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Abstract

The propagation of waves in nonlinear acoustic metamaterial (NAM) is fundamentally different from
thatin conventional linear ones. In this article we consider two one-dimensional (1D) NAM systems
featuring respectively a diatomic and a tetratomic meta unit-cell. We investigate the attenuation of
waves, band structures, and bifurcations to demonstrate novel nonlinear effects, which can significantly
expand the bandwidth for elastic wave suppression and cause nonlinear wave phenomena. The
harmonic averaging approach, continuation algorithm, and Lyapunov exponents (LEs) are combined to
study the frequency responses, nonlinear modes, bifurcations of periodic solutions, and chaos. The
nonlinear resonances are studied, and the influence of damping on hyperchaotic attractors is evaluated.
Moreover, a ‘quantum’ behavior is found between the low-energy and high-energy orbits. This work
provides a theoretical base for furthering understandings and applications of NAMs.

1. Introduction

Acoustic metamaterials [ 1-6] (AMs) are artificial media that gain their properties from structure rather than
composition. They generally feature built-in resonators with subwavelength dimensions, rendering the concepts
of effective mass density and effective elastic constants relevant for characterizing them. Because of their ability
to manipulate the propagation of sound, AMs have become a hot topic during the last decade [6]. By now, most
studies [7—12] are dealing with linear AMs (LAMs), which are based on a locally resonant (LR) mechanism [3] to
yield negative indexes, superlensing effects [12], or wave guiding. Different from the Bragg mechanism [13], LR
paves the way to manipulate low-frequency waves with small ‘meta-atoms’ [12]. However, the LR bandgap is
generally narrow [6], and heavy ‘atoms’ are necessary to enlarge this bandgap.

The concept of nonlinear metamaterial was first introduced in electromagnetism to investigate photonic
metamaterials in 2003 [14]. Nonlinear responses can be constructed on purpose, such as tenability,
electromagnetically induced transparency, plasmonics, active media, etc [15, 16]. In contrast, it is only recently
that nonlinear acoustic metamaterials (NAMs) have emerged.

The presence of nonlinear media in linear phononic crystals can be utilized to realize interesting devices, such
asacoustic diodes [17, 18]. Compared with NAMs, studies on one-dimensional (1D) nonlinear periodic structures
[19] (NPSs) have alonger history that can date back to 1955 studies on the Fermi—Pasta—Ulam (FPU) models
[20, 21] that promoted nonlinear physics. These nonlinear periodic chains are suitable for modeling a number of
physical systems arising in different scientific contexts [22, 23]. Based on the FPU model, Nesterenko [24]
experimentally highlighted solitons in the granular crystal (a kind of NPS) interacting in a nonlinear way through
Hertzian contact [25, 26]. Moreover, a bistable lattice (another NPS) was recently studied [27]. Currently, many
new physical properties that are different from linear phononic crystals are found in NPSs, such as unidirectional
transition [27], discrete breathers [23, 28], waves coupling [29], subharmonic frequencies [30, 31], soliton waves
[32, 33], and surface waves [34]. Both simulations [22, 23] and experiments [35, 36] demonstrate that bifurcations

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Model of the diatomic NAM.

in NPSs would be relevant to those properties. Acoustic devices such as diodes [36] and lenses [37] can be built
upon them. The strong NPS has been proved to increase the velocity of sound and therefore the acoustic
impedance [38]. Moreover, the bandgap properties in NPSs attract much attention [39—44]. The perturbation
approach and the harmonic balance method (HBM) are adopted [40—42] to study the amplitude-dependent
dispersions, stop band properties, and wave beaming in granular crystals; and experimental works highlighted the
role played by the critical amplitude in energy transmission [43] and bifurcation-induced bandgap reconfiguration
[44]in NPSs. Actually, the granular crystals are suitable for ultrasonic applications; it is hard to consider them at the
low-frequency regime because of the high contact stiffness they inherently feature.

