
HAL Id: hal-01492419
https://hal.sorbonne-universite.fr/hal-01492419

Submitted on 9 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Petri Nets Repository: a tool to benchmark and debug
Petri Net tools

Lom Messan Hillah, Fabrice Kordon

To cite this version:
Lom Messan Hillah, Fabrice Kordon. Petri Nets Repository: a tool to benchmark and debug Petri Net
tools. 38th International Conference, PETRI NETS 2017, University of Zaragoza, Jun 2017, Zaragoza,
Spain. pp.125-135. �hal-01492419�

https://hal.sorbonne-universite.fr/hal-01492419
https://hal.archives-ouvertes.fr

Petri Nets Repository,
a tool to benchmark and debug Petri Net tools

Lom Messan Hillah1 and Fabrice Kordon2

1 Univ. Paris Nanterre, LIP6 CNRS UMR 7606, F-75005 Paris, France
(lom-messan.hillah@lip6.fr)

2 Sorbonne Universités, UPMC Univ. Paris 06, LIP6 CNRS UMR 7606, F-75005 Paris, France
(Fabrice.Kordon@lip6.fr)

Abstract. For a given scientific community, being able to use a common and rich
accepted benchmark for the evaluation of algorithms and prototypes is an added
value. The goal of this paper is to present Petri Nets Repository, an open Petri
nets models database. It offers two main ways to navigate through the benchmark
using criteria related to Petri net properties: a Web interface, and a Web service
API (REST). So far, this database embeds the models from the Model Checking
Contest, as well as those of the discontinued Petriweb.
A placeholder is available to store, when possible, the outputs of the Model
Checking Contest; then for the corresponding models there will be formulas and
their accepted results available too. We believe this would help the community to
easily create oracles to debug new algorithms and tools.

1 Introduction

Motivation. Today, it is much easier, and more requested, to provide reproducible and
comparable data when evaluating one’s contribution. Thus, there is a strong need for
common benchmarks that are shared by a given community. Moreover, when prototype
tools are not only proofs-of-concepts, but also a key entry to process industrial prob-
lems, there is a need to ensure quality of developed software, which can be partially
achieved by using benchmarks whose results are already known.

Petri Nets Repository (PNR) Objectives. To achieve the goal stemming from the first
motivation, communities have elaborated competitions where programs of a given area
are tested against the same benchmarks and rated. There are established major events
concerning different areas: the SAT competition1 (9 editions since 2002), the Satisfi-
ability Modulo Theories Competition2 (11 editions since 2005), the Hardware Model
Checking Contest3 (8 editions since 2007), the Rigorous Examination of Reactive Sys-
tems Challenge4 (6 editions since 2010), the Timing Analysis Contest5 (4 editions since

1 http://www.satcompetition.org
2 http://smtcomp.sourceforge.net/
3 http://fmv.jku.at/hwmcc15/index.html
4 http://rers-challenge.org
5 https://sites.google.com/site/taucontest2015/

http://www.satcompetition.org
http://smtcomp.sourceforge.net/
http://fmv.jku.at/hwmcc15/index.html
http://rers-challenge.org
https://sites.google.com/site/taucontest2015/

2011), and the Competition on Software Verification6 (5 editions since 2012). The ex-
istence of these long-lasting events is a clear indication of interest and usefulness. In
most cases, benchmarks are freely available to the involved communities.

In the Petri net Community, the Model Checking Contest [10,9] was created in 2011
and reaches its 7th edition in 2017. As for other competitions, it provides an evolving
benchmark composed, in 2016, of 664 models dispatched among 67 Petri nets.

However, achieving the goal stemming from the second motivation requires more:
we need a way to query models according to identified characteristics that could allow
us to check performances of an algorithm for known conditions. This requires a sophis-
ticated environment allowing to extract sub-benchmarks with dedicated specificities.

