P. F. Agris, F. A. Vendeix, G. , and W. D. , tRNA???s Wobble Decoding of the Genome: 40 Years of Modification, Journal of Molecular Biology, vol.366, issue.1, 2007.
DOI : 10.1016/j.jmb.2006.11.046

B. P. Anton, L. Saleh, J. S. Benner, E. A. Raleigh, S. Kasif et al., RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli, Proceedings of the National Academy of Sciences, vol.32, issue.5, pp.1826-18310708608105, 2008.
DOI : 10.1093/nar/gkh340

S. Arragain, R. Garcia-serres, G. Blondin, T. Douki, M. Clemancey et al., Post-translational Modification of Ribosomal Proteins: STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF RimO FROM THERMOTOGA MARITIMA, A RADICAL S-ADENOSYLMETHIONINE METHYLTHIOTRANSFERASE, Journal of Biological Chemistry, vol.285, issue.8, pp.5792-5801, 2010.
DOI : 10.1074/jbc.M109.065516

URL : https://hal.archives-ouvertes.fr/hal-01069703

S. Arragain, S. K. Handelman, F. Forouhar, F. Y. Wei, K. Tomizawa et al., Identification of Eukaryotic and Prokaryotic Methylthiotransferase for Biosynthesis of 2-Methylthio-N6-threonylcarbamoyladenosine in tRNA, Journal of Biological Chemistry, vol.285, issue.37, pp.28425-28433, 2010.
DOI : 10.1074/jbc.M110.106831

URL : https://hal.archives-ouvertes.fr/hal-01073763

M. Atta, S. Arragain, M. Fontecave, E. Mulliez, J. F. Hunt et al., The methylthiolation reaction mediated by the Radical-SAM enzymes, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1824, issue.11, pp.1223-1230, 2012.
DOI : 10.1016/j.bbapap.2011.11.007

URL : https://hal.archives-ouvertes.fr/hal-01073756

A. K. Boal, T. L. Grove, M. I. Mclaughlin, N. H. Yennawar, S. J. Booker et al., Structural Basis for Methyl Transfer by a Radical SAM Enzyme, Science, vol.402, issue.2, pp.1089-1092, 2011.
DOI : 10.1016/j.jmb.2010.07.040

S. J. Booker, Anaerobic functionalization of unactivated C???H bonds, Current Opinion in Chemical Biology, vol.13, issue.1, pp.58-73, 2009.
DOI : 10.1016/j.cbpa.2009.02.036

S. J. Booker, R. M. Cicchillo, G. , and T. L. , Self-sacrifice in radical S-adenosylmethionine proteins, Current Opinion in Chemical Biology, vol.11, issue.5, 2007.
DOI : 10.1016/j.cbpa.2007.08.028

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637762

E. Choi-rhee and J. E. Cronan, Biotin Synthase Is Catalytic In Vivo, but Catalysis Engenders Destruction of the Protein, Chemistry & Biology, vol.12, issue.4, pp.461-468, 2005.
DOI : 10.1016/j.chembiol.2005.02.006

R. M. Cicchillo, S. J. Booker, R. M. Cicchillo, D. F. Iwig, A. D. Jones et al., :?? Both Sulfur Atoms in Lipoic Acid are Contributed by the Same Lipoyl Synthase Polypeptide, Journal of the American Chemical Society, vol.127, issue.9, pp.2860-2861, 1021.
DOI : 10.1021/ja042428u

P. Dinis, D. L. Suess, S. J. Fox, J. E. Harmer, R. C. Driesener et al., X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly, Proceedings of the National Academy of Sciences, vol.112, issue.5, pp.1362-1367, 2015.
DOI : 10.1371/journal.pone.0015491

E. Fluhe, T. A. Knappe, M. J. Gattner, A. Schafer, O. Burghaus et al., The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A, Nature Chemical Biology, vol.277, issue.4, pp.350-357, 2012.
DOI : 10.1038/nchembio.798

M. Fontecave, E. Mulliez, L. , and D. T. , Deoxyribonucleotide synthesis in anaerobic microorganisms: The class III ribonucleotide reductase, Prog. Nucleic Acid Res. Mol. Biol, vol.72, issue.02, pp.95-127, 2002.
DOI : 10.1016/S0079-6603(02)72068-0