Because of their promising applications, AMs with both low-frequency and broadband properties attract
much attention. However, the mechanisms for both properties to occur simultaneously are difficult to realize.
LAMs consist of linear ‘meta-atoms’, but when this meta-atom becomes nonlinear in NAMs, wave propagation
properties show different patterns. In our recent works [45, 46], the wave propagation in diatomic and
tetratomic NAMs are analyzed using the homotopy analysis method, and we found that the chaotic bands
resulting from bifurcations can significantly enlarge the width of the wave-suppressing bands. This finding
demonstrates that chaos is a novel and promising mechanism to simultaneously achieve low-frequency and
broadband in both mono-bandgap NAMs and multi-bandgap NAMs; this finding also reiterates still thata
strong nonlinearity is beneficial to expand the bandwidth by several times.

However, there are many phenomena arising in NAMs that have not yet been fully explained nor
demonstrated. For example, why are the responses in the first passband similar to those observed with LAMs?
Under which conditions can the elastic energy propagate in the bandgap? When will the wave be amplified by
chaos? In the tetratomic system, why does the nonlinearity have a larger influence on the nonlinear LR bandgaps
than it has for Bragg gaps? Furthermore, some problems remain unexplored: for example, the influence of
nonlinearity on the structure of bands, the features of chaos and their differences, the jumps, the nonlinear
resonances and their stabilities, and the influence of damping on chaos.

In this paper we attempt to answer these questions with the help of frequency response analysis, the
bifurcation theories, the Lyapunov exponents (LEs), and the fractal dimensions.

2.Models

2.1. Diatomic model
The 1D damped diatomic NAM model is illustrated in figure 1. The nonlinear meta-atom of this periodic model
consists of a linear oscillator # and a damped nonlinear Duffing oscillator 11, with cubic nonlinear stiffness
kiA + kA%, where A denotes the relative displacement, and k; (k,) symbolizes the linear (nonlinear) stiffness.
In addition, a linear viscous damping term ¢ - A is taken into consideration.

Defining x,, and y,, as displacements of the linear and nonlinear oscillators in the nth cell, respectively; the
differential equation for the nth cell reads

{xn = BoXpg1 + X501 — 2x) + 77[(()’,1 — &n) + B ()/n — Xu) + B2 ()’,1 - xn)3] )

= —=C0, = %) = A0, — %) = By — %)’

where the dot denotes the derivation with respect to time ¢. The definitions of the generalized parameters are as
follows: mass ratio n = m,/m, stiffness ratio 3y = ko/m = w2, B = ky/m, = w?, 3, = k,/m,. The generalized
frequencyis 2 = w/w,, and the damping coefficientis ¢ = ¢/m;. The strength factor of nonlinearity is defined
as o = 303,A4%/ 3, where Ay stands for the amplitude of the incident wave 1, = Agsin(wt) at the left end. Itisa
weak nonlinearityif o < 1. The values of the parameters used in this model are as follows: m = 1, m, = 0.5,

Bo = 10, #; = 15m,and 3, = 10°.IfA, = 0.005and o = 0.16, it is moderate nonlinearity. To increase o, one
generally needs to increase the drive because it is difficult to increase k; in the macroscopic mechanical systems.
Just recently, Huang et al [47] used chemical bonding interactions to generate a huge k, on the size scale of

about 1 pym.
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Figure 2. Model of the tetratomic NAM.

Applying the Bloch theorem for periodic structure, the displacement reads u(r + a) = u(r)exp(ika),
where k is the wave vector, and a is the lattice constant. Dispersion solutions are eigen waves in the infinite
metamaterial without external input. We can solve the dispersion relations with the perturbation approach,
HBM, or homotopy analysis method. These approaches are described in [46].