This is the main objective of Petri Nets Repository (PNR). It is built on top of a Petri
net model database that anybody can query. PNR can be accessed either manually via a
Web browser interface or programmatically via a REST interface [5]. It contains models
from the Model Checking Contest, but we also imported Petri nets from a previously
existing database: Petriweb [7]. PNR is not only a database than can be queried via a
web interface as Petriweb was. It also offers an API to automate queries, thus enabling
its use in the context of tool testing and benchmarking (as detailed in section 4).

Contents. Section 2 details the architecture of PNR, and Sect. 3 presents some techni-
cal characteristics of the tool. Section 4 illustrates the typical use of PNR, and Sect. 5
sketches our perspectives in extending PNR before a conclusion in Sect. 6.

2 Architecture

Petri Nets Repository (PNR) is a Web application that currently offers a large collection
of Petri net models provided by the community.

Figure 1 depicts the architecture of PNR. It is composed of a front end that exposes
two interfaces to end users (through a browser and a REST API), a middle end and a
back end. Figure 1 also shows typical clients of PNR, indicating that they can interact
with it in two ways, over HTTP. The client with a Web browser interacts with PNR

6 https://sv-comp.sosy-lab.org

Data Access
Views,

scripts &
Web server

Controllers

MongoDB

Database

FRONT END MIDDLE END BACK END

Forms in
LaTeX

Forms in PDF

PNML
Documents

pnrepository.lip6.fr

CLIENT MACHINE

Web
Browser

CLIENT MACHINE

Terminal

172.16.0.3:808
0

CLIENT MACHINE

Petri net
tool

HTTP

HTTP

HTTP

Fig. 1. Overview of the architecture of Petri Nets Repository

2

https://sv-comp.sosy-lab.org

through the graphical interface and those with other specific tools (e.g. a terminal or a
Petri net tool) can communicate with PNR using the exposed REST API. In any case,
all clients including browsers use the REST API.

The front end Web interface. The Web front end is composed of a set of views
encoded in templatized Scala/HTML files and a Web server that serves these compiled
views to any browser. We additionally developed some client-side processing scripts
to complement the dynamic rendering of the views in the browser. These scripts are
written in CoffeeScript [2] and then compiled into Javascript.

The browser shows the content of the Petri net metadata in a table, fetched from
PNR. Metadata typically is composed of a model name, type (i.e. P/T or Colored net),
size, whether it has parameters, and the values of the statically defined properties (e.g.
deadlock: false) in the LaTeX file used as a model submission template in the model
submission kit7 of the Model Checking Contest. All metadata from PNR are structured
in JavaScript Object Notation (JSON) [4].

End users can filter the content of the table over the defined properties, or even
provide an ad hoc query formulated as a logical expression. The search function this
type of query triggers is performed locally, on the client side. Finally, end users can also
open the PDF forms of the models from the table and download the archive containing
their PDF forms or PNML [8] documents, upon selection.

The front end REST API. The concept of route encodes the URLs of the REST
API in a text file. A route is composed of three parts: the HTTP method (e.g. GET,
POST), the path of the queried resource, and the fully-qualified name of the pro-
gram handling the request. For example, GET /mcc/models/all/metadata.json
controllers.MCCBrowser.browse() specifies the Java method that handles the
querying metadata about all the Petri net models in the MCC collection. All paths are
relative to the base URL of PNR (i.e. http://pnrepository.lip6.fr).

Some routes return the views along with data used in the client-side scripts to ren-
der them in the browser. For example, /mcc/models/all/browser.html returns the
HTML used to render the collection of all the models in the MCC, along with the
list of statically defined properties found in their LaTeX description files. Some routes
only return data in JSON, for example, the public URL to the PNML file of a given
model identifier in a GET request: /mcc/models/:id/pnml.json. Other routes re-
turn raw data, for example, an archive containing the PNML files of a set of models:
/mcc/pnml/*file. The client-side scripts use these routes.