F. Forouhar, S. Arragain, M. Atta, S. Gambarelli, J. M. Mouesca et al., Two Fe-S clusters catalyze sulfur insertion by radical-SAM methylthiotransferases, Nature Chemical Biology, vol.158, issue.5, pp.333-338, 2013.
DOI : 10.1107/S0907444998003254

URL : https://hal.archives-ouvertes.fr/hal-01104861

P. A. Frey, A. D. Hegeman, and F. J. Ruzicka, The Radical SAM Superfamily, Critical Reviews in Biochemistry and Molecular Biology, vol.123, issue.1, pp.63-88, 1080.
DOI : 10.1023/A:1011122631799

P. A. Frey and O. T. Magnusson, -Adenosylmethionine:?? A Wolf in Sheep's Clothing, or a Rich Man's Adenosylcobalamin?, Chemical Reviews, vol.103, issue.6, pp.2129-2148, 2003.
DOI : 10.1021/cr020422m

URL : https://hal.archives-ouvertes.fr/hal-00409102

H. Grosjean, DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution, 2009.

T. L. Grove, J. S. Benner, M. I. Radle, J. H. Ahlum, B. J. Landgraf et al., A Radically Different Mechanism for S-Adenosylmethionine-Dependent Methyltransferases, Science, vol.71, issue.26, pp.604-607, 2011.
DOI : 10.1021/jo0614240

T. L. Grove, M. I. Radle, C. Krebs, and S. J. Booker, 2 Displacement and Radical Generation, Journal of the American Chemical Society, vol.133, issue.49, pp.19586-19589, 2011.
DOI : 10.1021/ja207327v

E. M. Gustilo, A. P. Franck, and P. F. Agris, tRNA's modifications bring order to gene expression, Current Opinion in Microbiology, vol.11, issue.2, 2008.
DOI : 10.1016/j.mib.2008.02.003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408636

P. Hanzelmann and H. Schindelin, Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans, Proceedings of the National Academy of Sciences, vol.7, issue.11, pp.12870-12875, 2004.
DOI : 10.1016/S0968-0004(00)89105-7

P. Hanzelmann and H. Schindelin, Binding of 5'-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism, Proceedings of the National Academy of Sciences, vol.42, issue.9, pp.6829-6834, 2006.
DOI : 10.1021/bi0261084

J. E. Harmer, M. J. Hiscox, P. C. Dinis, S. J. Fox, A. Iliopoulos et al., Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions, Biochemical Journal, vol.30, issue.1, pp.123-133, 1042.
DOI : 10.1021/bi101023c

R. Hille, B. M. Hover, E. A. Lilla, Y. , K. B. Loksztejn et al., The mononuclear molybdenum enzymes Mechanistic investigation of cPMP synthase in molybdenum cofactor biosynthesis using an uncleavable substrate analogue Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis, Proc. Natl. Acad. Sci. U.S.A. 112, pp.2757-2816, 1996.

Y. L. Hu, R. , and M. W. , Maturation of nitrogenase cofactor -the role of a class E radical SAM methyitransferase NifB, Curr. Opin. Chem. Biol, vol.31, 2016.

J. T. Jarrett, -Adenosylmethionine Enzymes, Journal of Biological Chemistry, vol.290, issue.7, pp.3972-3979, 2015.
DOI : 10.1074/jbc.R114.599308

URL : https://hal.archives-ouvertes.fr/hal-00610741

L. Jenner, N. Demeshkina, G. Yusupova, Y. , and M. , Structural rearrangements of the ribosome at the tRNA proofreading step, Nature Structural & Molecular Biology, vol.20, issue.99, 2010.
DOI : 10.1016/j.chembiol.2008.03.014

T. A. Kent, M. H. Emptage, H. Merkle, M. C. Kennedy, H. Beinert et al., Mossbauer studies of aconitase -substrate and inhibitor binding, reaction intermediates, and hyperfine interactions of reduced Fe-3 and Fe-4 clusters, J. Biol. Chem, vol.260, pp.6871-6881, 1985.