We have considered a diatomic NAM with a finite length: eight unit cells are involved in the model. Actually,
further increasing the number of cells hardly changes the intrinsic characteristics of the NAM but would
decrease the accuracy of the bifurcation diagram. Therefore, there are 16 degrees-of-freedom (DoF) and the state
space has 32 dimensions (32D, nD symbolizes n-dimensional). In practice, applications would imply the
dynamic of waves in a finite system with external excitations. The monochromatic sinusoidal wave u(f) drives
the system from the left end. The right end is free, and the terminal linear oscillator is analyzed.

There is only one LR bandgap in the diatomic model. In practice, besides the LR bandgap, there are different
Bragg bandgaps in metamaterials. The nonlinearity would give rise to different behaviors in these multiple
bandgaps. Though the tri-atomic model presents the case of having a LR bandgap and a Bragg bandgap, here we
discuss a more complex tetratomic model to determine the influences on multiple bandgaps.

2.2. Tetratomic model
The model of the tetratomic NAM is illustrated in figure 2. A ‘molecule’ of this model is composed of three
identical linear ‘atoms’ and one nonlinear ‘atom’. Their parameters are labeled in the figure, where x,,, y,,, z,,, and
r, denote the displacements of corresponding oscillators in the nth cell, respectively. The tetratomic NAM has
more complicated dynamics.

The generalized motion equation of the nth cell can be simplified as

%n = Bo(y, + zn—1 — 2x,) + N[C G — %) + Bi(tn — ) + Bo(tn — x,)°]
3, = Bolxn + 2, — 2y,)

Zy = Bo(Xpp1 + ¥, — 224)

iy = —C(fy — %n) — B — x0) — Bty — x4)°

The definitions of other parameters in equation (2) are identical to those in equation (1).

The algorithms to analyze the bifurcation and characteristics of chaos in the tetratomic model are also identical
to those in the diatomic model. The difference is the chain we considered here has only 4 cells, so the state space is
also 32D. The parameters of the model are as follows: m = 1,m, = 2,9 = 2,3, = 225 = wf, 0, =25= wgr,

By =5 x 10%,and Q = w/wy. wis 3 times larger than w,,, which is similar with the continuous metamaterials that
require soft resonators. A larger but still weak damping ¢ = 0.02 is adopted. Assuming that the driving amplitude is

Ag = 0.01 and the nonlinear strength is o = 0.6, itis a strongly nonlinear system in this case.

(@)

3. Theories
3.1. Method in frequency domain
(1) Some algebraic laws.

The analysis of the nonlinear dynamics of high-dimensional systems generally involves high-order
operations on matrices and vectors. For convenience, let us define at first some algebraic operations.

We define the ‘element product’ of two nD columns vectors X = [x; % - x,]  and y = [ no% yn]T
to be an nD vector z, and the components of which are

z=xoy=[-xiy - ', Le z;=xy. 3)

The element product of two vectors can be abbreviated as xy. Therefore, the notation for the mth power of x is

x™ = [---x/"--]T. It can be easily established that the element product is commutative xy = yx, distributive

(x + y)z = xz + yz,and associative Xyz = zyx.

3
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Similarly, we define the element product of two matrices as being A o B = [a;;b;], where the dot ‘0’ cannot
be omitted. Itis straightforward to show that the element product of two matrices obeys the commutative,
distributive, and associative laws as well. However, the product between a matrix and an element product of two
vectors does generally not observe the associative law, i.e. A(x o y) = (Ax) o y, which could become an issue in
practice. To overcome this obstacle and ensure this operation becomes associative, we set the following
transformation

Axoy) = (Ao[[x]]y, (©))

where the notation [ [x]] stands for the square matrix built upon the vector x, namely

T

With this definition, together with the commutativity, it comes (A o [[x]])y = (A o [[y]])x. Moreover, it can
be easily shown that the partial derivative of the element product is

OA(xoy) _ OA(x™) _
Oy X

These algebraic rules allow for a convenient analysis of the high-dimensional nonlinear equations and lead
to compact formulas.

Ao [[x]], mA o [[x"~"]. )

(2) Frequency responses.

