs and rouleaux,

can be described by a single parameter f varying between 0 for a completely

disaggregated structure and 1 for a fully aggregated one. We then hypothesize

that both λst and µst linearly depend on this structure parameter f :

{
λst = λaf

µst = [µ0 − µ∞] f.

(15a)

(15b)

where λa is a characteristic aggregation time and µ0 is the viscosity of blood

in the low shear asymptotic limit. The equations (15a) and (15b) express the

simplest possible dependence between the structure parameter f and the blood

parameters.
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Using an approach inspired from polymer theory [11, 31], we describe the

evolution of f using kinetic equation representing the transport of f and the

competition between aggregation and disaggregation of blood structure:

∂f

∂t
+ U

∂f

∂x
=

1− f
λa

− f

λd
, (16)

where λd is a characteristic disaggregation time. As shear is the driving disag-

gregation mechanism, we define λd as the inverse of the shear rate γ̇:

λd =
1

δ|γ̇| , (17)

where δ is a fitting coefficient. Compared to other existing simplified structural

models, we incorporate advection in the kinetic equation as structure parameter

f is transported by the blood flow in the arteries.

Finally, yield stress could be taken into account through the change of vari-

ables τ
′

st = τst − τy, where τy is the yield stress. However, we assume that

τy = 0 in the following. We also neglect the effects of hematocrit variations and

suppose a fixed hematocrit H = 0.45 (45% of blood volume occupied by RBCs).

Nevertheless, these effects could be included in the model through a transport

equation for H and hematocrit dependent coefficients (see [42] for details).

2.4. Time-dependent 1D non-Newtonian blood flow model

Replacing the pressure p by its expression (6), we obtain the closed-form

1D system of equations, describing the conservation of mass and the balance of

momentum in a viscoelastic artery:





∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

[
Q2

A
+
K

3ρ
A

3
2

]
=

2πR

ρ
τrx + Cν

∂2Q

∂x2
.

(18a)

(18b)
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with: 



γ̇ = −U
R

τrx = τst + µ∞γ̇

λst
∂τst
∂t

+ τst = 2µstγ̇

∂f

∂t
+ U

∂f

∂x
=

1− f
λa

− f

λd

µst = [µ0 − µ∞] f

λst = λaf

λd =
1

δ|γ̇| ,

(19a)

(19b)

(19c)

(19d)

(19e)

(19f)

(19g)

where µ0, µ∞, λa and δ are constants to be determined using available rheo-

logical data.

2.5. Numerical scheme

From a mathematical point of view the system (equations (18)) is hyper-

bolic. In physiological conditions, the flow speed is smaller than the wave

speed, therefore the flow is always subcritical and shock-like phenomena do

not occur. To capture the propagation of pulse waves, we solve the system

(18) using a second-order Adam-Bashforth time-integration scheme coupled to

a finite-volume kinetic numerical scheme [2, 50]. The rheological system (equa-

tions (19)) is explicitly updated using the same time integration scheme as the

hyperbolic system (18) and the transport equation is solved using a classical

upwind scheme, where the velocity is given by the kinetic numerical flux [51].

The treatment of inlet and outlet boundary conditions as well as bifurcations

is classical and we refer the readers to [52, 53, 50] for more details.

3. Analysis of the non-Newtonian stress model

We analyze the time-dependent behavior of the 1D non-Newtonian stress

model (equations (19)) derived in the previous section. To simplify the analysis,
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we consider idealized flow conditions where we assume that all quantities are

independent of the axial position x, and hence decouple the rheological model

(19) from the 1D blood flow model (18).

3.1. Steady flow: Analogy with the simplified Cross model

We consider a steady flow, for which the rheological model (19) simplifies

to: 



fs =
1

1 + λa
λd

τs = µstγ̇ = [µ0 − µ∞] fsγ̇

(20a)

(20b)

This steady state is then a consequence of the balance between aggregation

and disaggregation, and the equilibrium value of the structure function (20a)

explicitly depends on the aggregation time scales λa and λd where

• if λa � λd, we have f ≈ 0 and structure disaggregation process is domi-

nant;

• if λa � λd, at the contrary f ≈ 1 and structure aggregation process is

dominant.