The API, whose reference documentation is published on /api/apiref.html8, is
useful for any user or client tool to query the collections: fetch metadata, download
PDF or PNML files of models according to some search criterion. For instance, using
a command line tool like cURL [1], one can fetch the metadata of all the models in the
MCC collection in a JSON array with:

Listing 1.1. Command line to fetch the metadata of all the models in the MCC collection
curl -o pnr-mcc-metadata.json

http://pnrepository.lip6.fr/mcc/models/all/metadata.json

7 http://mcc.lip6.fr/archives/ModelSubmissionKit.tar.gz
8 The JSON version of the API reference documentation is at /api/apiref.json

3

http://pnrepository.lip6.fr
http://mcc.lip6.fr/archives/ModelSubmissionKit.tar.gz

The resulting JSON array contains records encoded as JSON objects. Each record
describes a Petri net in the queried collection, like the DES model shown in Listing 1.2.

The middle end. The middle end is composed of the business logic programs (in
Java) that handle the requests to the exposed REST API, configuration, logging, and
access to the database, the PDF, and the PNML files of the models. A key fea-
ture of our REST API is the search function over a particular collection of mod-
els (e.g. /pweb/search.json for the Petriweb collection), or over all of them (i.e.
/all/search.json). This search API can potentially inflict a heavy workload upon
the back end and the database depending on the frequency and complexity of the re-
quests. Consequently, we have conditioned its successful invocation to providing valid
Java Web Tokens (JWT) [12] that we emit upon request, to the interested end users for
their own usage.

Listing 1.2. The metadata of the DES model in JSON

{"modelName":"DES (Data Encryption Standard)","modelType":"PT",
"authorName":"Wendelin Serwe and Hubert

Garavel","authorContact":"wendelin.serwe@inria.fr",
"modelOrigin":"Company{NIST (USA)}","modelShortDescription":"These nets are

derived from the LNT specification of the DES (Data Encryption Standard)
symmetric -key encryption algorithm.",

"scalingParamName":"(N, V)","parameterised": "TRUE","modelFixedSize":"null",
"ordinary":"True","simpleFreeChoice":"False","extendedFreeChoice":"False",
"stateMachine":"False","markedGraph":"False","connected":"True",
"stronglyConnected":"False","sourcePlace":"True","sinkPlace":"Unknown",
"sourceTransition":"False","sinkTransition":"Unknown","loopFree":"Unknown",
"subConservative":"False","conservative":"False","nestedUnits":"True",
"safe":"True","deadlock":"Unknown","reversible":"Unknown","quasiLive":"Unknown",
"live":"Unknown","year":"2016","lastUpdated":"2016 -06-07T20:53:38",
"modelID":"DES","modelBase":"MCC","links": [
{"rel":"self","href":"http://pnrepository.lp6.fr/mcc/models/DES/metadata.json"},
{"rel":"pnml","href":"http://pnrepository.lp6.fr/mcc/models/DES/pnml.json"},
{"rel":"pdf","href":"http://pnrepository.lp6.fr/mcc/models/DES/pdf.json"}]}

The back end. The back end consists of both the database containing the metadata
about the Petri nets in the collections mentioned above, and the component handling
the corresponding data and interfacing the middle end with the database. This back end
component also builds the metadata from parsing the LaTeX files describing the Petri
nets. These LaTeX files provided by model submitters are thus the primary source of
the data model of the Petri nets. Their design has been refined over the years by the
MCC model Committee in agreement with the community. We also used it to integrate
the imported Petri nets from Petriweb. PNR is powered by MongoDB [13].

We have organized PNR in separate collections: MCC [10,9], Petriweb, and soon,
the “Very Large Petri Nets” Benchmark Suite [6]. Firstly, we then show their different
backgrounds and purposes, thus maintaining their history. Secondly, we distinguish the
specific services offered on top of each collection according to its background. For in-
stance, the MCC collection outputs yearly results that will soon be linked to the models.
However, queries can be dispatched over all the collections, and all the models share
the same statically defined properties. The authors of these collections have provided
their formal agreement to publishing their models in PNR.