Itis not an easy task to achieve the analytical solutions of equations (1) and (2) for a high-dimensional
system. However, the frequency responses can be approximated with the help of the numerical integral method,
the averaging method, or the HBM. The latter can be implemented to find the approximate steady frequency
responses. To this end, we define the coordinate transformation j = y — x,inequation(1),0r j =1, — x,
in equation (2). With this transformation, the equation of motion for the finite nonlinear metamaterial model
reads

My + Cy + Ky + Ny?® = f cos wt, (6)

where M, G, K, and N are mass, damping, stiffness, and nonlinear coefficient matrices, respectively, of the whole
transformed system; f stands for the node force vector applied on every mass.

Let us assume that the steady response has the form y = a cos wt + b sin wt, where aand b are constant
vectors. The first-order HBM leads to a system of algebraic equations:

{[K — w™]a + wCb + 3N((a2 + ba) /4 = f

[K — w™]b — wCa + 3N((a? 4+ b?)b) /4 =0 2

The solutions of equation (7) would accurately describe the responses Y = +/a? + b? to the driving force.
However, the HBM does not directly allow investigating the stability of solutions. This is the reason why we
adopted the harmonic average approach (HAA) [48, 49] instead, to study the frequency responses. Within this
approach, the solution is assumed to have the following form:

y = u(t)cos 0 4 v(t)sin 0 8)
y = —wu(t)sin 0 + wv(t)cos §’ (
where 6 = wt. The derivatives with respect to time ¢ of the formulain (8) are
y =@+ wv)cos § + (v — wu)sin 0 ©
¥ = (wv — w?u)cos § — (wu + w?v)sin O
Comparing the expressions of ¥ in equations (8) and (9), we obtain
wM(cos 0 + vsin6) = 0. (10)
The further substitution of (8) and (9) into (6) gives another form of the equation of motion:
wM(V cos @ — usin 0) + [K — w?M](ucos § + vsin §) + wC(vcos § — usin 0)
+ N{(@@® — 3uv?d)cos’0 + (v> — 3u?v)sin® @ + 3u?vsin 0 + 3uv?cos §} = fcosd (11)

Then, assuming that u and v are constant, by calculating (11) x siné — (10) x cos f and integrating the
result from 0 to 27, we obtain
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2w = M (K — w?M)v — wCu + 3N((vZ + u?)v) /4]. (12)

Similarly, calculating (11) x cos@ + (10) x sin § and integrating over the interval [0, 27] gives
2wv = —MI[(K — wM)u + wCv + 3N((v? + vd)u) /4 — f]. (13)
The steady solutions correspond to the condition u = v = 0, and their expressions are therefore as follows:

{(K — WMV — wCu + 3N((V2 + ud)v) /4 =0

(K — wM)u + wCv + 3N((v2 + vd)u) /4 = f (14

The amplitude of the responseis Y = /u? + v2.

The derivation of these solutions using HAA turns the steady response problem into an equilibrium problem
of differential equations. Actually, solutions in equations (14) and (7) are equal. However, HAA allows for
analyzing the stability of the solutions of both systems of differential equations (12) and (13) via the Jacobian
matrix. Omitting the terms in 2w = 0 in the left sides of (12) and (13) since they will not influence the properties
of the solutions, the Jacobian matrix J is derived by performing the derivations of (12) and (13) with respect to
the vectors u and v, namely,

Iz[Ml 0 ][ —wC + 3N o [[uv]] /2 K—w2M+3No[[3v2+u2]]/4]

_ (15)
0 —M!'||K— wM + 3No[[3u®+Vv?]/4 wC + 3N o [[uv]]/2

Therefore, with the solutions coming from equation (15), their stability can be determined: if the real part of
an eigenvalue of ] is positive, the corresponding steady solution is unstable; if a real eigenvalue goes from
negative to positive, saddle-node (SN) bifurcation occurs, and if a pair of conjugate complex eigenvalues crosses
the imaginary axis, Hopf bifurcation appears [50]. The succinct expressions derived above are universal for
NAMs and differential equations with cubic nonlinearity. Let us note that if C = 0, this formula reveals that v
mustreadv = 0.