In this steady case, we can explicitly define the apparent viscosity µ (γ̇) = τrx
γ̇

using equations (20a) and (20b) which gives

µ (γ̇) = µst + µ∞ = µ∞ +
µ0 − µ∞
1 + λa

λd

, (21)

exhibiting the expected shear-thinning behavior. Equation (21) is identical to

the simplified Cross constitutive model [54]:

µ = µ∞ +
µ0 − µ∞
1 + λcγ̇

. (22)

By analogy with (21) we have:

λc = λaδ. (23)

Table 1 summarizes the parameter values of the simplified Cross constitutive

model taken from [17]. In the following, we use the values of µ0 and µ∞ pre-
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µ∞ [poise] µ0 [poise] λc [s]

0.05 1.3 8

Table 1: Parameter values of the simplified Cross constitutive model taken for [17]

sented in Table 1. We determine the remaining unknown parameters λa and δ

using the value of the constant λc and experimental data presented in [15]. The

complete set of parameters of the rheological model (19) is presented in Table

2.

3.2. Constant shear rate γ̇

We study now the disaggregation under a constant shear rate γ̇c of a fluid

initially at rest. At t = 0, we assume that f = 1 and τst = 0. The kinetic

equation for the structure function is:

df

dt
=

1− f
λa

− f

λd
. (24)

The solution is:

f = f∞ + [1− f∞] e−
t
λc , (25)

where f∞ = λc
λa

and 1
λc

= 1
λa

+ 1
λd

. Injecting the expression (25) in equation

(14) we obtain the following expression for the structure stress τst:

τst = [µ0 − µ∞] γ̇c
[1− f∞] t

λa
+ [f∞]

2
[
e
t
λc − 1

]

1 + f∞

[
e
t
λc − 1

] . (26)

When t→∞, we find the asymptotic values of f and τst:

{
ft→∞ = f∞

τst,t→∞ = [µ0 − µ∞] γ̇cf∞.

(27a)

(27b)

System (27) is identical to the steady system (20). The model therefore exhibits

a characteristic viscoelastic property, that is the transitions from an initially

aggregated state (f = 1, τst = 0) towards a steady equilibrium state (equations

(27)) where aggregation and disaggregation are perfectly balanced.
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At intermediate times 0 < t <∞, the model exhibits a thixotropic behavior

depending on the choice of the characteristic aggregation and disaggregation

timescales λa and λd. Indeed, for given values of λa and λd, it is possible to

find the analytic expression for the time tτ,max at which the maximum value of

τst is reached:

tτst,max = λc


1 +

1

1− λc
λa

+W



[
λa
λc
− 1

]
e
−
[
1+ 1

1− λc
λa

]


 , (28)

with:

τst,max = τst,t→∞


1 +W



[
λa
λc
− 1

]
e
−
[
1+ 1

1− λc
λa

]


 , (29)

where W is the Lambert-W function, which is the inverse function of f (w) =

wew. From the above expressions (28) and (29), simple calculations allow us

to show that 0 < tτst,max < ∞ and τst,max ≥ τst,t→∞. We can therefore con-

clude that in this configuration the model exhibits a characteristic thixotropic

behavior at finite time, represented by an overshoot of the structure shear stress

τst with respect to the asymptotic steady value τst,t→∞. The magnitude of the

overshoot depends on the value of the characteristic aggregation times λa and

λd where two

• if λa � λd (equivalently γ̇ � 1 s−1), than λc ≈ λd and we have:

τst,max � τst,t→∞. (30)

Disaggregation occurs at a much smaller timescale than aggregation due to

the high shear rate value. This results in large variations of the structure

of blood at small times (t ≤ td) and therefore a large overshoot of the

structure shear stress τst before the system relaxes towards the steady

state.

• if λa � λd (equivalently γ̇ � 1 s−1), than λc ≈ λa and we have:

τst,max ≈ τst,t→∞. (31)
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Aggregation occurs at a much smaller timescale than disaggregation due

to the low shear rate value. The consequence is almost no variation of the

structure of blood and therefore no overshoot of the structure shear stress

τst.

3.3. Zero shear rate γ̇

We study here the reaggregation of a fluid at rest. At t = 0, we assume that

f = f0 and τst = τst,0. The kinetic equation for the structure function is:

df

dt
= −1 + f

λa
. (32)

The solution is straightforward:

f = 1 + [f0 − 1] e−
t
λa . (33)

Injecting expression (33) in equation (14) we obtain the following expression for

the structure stress τst:

τst = τst,0
f0

f0 − 1 + e
t
ta

. (34)

When t→∞, we find as before the asymptotic values of f and τst :

{
ft→∞ = 1

τst,t→∞ = 0.