H. J. Kim, R. M. Mccarty, Y. Ogasawara, Y. N. Liu, S. O. Mansoorabadi et al., GenK-Catalyzed C-6??? Methylation in the Biosynthesis of Gentamicin: Isolation and Characterization of a Cobalamin-Dependent Radical SAM Enzyme, Journal of the American Chemical Society, vol.135, issue.22, pp.8093-8096, 1021.
DOI : 10.1021/ja312641f

B. J. Landgraf, A. J. Arcinas, K. H. Lee, and S. J. Booker, -Adenosylmethionine Methylthiotransferases RimO and MiaB, Journal of the American Chemical Society, vol.135, issue.41, pp.15404-15416, 1021.
DOI : 10.1021/ja4048448

URL : https://hal.archives-ouvertes.fr/hal-01020223

N. D. Lanz and S. J. Booker, Auxiliary iron???sulfur cofactors in radical SAM enzymes, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1853, issue.6, 2015.
DOI : 10.1016/j.bbamcr.2015.01.002

URL : http://dx.doi.org/10.1016/j.bbamcr.2015.01.002

N. D. Lanz, J. M. Rectenwald, B. Wang, E. S. Kakar, T. N. Laremore et al., Characterization of a Radical Intermediate in Lipoyl Cofactor Biosynthesis, Journal of the American Chemical Society, vol.137, issue.41, pp.13216-13219, 2009.
DOI : 10.1021/jacs.5b04387

S. J. Lippard, Hydroxylation of C???H bonds at carboxylate-bridged diiron centres, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.363, issue.1829, pp.861-8771532, 2004.
DOI : 10.1098/rsta.2004.1532

N. Mahanta, D. Fedoseyenko, T. Dairi, and T. P. Begley, Menaquinone Biosynthesis: Formation of Aminofutalosine Requires a Unique Radical SAM Enzyme, Journal of the American Chemical Society, vol.135, issue.41, pp.15318-15321, 1021.
DOI : 10.1021/ja408594p

S. J. Maiocco, A. J. Arcinas, B. J. Landgraf, K. H. Lee, S. J. Booker et al., Transformations of the FeS clusters of the methylthiotransferases miab and rimo, detected by direct electrochemistry Adenosyl radical: reagent and catalyst in enzyme reactions, Biochemistry Chembiochem, vol.55, issue.11, pp.604-621, 2010.

M. I. Mclaughlin, N. D. Lanz, P. J. Goldman, K. H. Lee, S. J. Booker et al., Crystallographic snapshots of sulfur insertion by lipoyl synthase, Proceedings of the National Academy of Sciences, vol.113, issue.34, pp.9446-9450, 2016.
DOI : 10.1002/prot.10286

A. P. Mehta, S. H. Abdelwahed, and T. P. Begley, Molybdopterin Biosynthesis: Trapping an Unusual Purine Ribose Adduct in the MoaA-Catalyzed Reaction, Journal of the American Chemical Society, vol.135, issue.30, pp.10883-10885, 1021.
DOI : 10.1021/ja4041048

A. P. Mehta, J. W. Hanes, S. H. Abdelwahed, D. G. Hilmey, P. Hanzelmann et al., Catalysis of a New Ribose Carbon-Insertion Reaction by the Molybdenum Cofactor Biosynthetic Enzyme MoaA, Biochemistry, vol.52, issue.7, pp.1134-1136, 1021.
DOI : 10.1021/bi3016026

R. R. Mendel and G. Schwarz, Molybdenum cofactor biosynthesis in plants and humans, Coordination Chemistry Reviews, vol.255, issue.9-10, 2011.
DOI : 10.1016/j.ccr.2011.01.054

T. Molle, Y. Moreau, M. Clemancey, F. Forouhar, J. L. Ravanat et al., -Adenosylmethionine (SAM)-Binding Fe???S Cluster in Methylthiotransferase RimO, toward Understanding Dual SAM Activity, Biochemistry, vol.55, issue.41, pp.5798-5808, 2016.
DOI : 10.1021/acs.biochem.6b00597

URL : https://hal.archives-ouvertes.fr/hal-00312235

R. J. Parry and D. A. Trainor, Biosynthesis of lipoic acid. 2. Stereochemistry of sulfur introduction at C-6 of octanoic acid, Journal of the American Chemical Society, vol.100, issue.16, pp.5243-5244, 1978.
DOI : 10.1021/ja00484a073

P. Perche-letuvee, V. Kathirvelu, G. Berggren, M. Clemancey, J. M. Latour et al., 4-Demethylwyosine Synthase from Pyrococcus abyssi Is a Radical-S-adenosyl-L-methionine Enzyme with an Additional [4Fe-4S]+2 Cluster That Interacts with the Pyruvate Co-substrate, Journal of Biological Chemistry, vol.287, issue.49, pp.41174-41185, 2012.
DOI : 10.1074/jbc.M112.405019