Continuation algorithm is further adopted to solve equation (14). Within this frame, the Newton method
(MATLARB fsolve) is used to find the solutions. The concept of continuation consists in deriving the solution
(Au» x,,) atstep n from the solution (A, 1, x, ;) atstep n — 1; here, \is the bifurcation parameter, and xis a
vector of solution. In this paper, we propose a ‘perturbation continuation concept’ in which A is specified and x
is unknown. If one has found the solution (A, _;, x,,_;) with an initial guess X,,_;, the next solution (\,, x,) is
derived from a perturbed initial guess X,, = (1 4 €)x,,_1, where € is the perturbation parameter. This concept
has been very efficient for artificially finding and starting new branches at a specified point.

3.2. Bifurcation analysis method in time domain
From here on, the periodic solutions will be mostly derived using time domain methods, which are parts of
software such as AUTO [51]. Within this kind of approach, integrations of equations of motion are made in the
state space. Furthermore, the method deriving LEs [52, 53] is also based on numerical integrations.

The incident elastic wave transforms the model in a non-autonomous system. However, when calculating
the spectra of LEs and bifurcation diagrams, one must transform the non-autonomous system to an
autonomous one. To calculate the former, the input wave is expressed as

ug=Agsinf, O0=w, 00)=0 (16)

i.e. it becomes a boundary value problem. Therefore, it becomes a 33D system in this situation.
When calculating the bifurcation diagrams, a differential system is added.

{¢=¢+ww—¢(¢2+¢2)

. (17)
P =—wd+ ¢ — (P> + ¢?)

This system has a unique asymptotically stable solution, ¢ = sin wt, ¢ = cos wt. The boundary value ata
specified time fyis defined as ¢, = sin wty, ¢, = cos wty. Therefore, ug = Ay¢ and the whole system
becomes 34D.

We used the program AUTO [51] to analyze the bifurcations of periodic solutions. AUTO is based on a
Newton iterative scheme to find the solutions. The continuation method is then used to find the branches of
solutions. The bifurcations and stabilities of periodic solutions are identified by Floquet multipliers p;. Let us
recall here that, for a continuous differential system, there are three types of codimension-1 bifurcations: SN,
period-doubling (PD), and torus (TR) bifurcations [54]. The bifurcation associated with the appearance of
i = 1(u; = —1)is called an SN (PD) bifurcation; the bifurcation corresponding to the presence of conjugate
multipliers p; , = exp(£ify), 0 < 6, < m,1s called a TR bifurcation. An invariant TR is a quasiperiodic
solution. Both PD bifurcations and breakdowns of invariant tori may induce chaos [50]. At present, most studies

5
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on the bifurcation are focusing on the low-dimensional systems. In our 34D model, there are multiple pairs of
conjugate multipliers.

Moreover, the QR decomposition algorithm proposed by Wolf et al [52] is adopted to compute the spectra of
LEs of the 33D system. There are 33 LEs: A}, A,,... A33 (in descending order). \; is named the largest LE (LLE). All
non-autonomous systems have at least one zero LE that corresponds to the t-component. Therefore, if A\; = 0,
we discard itand make A, * = A, | bethe new spectrum. If A; > 0, the motion is Lyapunov chaotic, and if there
are more than two positive )\;, the motion is described as Lyapunov hyperchaotic.

Let the quantity s, = » - \;" be the sum of all positive LEs. The strength of chaos is determined by the
average ratio of the exponential divergence of neighbor orbits in a chaotic attractor. Therefore, s, may be used to
describe the strength of chaos, and the larger s, the stronger the chaos. Actually, noting thatalarger A,
corresponds to a larger s, it can be more conveniently used to characterize the chaos. Accordingly, if |7 — 0, it
is weak chaos and would behave as a quasiperiodic motion.