(35a)

(35b)

The model exhibits here another characteristic viscoelastic property, that is the

relaxation towards a fully aggregated state. The phenomenon is driven only by

the characteristic aggregation timescale λa as in the absence of shear λd →∞.

The asymptotic analysis conducted in this section highlights the shear-

thinning, viscoelastic and thixotropic behaviors of the rheological model (equa-

tions (19)) proposed in the previous section. In the following sections, we com-

pare the numerical results, where spatial variations occur, to the analytic results

previously obtained and to experimental results in order to assess if the model

is able to quantitatively describe the flow behavior of blood.
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4. Comparison with experimental data

We propose to compare the numerical results of the 1D non-Newtonian model

(18)–(19) to experimental data available in the literature. We use published

results of Bureau et al. [14] and McMillan [55], where the authors systematically

studied the response of blood to step and triangular shear solicitations using a

coaxial cylinder microviscometer.

In subsections 4.1, 4.2 and 4.3, we consider a single artery where we impose

the flow rate at the inlet and a non-reflecting boundary condition at the outlet.

The time-evolution of the inlet flow rate depends on the considered experimental

test case. Its magnitude is given by the following expression, designed to impose

a chosen shear rate γ̇in:

Qin (γ̇in) =
1
∂φ
∂r

Aγ̇in (36)

We recall that without loss of generality, we use ∂φ
∂r |r=R = − 1

R . We assume

that blood enters the artery in a fully disaggregated state (f = 0). For each

simulation, the initial conditions are the asymptotic behavior of a fluid at rest:

{
Q = 0 and A = A0

f = 1 and τst = 0.

(37a)

(37b)

The parameters of the blood constitutive model (19) are summarized in Table

2. The geometrical and mechanical parameters describing the artery are given

in Table 3. Finally, the time- and space-discretization parameters are described

in Table 4.

ρ [g · cm−3] µ∞ [poise] µ0 [poise] λa [s] δ

1 0.05 1.3 5 1.5

Table 2: Parameters of the blood constitutive model (19), given in cgs units and based on an

analogy with the simplified Cross constitutive model [54] and experimental data from [15].
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L [cm] A [cm2] K [dyne · cm−3] Cv [cm2 · s−1]

10 1 104 0

Table 3: Geometrical and mechanical parameters describing the artery, given in cgs units.

∆t [s] ∆x [cm] Order

10−4 5 10−2 2

Table 4: Numerical parameters describing the time discretization and the mesh.

4.1. Single shear-step

In a series of experiments, Bureau et al. [44] obtained experimental data on

the behavior of a blood sample subjected to a step-change in shear rate:

γ̇ (t) =




γ̇1,2 for 0 ≤ t < ∆t1,2

0 for ∆t1,2 ≤ t.
(38)

To highlight separately the viscoelastic and thixotropic behaviors of blood, they

considered a low shear regime for which (γ̇1 = 0.05 s−1 and ∆t1 = 30 s) and a

high shear regime (γ̇2 = 1 s−1 and ∆t2 = 8.5 s).
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Figure 2: Time evolution of the shear stress τrx with a step-change in shear rate: comparison

between experimental data from Bureau [44] (I), results of the 1D blood flow model (18)

( ) and analytic solutions (26) (#) and (34) (�). Left: Low shear viscoelastic regime with

γ̇1 = 0.05 s−1 for ∆t1 = 30 s and then γ̇1 = 0 s−1. Right: High shear thixotropic regime

(overshoot) with γ̇2 = 1 s−1 for ∆t2 = 8.5 s and then γ̇2 = 0 s−1. There is a qualitative and

quantitative match between experimental data and numerical results, and a perfect match

between analytic and numerical results.
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t
tf

0
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f

1D, γ̇1 =0.05
1D, γ̇2 =1

Figure 3: Time evolution of the structure function f with a step-change in shear rate, com-

puted using the 1D blood flow model (18): low shear viscoelastic regime with γ̇1 = 0.05 s−1

for ∆t1 = 30 s ( ), high shear thixotropic regime with γ̇2 = 1 s−1 for ∆t2 = 8.5 s ( ). In

the high shear regime, there is a large decrease of the structure function on a short timescale,

leading to the thixotropic behavior observed in Figure 2 right.

In Figure 2, we compare the measured experimental shear stress to the 1D

numerical shear stress computed by mimicking the experimental flow conditions.