URL : https://hal.archives-ouvertes.fr/hal-01069788

F. Pierrel, G. R. Bjork, M. Fontecave, M. Atta, F. Pierrel et al., Enzymatic modification of tRNAs -MiaB is an iron-sulfur protein doi: 10.1074/jbc MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA MiaB protein from Thermotoga maritima -characterization of an extremely thermophilic tRNA-methylthiotransferase, J. Biol. Chem. J. Biol. Chem. J. Biol. Chem, vol.277, issue.278, pp.13367-13370, 2002.

I. Sanyal, G. Cohen, and D. H. Flint, Biotin Synthase: Purification, Characterization as a [2Fe-2S]Cluster Protein, and in vitro Activity of the Escherichia coli bioB Gene Product, Biochemistry, vol.33, issue.12, pp.3625-3631, 1021.
DOI : 10.1021/bi00178a020

G. Schwarz, M. , and R. R. , MOLYBDENUM COFACTOR BIOSYNTHESIS AND MOLYBDENUM ENZYMES, Annual Review of Plant Biology, vol.57, issue.1, 2006.
DOI : 10.1146/annurev.arplant.57.032905.105437

K. A. Shisler and J. B. Broderick, Glycyl radical activating enzymes: Structure, mechanism, and substrate interactions, Archives of Biochemistry and Biophysics, vol.546, 2014.
DOI : 10.1016/j.abb.2014.01.020

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083501

H. J. Sofia, G. Chen, B. G. Hetzler, J. F. Reyes-spindola, and N. E. Miller, Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods, Nucleic Acids Research, vol.29, issue.5, pp.1097-1106, 2001.
DOI : 10.1093/nar/29.5.1097

Y. Suzuki, A. Noma, T. Suzuki, M. Senda, T. Senda et al., Crystal Structure of the Radical SAM Enzyme Catalyzing Tricyclic Modified Base Formation in tRNA, Journal of Molecular Biology, vol.372, issue.5, pp.1204-1214, 2007.
DOI : 10.1016/j.jmb.2007.07.024

J. L. Vey and C. L. Drennan, Structural Insights into Radical Generation by the Radical SAM Superfamily, Chemical Reviews, vol.111, issue.4, pp.2487-2506, 2011.
DOI : 10.1021/cr9002616

W. F. Waas, V. De-crecy-lagard, P. Schimmel, C. J. Walsby, D. Ortillo et al., Discovery of a Gene Family Critical to Wyosine Base Formation in a Subset of Phenylalanine-specific Transfer RNAs, Journal of Biological Chemistry, vol.280, issue.45, pp.37616-37622, 1021.
DOI : 10.1074/jbc.M506939200

S. C. Wang and P. A. Frey, S-adenosylmethionine as an oxidant: the radical SAM superfamily, Trends in Biochemical Sciences, vol.32, issue.3, 2007.
DOI : 10.1016/j.tibs.2007.01.002

J. A. Wiig, Y. L. Hu, C. C. Lee, R. , and M. W. , Radical SAM-Dependent Carbon Insertion into the Nitrogenase M-Cluster, Science, vol.74, issue.8, pp.1672-1675, 2012.
DOI : 10.1073/pnas.74.8.3249

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836454

J. A. Wiig, Y. L. Hu, R. , and M. W. , Refining the pathway of carbide insertion into the nitrogenase M-cluster, Nature Communications, vol.6, 2015.
DOI : 10.1038/nprot.2006.253

A. P. Young and V. Bandarian, Pyruvate Is the Source of the Two Carbons That Are Required for Formation of the Imidazoline Ring of 4-Demethylwyosine, Biochemistry, vol.50, issue.49, pp.10573-10575, 2011.
DOI : 10.1021/bi2015053

A. P. Young and V. Bandarian, -methionine Enzyme 4-Demethylwyosine Synthase Reveal the Site of Hydrogen Atom Abstraction, Biochemistry, vol.54, issue.23, pp.3569-3572, 2015.
DOI : 10.1021/acs.biochem.5b00476

URL : https://hal.archives-ouvertes.fr/hal-00109100