Finally, the Lyapunov dimension d; p, is defined as djp = j — Zf: . Ai/Aj+1, where jis the maximum value

of i that makes Z A > 0,1ie. Zf:l A >0, Zf;l A; < 0.For ahigh-dimensional system (>2D), d; p can
accurately describe the fractal nature of the chaotic attractor. For a chaotic attractor, 0 < dip < Ny, where Ny is
the dimension of the system. For periodic and quasiperiodic motions, d;, = 0. A larger d; p manifests a more
complex chaos.

4. Properties of wave propagation in NAM models

4.1. Diatomic model

Bandgap properties of the diatomic NAM model have been laid out in [45]. It is shown that for this system, the
generalized frequency range of the LR bandgap is {2 € [1.088,1.5], and the cutoff frequency of the passband is
Q. = 2.251. The transmission coefficient is defined as Ty = A,/ Ag, Wwhere A .« denotes the maximum
amplitude of the output wave, i.e. the maximum amplitude of the last linear oscillator in the chain. A«
represents the extreme condition in the long-term chaotic responses. T can be derived via three different
approaches as shown in figure 3. The hardened nonlinear stiffness leads the lower bound frequency of the LR
bandgap to shift upward. On the other hand, when the driving amplitude is set to A, = 0.005, the bandgap
calculated by the homotopy analysis method is 2 € [1.2,1.758] and ). = 2.277, as shown in figure 3(a) [45].

Actually, the passbands of the finite LAM are composed of discrete resonances that become denser when
increasing the periodic numbers. As shown in figures 3(a) and (b), the appearance of nonlinearities significantly
reduces and even suppresses resonances. However, there are some differences between the numerical integral
results and HAA results, especially in the second passband (i.e. the optical band). There are two reasons for this:
(1) there is an intrinsic randomness in the chaotic responses, so A,,,,, manifests the extreme case, but this does
not mean that the system gets a steady amplitude A,,,,; and (2) the solution of HAA is an approximately averaged
result at a specified frequency, and a more accurate result should require high-order harmonic components.
Despite all this, HAA well depicts the nonlinear responses as well as the role played by nonlinearities.

Different from the linear resonances with infinite amplitudes, the nonlinear modes have finite phase
volumes so that the amplitudes of the 16 resonances remain bound [45]. Increasing the amplitude reduces the
wave transmissibility; meanwhile, the nonlinear upshot of suppressing resonances extends to the first passband
(i.e. the acoustic band). This result is further demonstrated by numerical integrations.

Effects on the responses of a weak damping are depicted in figure 3(b). A weak damping only a little
attenuates linear resonances. Further comparison shows that it also has only little impact on the amplitudes in
NAMs. As shown in figures 3(a) and (b), the behaviors are complex near the resonances of the NAM, especially
when the nonlinearity is strong (Ay = 0.005), leading to the occurrence of jumps. In figure 3(b), only one
solution (obtained from zero initial value) is shown for a specified frequency. To understand the phenomena
near the resonances, let us take the responses in the interval 2 € [1.65, 2.1] as an example. The perturbation
continuation is combined with the optimized Newton method to find multiple solutions in this frequency range,
asillustrated in figures 3(c) and (d).

When the nonlinearity is weak (A, = 0.001), curves of frequency responses of the hardened NAM bends
toward the high-frequency region, as what happens in a single DoF nonlinear system [55]. However, both
branch-1 and branch-2 become unstable near resonances then. The solution is stable along branch-3, and a
tangential bifurcation (the SN bifurcation) connects branch-2 and branch-3. When the driving amplitude
further increases to Ap = 0.005, multiple complex branches bending to the right are found, and all these
solutions are unstable. The low-amplitude parts of these branches are discrete, but in the high-amplitude region,
asaresult of the strong nonlinearity and dense resonances, these branches interweave or converge into a peak.
Moreover, the transmission peaks for A, = 0.005 are much lower than those obtained with A, = 0.001. These
results illustrate the fact that, near a resonance, a high-dimensional NAM has a behavior different from that ofa
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Figure 4. Influence of damping on the LLEs (2 = 0.678).