As these flow conditions are similar to those studied analytically in subsections

3.2 and 3.3, we also compare the experimental and numerical shear stresses

to the analytic solutions (equations (26) and (34)). We observe that for both

flow conditions γ̇1 and γ̇2, the experimental data from Bureau [44] agree qual-

itatively and semiquantitatively with the 1D numerical results. Moreover, the

analytic and 1D numerical results are perfectly matched. The data presented

in Figure 2 Left are characteristic of a viscoelastic material: the shear stress

rises continuously towards the equilibrium steady value, and then relaxes in the

absence of shear towards a fully aggregated state. On the contrary, the data

plotted in Figure 2 Right present the characteristic overshoot of a thixotropic

material. Both rheological behaviors of blood were analyzed in subsection 3.2

and can be explained focusing on the evolution of the structure parameter f ,

presented in Figure 3. At low shear values (γ̇1), the structure of blood is not

significantly altered. At higher shear rates (γ̇2), large variations of the structure

of blood occur on a short timescale, leading to memory effects and a thixotropic

overshoot of the shear stress.
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The comparison with analytic solutions validates the 1D numerical scheme

and the agreement with experimental results indicates that systems (18)-(19)

using the set of parameters presented in Table 2 provide a satisfactory descrip-

tion of the time-dependent behavior of blood.

4.2. Multiple shear-steps

Experimental data from McMillan et al. [55] describe the time-dependent

shear stress response of blood to two successive tome shear-steps of amplitude

γ̇ = 8 s−1 and of length ∆t = 2.5 s. The experiment was repeated three times,

each time decreasing the time delay ∆td between the consecutive shear-steps,

during which no shear was applied.
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Figure 4: Time evolution of the shear stress τrx (left) and the structure function

f (right) with two successive step-changes in shear rate of amplitude γ̇ = 8 s−1

and of length ∆t = 2.5 s: comparison between experimental data from McMillan

[55] and numerical results of the 1D blood flow model (18) for a time delay ∆td ∈

{1.5 (exp.#, 1D ) , 1 (exp.�, 1D ) , 0.5 (exp.4, 1D )} s. There is a qualitative and

quantitative agreement between experimental and numerical data. The thixotropic overshoot

increases with ∆td as structure variations are more important.

In Figure 4 Left, we compare the time evolution of the experimental and

1D numerical shear stresses for different time delays ∆td ∈ {1.5, 1, 0.5}. Both

solutions are qualitatively and quantitatively comparable and we observe the

expected viscoelastic relaxation and thixotropic transient overshoot. Results

in Figure 4 Right correlate the increase of the overshoot amplitude with larger
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variations of the structure parameters f , as blood has more time to reaggregate

when ∆td increases.

4.3. Triangle shear solicitation

Bureau et al. [14] also obtained experimental hysteresis curves by imposing

a triangular shear rate solicitation to the blood sample:

γ̇ (t) =





γ̇1,2
t

t1,2
for 0 ≤ t < t1,2

γ̇1,2

[
2− t

t1,2

]
for t1,2 ≤ t ≤ 2t1,2.

(39)

To still highlight the viscoelastic and thixotropic behaviors of blood, the authors

considered a low shear regime (γ̇1 = 0.12 s−1 and t1 = 13 s) and a high shear

regime (γ̇2 = 1.03 s−1 and t2 = 47.6 s).
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Figure 5: Hysteresis curves of the evolution the shear stress τrx as a function of the shear rate

γ̇ under a triangular shear solicitation: comparison between experimental data from Bureau

[14] (I) and 1D numerical results ( ). Left: Low shear viscoelastic regime with γ̇1 = 0.12

s−1 and t1 = 13 s. Right: High shear thixotropic regime with γ̇2 = 1.03 s−1 and t2 = 47.6

s. There is a qualitative and quantitative match between experimental data and numerical

results.

In Figure 5, we plot the experimental and numerical variations of the shear

stress τrx with respect to the shear rate γ̇. In the low-shear regime γ̇1 plot-

ted in Figure 5 Left, the viscoelastic behavior of blood is highlighted and the

experimental and numerical results match very well. In the high-shear regime

displayed on Figure 5 Right, thixotropic effect are dominant. For the increas-

ing shear region of the curve, the experimental and numerical results are well
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matched. However, for the decreasing shear part, the experimental behavior is

not reproduced, even though the shear stress amplitudes are similar.