4

P/T (81,5%)Col. + P/T (17,5%) Col. (1%)

0,00%	

20,00%	

40,00%	

60,00%	

80,00%	

100,00%	

Co
nn
ec
ted
	

Co
ns
erv
a5
ve
	

De
ad
loc
k	

Or
din
ary
	

Qu
asi
	liv
e	

Liv
e	

Re
ve
rsi
ble
	

Sa
fe	

Sta
te	
Ma
ch
ine
	

Fig. 2. Distribution of P/T versus colored (left) and according to some typical properties (right).

3 Technical characteristics of the tool

We rely on Play [11], an open source Web application framework, to design the archi-
tecture of Petri Nets Repository. Play provides the standard model-view-controller ar-
chitectural pattern upon which we built our three-tier Web-based enterprise application.
Being stateless, RESTful, asynchronous, modular, and full of other carefully designed
features, Play enables rapid Web application prototyping and simplifies its deployment.

In the following sections, we provide information about the content of the database
and some scalability metrics.

Content of the database. The database was elaborated from the outputs of the commu-
nity. First, the discontinued Petriweb was gathered by several colleagues and published
via a Web site. Second, the collection coming from the Model Checking Contest has
been progressively elaborated, year after year since 2011. The result is a heterogeneous
collection of Petri nets coming from various areas: distributed algorithms, protocols,
hardware systems, biological systems, etc. Moreover, they are issued from both aca-
demic and industrial case studies. This variety ensures a sound fairness for evaluation
purposes, due to the variants in the application and modeling choices.

Figure 2 (left) shows that we have a significant number of colored Petri nets asso-
ciated with their equivalent P/T nets, which is useful when comparing the efficiency
of algorithms on colored nets, versus others on P/T nets. Figure 2 (right) also shows
that, if some optimizations are considered for models having some identified structural
characteristics (e.g. safe, or reversible), it is easy to select the corresponding subsets of
models. This is also useful when evaluating the impact of an algorithm in such situa-
tions. Moreover, numerous models from the Model Checking Contest have scaling pa-
rameters, allowing to generate instances with an increasing complexity. This provides a
way to experimentally evaluate the complexity of an algorithm.

We also aim at integrating the models from the “Very Large Petri Nets” Benchmark
Suite (this is detailed in Sect. 5).

Scalability of the server. To observe how PNR9 would perform when a
large number of clients connect, we first tested the MCC collection Web page

9 The PNR HTTP server is based on Netty (http://netty.io/)

5

http://netty.io/

(/mcc/models/all/browser.html) with 5000 clients over 1 minute. The average re-
sponse time was 87 ms, with min/max at 80/1141 ms, and 0 error rate. We then tested
the API endpoint /mcc/models/all/metadata.json with 1000 clients over 1 minute.
The average response time was 205 ms, with min/max at 160/890 ms, and 0 error rate.

We then wanted to observe the behavior under a number N of requests every second
and under a constant load of clients over a time duration T. We tested the endpoint
/mcc/models/all/metadata.json with 100 clients per second over 1 minute. The
average response time was 95 ms, with min/max at 81/964 ms, and 0 error rate. We
then tested the same endpoint with a load from 250 to 1000 clients over 1 minute. The
average response time was 319 ms, with min/max at 81/3114 ms, and 0 error rate.

These test cases showed that, under normal circumstances, PNR is fairly scalable.
Its native HTTP server is robust enough to support reasonable workloads (e.g. the one
we can expect from the community).

4 Typical use of Petri Nets Repository

Using a browser. The Web page displaying the collection of all the models in the
MCC has tabbed content. The first tab, “MCC Collection Content”, displays the list of
Petri nets in a table, along with their properties. When hovering the mouse over a model
name, its short description is shown in a small pop-up window. Clicking on the model
name brings up a modal window that displays the “model form” (in PDF).

