Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling - Sorbonne Université Accéder directement au contenu
Article Dans Une Revue Biogeosciences Année : 2017

Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling

Résumé

The temporal evolution of the physical and bio-geochemical structure of an oxygen-depleted anticyclonic modewater eddy is investigated over a 2-month period using high-resolution glider and ship data. A weakly stratified eddy core (squared buoyancy frequency N2 ∼ 0.1 × 10−4 s−2) at shallow depth is identified with a horizontal extent of about 70 km and bounded by maxima in N2. The upper N 2 maximum (3–5 × 10−4 s−2) coincides with the mixed layer base and the lower N2 maximum (0.4 × 10−4 s−2) is found at about 200 m depth in the eddy centre. The eddy core shows a constant slope in temperature/salinity (T /S) characteristic over the 2 months, but an erosion of the core progressively narrows down the T /S range. The eddy minimal oxygen concentrations decreased by about 5 µmol kg−1 in 2 months, confirming earlier estimates of oxygen consumption rates in these eddies. Separating the mesoscale and perturbation flow components reveals oscillating velocity finestructure (∼ 0.1 m s −1) underneath the eddy and at its flanks. The velocity finestrucure is organized in layers that align with layers in properties (salinity, temperature) but mostly cross through surfaces of constant density. The largest magnitude in velocity finestructure is seen between the surface and 140 m just outside the maximum mesoscale flow but also in a layer underneath the eddy centre, between 250 and 450 m. For both regions a cyclonic rotation of the velocity finestructure with depth suggests the vertical propagation of near-inertial wave (NIW) energy. Modification of the planetary vorticity by anticyclonic (eddy core) and cyclonic (eddy periphery) relative vorticity is most likely impacting the NIW energy propagation. Below the low oxygen core salt-finger type double diffusive layers are found that align with the velocity finestructure. Apparent oxygen utilization (AOU) versus dissolved inorganic nitrate (NO3) ratios are about twice as high (16) in the eddy core compared to surrounding waters (8.1). A large NO − 3 deficit of 4 to 6 µmol kg−1 is determined, rendering denitrification an unlikely explanation. Here it is hypothesized that the differences in local recycling of nitrogen and oxygen, as a result of the eddy dynamics, cause the shift in the AOU : NO sup>−3 ratio. High NO3 and low oxygen waters are eroded by mixing from the eddy core and entrain into the mixed layer. The nitrogen is reintroduced into the core by gravitational settling of particulate matter out of the euphotic zone. The low oxygen water equilibrates in the mixed layer by air–sea gas exchange and does not participate in the gravitational sinking. Finally we propose a mesoscale–submesoscale interaction concept where wind energy, mediated via NIWs, drives nutrient supply to the euphotic zone and drives extraordinary blooms in anticyclonic mode-water eddies.
Fichier principal
Vignette du fichier
bg-14-2167-2017.pdf (10.19 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-01526714 , version 1 (23-05-2017)

Licence

Paternité

Identifiants

Citer

Johannes Karstensen, Florian Schütte, Alice Pietri, Gerd Krahmann, Björn Fiedler, et al.. Upwelling and isolation in oxygen-depleted anticyclonic modewater eddies and implications for nitrate cycling. Biogeosciences, 2017, 14 (8), pp.2167-2181. ⟨10.5194/bg-14-2167-2017⟩. ⟨hal-01526714⟩
840 Consultations
135 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More