The results presented in subsections 4.1, 4.2 and 4.3 indicate that the 1D

blood flow model (18) coupled to the rheological model (19) allows us to compute

numerical results similar to well-known experimental data form [44, 44, 55]. We

can now move towards more complex simulation in large networks of elastic

arteries.

5. Elementary bifurcation

Bifurcations are elementary parts of an arterial network and connect a par-

ent artery p to two daughter arteries d1 and d2. Bifurcations are responsible

for the reflection of the incoming pulse wave as they represent impedance dis-

continuities in the network, and due to the complex flow patterns they generate

the non-Newtonian behavior of blood can be particularly important in these

configurations.

In a symmetric bifurcation, we compare here the 1D non-Newtonian blood

flow model (18)–(19) with its Newtonian counterpart. The geometrical and

mechanical properties of the bifurcation are presented in Table 5 and correspond

to average properties of large arteries. At the inlet of the parent artery p, we

impose the flow rate Qin to mimic the behavior of the heart:

Qin (t) = Qh max

(
0, sin

(
2π

t

Th

))
, 0 ≤ t ≤ 10Th, (40)

with Th = 1 s. We choose the maximum flow rate Qh ∈ {1, 10, 100} cm3 ·s−1 to

describe the flow in different regions of the systemic network. We also assume

that blood enters the artery in a fully disaggregated state (f = 0). At the outlet

of the daughter arteries d1 and d2, we set a non-reflecting boundary condition

as in section 4. Finally, the initial conditions are (37) and the time- and space-

discretization parameters of the network are described in Table 4. We present

data obtained after 4 periods to ensure that the system has reached a periodic

state.
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Lp,d1,d2 [cm] Rp,d1,d2 [cm] Kp,d1,d2 [dyne · cm−3] Cv [cm2 · s−1]

10 1 104 0

Table 5: Geometrical and mechanical parameters describing the properties of the parent artery

p and the daughter arteries d1 and d2, given in cgs units.

In Figure 6, we compare the structure f (left), shear stress τrx (middle) and

pressure p (right) waveforms computed with the Newtonian and non-Newtonian

1D blood flow model; numerical data are taken in the middle of the parent artery

p and the daughter artery d1. We do not present results for the artery d2 as they

are to artery d1 due to the symmetry. As we decrease the flow rate (Q = 100

cm3 · s−1 to Q = 1 cm3 · s−1 from top to bottom in Figure 6), the shearing forces

decrease allowing the RBCs to aggregate. As a consequence, in both arteries

the structure function f and the shear stress |τrx| increase compared to the

Newtonian case, with up to 100% differences for Qh = 1 cm3 · s−1. The pressure

then rises to compensate the increased viscous stresses and maintain the normal

flow. Note that the value of f is higher and the value of |τrx| is lower in artery

d1 than in artery p as the flow coming from artery p splits in two to vascularize

both daughter arteries.

These results indicate that non-Newtonian effects are important in certain

bifurcations and can lead to modification of the WSS stress patterns and an

increase of pressure. They are corroborated by similar data obtained in different

3D studies [27, 24] of bifurcations. In the following, we extend this analysis to

non-Newtonian effects in large networks of arteries.

6. Idealized asymmetric network

Reduced-order 1D blood flow models have been designed to capture the

wave propagation dynamics in large networks. We want to analyze how non-

Newtonian effects affect the network hemodynamics using the 1D time-dependent

non-Newtonian model (equations (18)–(19)).
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Figure 6: Temporal evolution of the structure function f (left), the shear stress τrx (middle)

and the pressure p (right) taken in the middle of parent artery p and the daughter artery d1.

Top: Q = 100 cm3 · s−1. Center: Q = 10 cm3 · s−1. Bottom: Q = 1 cm3 · s−1. We compare

the results of the Newtonian (artery p , artery d1 ) and the non-Newtonian (artery p

◦, artery d1 �) 1D blood flow models. As the flow rate decreases, the aggregation increases,

leading to a higher shear stress |τrx| and an increase of the pressure p.