The user can filter the content of the table using the properties displayed in the quick
selection panel “Filter the models using the following properties” (shown in Fig. 3).
While this search method only allows the conjunction of properties, the “Advanced
Search” feature (search field in the top-right corner above the table) allows any logical
expression combining the properties using the connectors && (AND), || (OR), ! (NOT),
and ? (UNKNOWN). For example, one can search for sub-conservative or reversible
models with subconservative || reversible. Any other arbitrary string that is not
a logical expression can also be used to search the table, e.g. the name of an author to
look for models s/he has submitted. The content of the table is updated as you type.
The Reset feature resets the search, displaying the table back in its original state. The
CSV and PDF feature exports the content into CSV and PDF files, respectively. The

Fig. 3. The quick selection panel of the MCC Collection

6

content of the table is paginated so that each page initially displays ten rows to keep
a reasonable overall length of the visible page in the browser. However, the user can
bypass this setting by choosing how many rows to display. Therefore, it is possible to
display all rows in a single page. It is also possible to arrange the columns visibility
by selecting which ones to hide or show. Finally, once one or more models have been
selected, the user can request to download their forms (in PDF) or PNML documents in
an archive. The button to ask the download is located in the bottom-left corner below
the table.

The “MCC Collection Cover Flow” tab displays the thumbnails of the models PDF
forms, allowing another kind of navigation that is more visualization oriented. The
“MCC Contributors” tab displays the list of model submitters, and relates them to the
models they have submitted. Finally, the “Metrics” tab shows charts on the contents of
the MCC Collection.

The page displaying the collection of Petri nets from Petriweb has the same layout
as the one for the MCC, except it has not a list of individual contributors since this
information was not provided in the data we had recovered.
Using a proprietary tool. We refer to a “proprietary” tool in this context as, for in-
stance, a command line tool like cURL, or a specific Petri net tool. Using such a tool,
the end user can invoke the REST API and use the result to build whatever application
suits his purpose by using the data from Petri Nets Repository.

The same set of actions that the user can perform through a browser can also be
achieved directly using the REST API of PNR. In Section 2, we showed an example
in which we fetch the metadata of all models in the MCC collection, using the com-
mand line tool cURL. Next, we detail two more examples using cURL again, combined
with other command line tools, in particular jq [3] which allows the processing of the
resulting JSON data.

For example, to download the PNML documents of Diffusion2D, the command line
is the one in Listing 1.3 (using a GET):

Listing 1.3. Command line to download the PNML documents of Diffusion2D in an archive
curl http://pnrepository.lip6.fr/mcc/models/Diffusion2D/pnml.json | jq ’.href ’ |

xargs -I % curl -o Diffusion2D -pnml.tar.gz http://pnrepository.lip6.fr%

In the first part of the command, the server responded to the initial request with JSON
data specifying the URL to the archive containing the PNML documents. Using jq, we
extracted the value of the path field in the second part of the command and fed it to
cURL in the last part of the command to download the archive.

We can also perform a search on all the collections in PNR using a query formulated
in a JSON payload structured like in Listing 1.4. The expression field contains a
logical expression that is formulated in the same way as the “Advanced Search” feature
allows in the browser. Alternatively, the fields contains a mapping to the exact values
that the specified properties must have on the matched models (i.e. ordinary = True
AND live = False AND safe = Unknown). The query in the expression field has
precedence over the one in fields. To have the search function consider the mappings
in fields instead, it suffices to set the expression field to null.

The command line to send a search query on all the collections with the payload of
Listing 1.4 is the one in Listing 1.5 (using a POST):

7

Listing 1.4. A search query payload
{ "expression" : "(!live && ordinary) || (safe && quasilive)",

"fields": [{"ordinary": "True"}, {"live": "False"}, {"safe": "Unknown"}] }

Listing 1.5. Command line to request a search on all collections of PNR
curl -H "Content -Type: application/json" -H "uuid: ..." -H "Authorization: Bearer

..." -X POST --data @Search -Payload.json
http://pnrepository.lip6.fr/all/search.json -o resultset.json

noindent The search query payload is stored in a file named
Search-Payload.json. The required Authorization header carries the JSON
Web Token that will be first checked before the search query is granted. The uuid
header carries the unique identifier issued to the user who has requested the authoriza-
tion token from us. That identifier must be associated with the token in the request to
the API. The result set, saved in resultset.json, is structured like in Listing1.6

Listing 1.6. The result set yielded by the search query in Listing 1.5
{ "code": 200, "status": "success", "size": 49, "resultset": [{...}, {...}, ...] }

It shows that the result set contains 49 models that matched the logical expression
in Listing 1.4. The resultset field is an array of JSON objects, each one describing
a matching model with the same structure as in Listing 1.2. The interested user can
then loop through this result set and, for example, download the corresponding PDF or
PNML documents with subsequent invocations of the API.