We consider an idealized asymmetric arterial tree made only of elementary

bifurcations linked together to form a network. In each elementary bifurcation a

parent artery p connects to two daughter arteries dα and dβ . Given the mechan-

ical and geometrical properties of the parent artery p, we construct the daughter

arteries using the relationships presented in [56, 57] and used more recently in

[58, 40], which describe the physiological evolution the arteries’ geometrical and
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mechanical properties along the network:





Rα = αRp

Rβ = βRp

L = 50R

K =
4

3

R√
pi

[
k1ek2R + k3

]

γ̇ = −4
U

R
,

(41a)

(41b)

(41c)

(41d)

(41e)

where α = 0.9 and β = 0.6 are asymmetry coefficients and k1 = 2 × 107

dyne · cm−4, k2 = −22.53 cm−1 and k3 = 8.65 × 105 dyne · cm−4. The aim of

this study is to understand how the size of the network, dependent on the level

nl of vessel ramifications, influences the aggregation process. For a given value

of nl, we construct then the network by adding the corresponding number nb

of bifurcations and the number na of arteries, Table 6 presents the values of nl,

na and nb.

At the root of the network, the radius of the artery is R0 = 1 cm and we

impose the same pulsatile the flow rate (40) as in the previous section 5, with

Qh = 100 cm3 · s−1 and Th = 1 s. We also assume that blood enters the artery

in a fully disaggregated state (f = 0). At the ends of each network we set as in

the previous section a non-reflecting boundary conditions. We therefore detach

ourselves from classical resistive boundary conditions and construct the network

dynamics by adding successive levels of vessel ramifications. These boundary

conditions are invariant with nl and provide with the adequate framework to

study network-size effects.

Finally, the initial conditions are (37) and the time- and space-discretization

parameters of the network are described in Table 7. We present data obtained

after 9 periods to ensure that the system has reached a periodic state.

6.1. Healthy network

We construct three healthy networks with nl ∈ {2, 4, 6}. In Figure 7, we

plot the distribution of the structure function f in the three networks at 4
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nl nb na

2 3 7

4 15 31

6 63 127

n 2n − 1 2n+1 − 1

Table 6: Number nl of level of vessel ramifications, number nb of bifurcations and number na

of arteries of an idealized asymmetric network.

∆t [s] ∆x [cm] Order

10−5 10−2 2

Table 7: Numerical parameters describing the time discretization and the mesh.

characteristic times of the last cardiac cycle: the beginning t1 = 9Th, the systolic

peak t2 = 9.25Th, the middle t3 = 9.5Th and the diastolic peak t4 = 9.75Th.

We observe clear effects of network size and asymmetry on the aggregation

of RBCs. At t = 9Th, the aggregation is high for nl = 2, as the reflective

behavior of the network is smaller due to the smaller number of bifurcations.

At t = 9.25Th, the inlet flow rate reaches its maximum value and blood is

globally disaggregated for nl = {2, 4, 6}. Nevertheless, for nl = 4 and nl = 6,

aggregated regions remain in the left hand side (l.h.s.) large extremity arteries.

These regions belong to high ramification levels and have not yet been reached

by the incoming pulse wave. At t = 9.5, all RBCs have been disaggregated

by the incoming pulse. Finally at t = 9.75, RBCs reaggregate in the l.h.s.

large arteries since there is no flow coming from the heart and the reflected

waves have been damped by viscous effects. Furthermore, the shear rate γ̇ is

lower in these larger arteries. Overall, aggregation dynamics depend on the size

and asymmetry of the network and aggregation occurs principally in the large

arteries of the l.h.s. and their immediate daughter arteries. In these arteries, the

structure function reaches the critical value of f ≈ 0.1, at which blood displays

viscoelastic and thixotropic effects (see subsection 4.2).

These results indicate that we must take into account non-Newtonian ef-
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fects in networks presenting large arteries or a high level of vessel ramifications.

Furthermore, these results highlight the importance of vessel topology as the

asymmetry of the network influences the aggregation dynamics.

6.2. Pathological network

In the literature, non-Newtonian blood effects have been particularly studied

in elementary pathological networks such as bifurcations [59, 27, 24]. However,

as observed before, the size and asymmetry of the network appears to play an

important role in the aggregation dynamics. To characterize how pathologies

can modify the blood flow and aggregation process in a large network, we intro-

duce two severe stenoses of 90% of obstruction in the 3 networks. One stenose

is located on the l.h.s., in the large radius branch of the network and the other

is on the r.h.s, in the small radius branch. The exact position of both stenoses

is represented in Figure 8 by circles (◦).
As previously, we plot in Figure 8 the distribution of the structure function

f over the three networks (nl ∈ {2, 4, 6}) for the last cardiac cycle: t1 = 9Th,

t2 = 9.25Th, t3 = 9.5Th and t4 = 9.75Th. For nl ∈ {4, 6}, the presence of the

stenoses results in a higher blood aggregation in the arteries downstream of the

stenoses compared to Figure 7. On the contrary for nl = 2, the value of the

structure f is lower than in Figure 7 as the stenoses create reflections that con-

tribute to the disaggregation process. The results show that aggregation effects

are amplified in pathological networks as the flow is reduced downstream of the

stenoses. Upstream of the stenoses, aggregation is reduced due to additional

reflected waves produced by the stenoses.

The numerical results presented in this section demonstrate that non-Newtonian

behaviors exist in healthy and pathological networks. Even if these non-Newtonian

behaviors are small, they are non-negligible. They affect in particular the WSS

distribution in the networks, which plays an important role in cardiovascular

pathogenesis. The non-Newtonian aspect of blood must therefore be taken into

25



account to accurately compute network hemodynamics, especially in patholog-

ical networks.

7. Conclusion

We have proposed a 1D generalized non-Newtonian blood flow model, based

on a classical 1D approach for the conservation mass and the balance of momen-

tum, but including time- and structure-dependent viscous effects. The evolution

of the shear stress is governed by a Maxwell equation with coefficients depend-

ing on the state of aggregation of RBCs. The balance between aggregation and

shear-dependent disaggregation is described by a kinetic equation, which is a

particular case of a structural model for viscoelastic fluids [11, 15]. We note

that this approach is not restricted to blood rheology and could be applied to

other structured fluids.

We have confronted the numerical predictions of our 1D blood flow model to

experimental data available in the literature [44, 14, 55], and we have shown that

the model reproduces qualitatively and quantitatively the rheology of blood.

We have further investigated the non-Newtonian effects in arterial networks

of increasing size and demonstrated how the pulsatility of the flow and the

network topology contribute to the aggregation process, which occurs mainly

in the large arteries and their immediate daughter arteries. The aggregation of

RBCs is further increased downstream of pathologies such as stenoses.

In the entire study, we have assumed, in a 1D framework, that the wall

shear rate γ̇|r=R solely contributes to the disaggregation process as structure

is represented by a single homogeneous phase. The shear rate γ̇|r=R therefore

governs the evolution of the blood structure near the wall and in the bulk

of the flow. In reality, the axial velocity profile varies with time and space

leading to variations of γ̇ along the radius of the artery. In particular, for

axisymmetric flow, γ̇|r=0 = 0. By using the wall shear rate γ̇|r=R to govern the

disaggregation process in the entire artery we have overestimated the shearing

effects and therefore underestimated the non-Newtonian effects. However, we
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have also assumed an a priori shape of the velocity profile, which is valid for

experimental validation (see section 4) but an approximation for network flows.

In sections 5 and 6, we have assumed a Poiseuille flow everywhere in the network,

as is classically done in 1D applications, and therefore underestimated the value

of γ̇. To overcome those limitations due to the loss of the velocity profile in the

1D averaging process, we plan in future works to use the 2D multiring developed

in [60] to compute the axial velocity profile and introduce radial variations in

the aggregation process.

Keeping in mind these limitations inherent to the 1D framework, the 1D

generalized non-Newtonian blood flow model presented here will be useful in

the future to help understanding the hemodynamics in healthy and pathological

networks of the micro- and macro-circulation.
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Figure 7: Snapshots at t1 = 9Th, t2 = 9.25Th, t3 = 9.5Th and t4 = 9.75Th of the distri-

bution of the structure function f in three networks with increasing levels of ramification

nl ∈ {2 (left) , 4 (middle) , 6 (right) , }. Aggregation occurs mainly in the large arteries on

the l.h.s of the network and in their immediate daughter arteries. Aggregation depends on

the pulsatility of the flow, the size and the asymmetry of the network.
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Figure 8: Snapshots at t1 = 9Th, t2 = 9.25Th, t3 = 9.5Th and t4 = 9.75Th of the distri-

bution of the structure function f in three networks with increasing levels of ramification

nl ∈ {2 (left) , 4 (middle) , 6 (right) , }, presenting two stenosis marked by the black circles

(◦). Aggregation now occurs in the large arteries on the l.h.s of the network and in their

immediate daughter arteries but also on the r.h.s, downstream of the stenosis. In the arteries

upstream of the stenoses, aggregation is reduced due to the additional reflections created by

the stenoses.
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