Listing 1.7. An oracle for MyTool written in bash
#Query PNR to get the l i s t of models with deadlocks
curl -s -H "Content -Type: application/json" -H "uuid: ..." -H "Authorization:

Bearer ..." -X POST --data ’{"expression": "deadlock"}’
http://pnrepository.lip6.fr/all/search.json -o /tmp/fetch.json

#Get model ids and put them as arguments f o r l a t e r use i n the loop
se t $(ca t /tmp/fetch.json | jq ’.resultset [].modelID ’ | sed -e ’s/"//g’)
#List of json files each referring to the URL of the PNML archive f o r a model
ca t /tmp/fetch.json | jq ’.resultset [].links[] | s e l e c t (.rel | contains("pnml"))

| .href ’ | sed -e ’s/"//g’ > /tmp/pnml_lists
#Loop on se l ec ted models (get a l l the i r instances and process them)
rm -rf /tmp/checks ; mkdir -p /tmp/checks
ca t /tmp/pnml_lists | whi le read jsonUrl ; do

echo "--- retrieving PNML files f o r model $1"
Extract the URL f o r the PNML archive
url=$(curl -s $jsonUrl | jq ’.href ’ | sed -e ’s/"//g’)
curl -s -o /tmp/checks/archive.tar.gz $url
(cd /tmp/checks # process all instances i n a temp directory
tar xzf archive.tar.gz
f o r instance i n $1/PT/*.pnml ; do # processing all P/T PNML files

t e s t =$($MyToolPath -deadlock $instance | grep "deadlock=True")
i f [-z "$test"] ; then

echo " $instance ==> NOT PASSED"
e l s e

echo " $instance ==> PASSED"
f i

done)
s h i f t

done

Benchmarking a tool. Dynamic access to a large repository of models is useful for
benchmarking. Let us consider the case of MyTool that has a deadlock detection function

8

to be tested. The simple bash script presented in listing 1.7 sets up an oracle that can
automatically test the outputs of MyTool against all the models having deadlocks in PNR
(a similar script can be elaborated to test the tool when there are no deadlocks). This
script will automatically consider new models inserted in PNR.

This benchmarking example shows that debugging can be easily performed on
known computed properties. It will be easy to perform similar tests on the behavioral
properties computed in the MCC collection (e.g. the size of the state space, or some
formulas, etc.) as soon as they are inserted in PNR.

5 Perspectives

There are mainly two features we are planning to enrich PNR with, from a short term
to a longer term. The first one deals with the integration of the useful “Very large Petri
Nets” (VLPN) Benchmark Suite [6]. The second one is about integrating the yearly
results of the Model Checking Contest (MCC).

The VLPN benchmark. This is a collection of several hundreds of Petri nets generated
from high-level specifications of meaningful systems. They can contain up to 131216
places and 16967720 transitions. So far, the connection to this collection is performed
thanks to a simple link to the original Web site. As soon as the database of VLPN is
imported, the services of PNR will be available on it too.

The MCC outputs. Since 2015, the Model Checking Contest has introduced a way
to evaluate the quality of results based on the outputs of the participating tools. For a
given formula, these outputs are summarized and, when a large majority of tools do
agree, it is possible to state that the corresponding result is safe. This is the case of all
the examinations proposed in the MCC: size of the state spaces, bounds of the nets, and
numerous reachability, LTL and CTL formulae.

We would like to associate all these safe results to the corresponding models in
order to provide an even more useful benchmark. If models are associated with a set
of checked properties, then they can not only be used for benchmarking tools, but also
serve as a basis to elaborate oracles for tools. In fact, such a function was manually set
up by some 2016 MCC’s tool developers (based on the outputs of the 2015 edition) to
increase the reliability of their algorithm. Our objective is to make it possible to retrieve
these results automatically from PNR, so that tool developers can use them even if they
have not yet participated in the Model Checking Contest.

Towards Performance Benchmarking. Section 4 shows how some benchmarking of
tools can be automated to check correctness of properties computation, that could even
be enhanced with the exploitation of the outputs from the Model Checking Contest. This
could lead to the elaboration of performance checking: tool developers might evaluate
the impact of a given change in terms of performances.

Online model submission. Currently, the model submission procedure relies on a
yearly call for models in the context of the MCC. Model submitters send their model
forms in LaTeX to the model board before a given deadline. With PNR, we will eventu-
ally propose an online submission form. It would aim at becoming an easier alternative
to submitting model information in a LaTeX file, while we will keep building the final

9

PDF version from LaTeX in the back end since this format provides us with numerous
advantages in the management of the models.

6 Conclusion

This paper presents Petri Nets Repository (PNR), a large repository of 109 models, from
which 706 instances (i.e. individual PNML files with different parameter values, when
applicable) are derived. The collections of Petri nets are available to the community
through a Web interface and a REST API.

Our objective is twofold. First, we are progressively building a reference benchmark
that can be helpful to provide fair comparison between tools. Second, PNR is associated
with programmatic ways to query it so that it is possible to elaborate oracles from the
provided data. Petri Nets Repository is available at http://pnrepository.lip6.fr.
Acknowledgements. The authors thank Hubert Garavel for his helpful advice during
the design of Petri Net Repository.

References

1. cURL, https://curl.haxx.se
2. Ashkenas, J.: CoffeeScript, http://coffeescript.org
3. Dolan, S.: jq, https://stedolan.github.io/jq/
4. ECMA: ECMA-404 The JSON Data Interchange Standard, http://www.json.org
5. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans.

Internet Techn. 2(2), 115–150 (2002)
6. Garavel, H.: The VLPN Benchmarck Suite, http://cadp.inria.fr/resources/vlpn/
7. Goud, R., van Hee, K.M., Post, R.D.J., van der Werf, J.M.E.M.: Petriweb: A Repository for

Petri Nets. In: ICATPN. LNCS, vol. 4024, pp. 411–420. Springer (2006)
8. Hillah, L.M., Kindler, E., Kordon, F., Petrucci, L., Trèves, N.: A primer on the Petri Net

Markup Language and ISO/IEC 15909-2. Petri Net Newsletter 76, 9–28 (Oct 2009)
9. Kordon, F., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Chiardo, G., Hamez, A., Jezequel,

L., Miner, A., Meijer, J., Paviot-Adet, E., Racordon, D., Rodriguez, C., Rohr, C., Srba, J.,
Thierry-Mieg, Y., Tri.nh, G., Wolf, K.: Complete Results for the 2016 Edition of the Model
Checking Contest. http://mcc.lip6.fr/2016/results.php (June 2016)

10. Kordon, F., Garavel, H., Hillah, L., Paviot-Adet, E., Jezequel, L., Rodrı́guez, C., Hulin-
Hubard, F.: MCC’2015 - The Fifth Model Checking Contest. Transactions on Petri Nets
and Other Models of Concurrency (ToPNoC) XI, 262–273 (2016)

11. Lightbend, Zengularity: Play Framework, https://www.playframework.com
12. M. Jones and J. Bradley and N. Sakimura: JSON Web Token (JWT), https://tools.ietf.

org/html/rfc7519. Request for Comments 7519, Internet Engineering Task Force (2015)
13. MongoDB, Inc: MongoDB, https://www.mongodb.com

10

http://pnrepository.lip6.fr
https://curl.haxx.se
http://coffeescript.org
https://stedolan.github.io/jq/
http://www.json.org
http://cadp.inria.fr/resources/vlpn/
http://mcc.lip6.fr/2016/results.php
https://www.playframework.com
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://www.mongodb.com

	Petri Nets Repository,a tool to benchmark and debug Petri Net tools