single DoF or even of a 2DoF system [55], especially for strongly nonlinear ones. For both weak and strongly
nonlinear AMs, although it is difficult to determine whether the amplitude may generate a ‘jump’ at the
catastrophe frequency, the broadband unstable solutions provide an opportunity for the chaos to appear.

In contrast to the steady amplitude, the damping has a significant impact on the characteristics of the chaotic
attractors. As shown in figure 4, in the chaotic region the LLE remarkably decreases upon damping as weak as
¢ = 0.01. Therefore, a strong damping effect could allow a chaotic solution to turn into a periodic solution.
Hereafter, we consider a weak damping ¢ = 0.01 in the diatomic system.

We have chosen three illustrative frequencies {2 = 0.678, 1.124, and 2.2, whose locations are labeled in
figure 3(a). Bifurcation diagrams and chaotic characteristics are illustrated in figure 5 for each of these
frequencies.

For the conservative 34D system, there are dense TR points along the branches of periodic solutions because
of the multiple pairs of conjugate multipliers, which indicates that there are extensive quasiperiodic solutions in
the system. The damping does not alter the branches and stabilities of periodic solutions in the bifurcation
diagram because the linear damping (x does not change the properties of the equilibriums in the time-domain
algorithm (the Jacobian matrix from state space). However, phase volumes of the damped systems shrink in the
long-term responses, which results in the Floquet multipliers on the unit circle entering the circle. Therefore, the
damping ¢ = 0.01 reduces the number of TR points along the branches, and the PD points found in the
conservative system disappear. In some frequency range, the TR point disappears too, as illustrated by
figure 5(c). Results indicate that the damping reduces the number of quasi-periodic solutions in the system.
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the displacement of the eighth linear oscillator away from the excitation.

The unstable periodic solution is an essential condition for the chaos to appear. The bifurcation diagram,
mean amplitude that directly results from numerical integration, LEs, and dy p in figure 5 are well consistent with
each other.

In the case of 2 = 0.678, the first unstable solution appears at A, = 1.867 x 10> marked by the vertical
black line in figure 5(a). Within the subsequent domain, the stable and unstable periodic solutions appear
alternately. When Ay > 6.686 x 107, the periodic solution enters a constantly unstable region, in which
multiple branches are generated with many TR points. The terminal points of the new branches are SN points. In
theinterval 1 x 107> < Ay < 1.867 x 107>, \|” — 0and therefore the response is close to the quasiperiodic
responses. Both behaviors of LEs and dy , attest that the periodic motion turns into chaos when the driving
amplitude continues to increase. Actually, both A" and d; ;, tend to increase as A, increases, meaning that the
weak chaos becomes a strong chaos. However, LEs and d; j, have local fluctuations. For the amplitude at which
chaos appears, only one LE is positive, but there are quickly more than two positive LEs, i.e. hyperchaos occurs.
Therefore, for the 33D NAM model, there is a general rule that the system is hyperchaotic when chaos occurs.
Moreover, the variation laws of d; p are identical with A} in the chaotic domain, and when strong chaos occurs
dip — Ny = 33.

Combing the bifurcation diagram and LE spectrum, it is known that chaos at TR points would be induced by
the breakdowns of invariant tori. A rigorous demonstration of this mechanism is based on the Kolmogorov-
Arnold-Moser (KAM) theorem [50]. Such a demonstration falls out of the scope of this article, which rather
focuses on the influence of chaos on the responses. At other unstable points, the chaos arises from PD
bifurcations. The waterfall plot of power spectra illustrates this process (figure 6). When Ay — 0, we are dealing
with a 1:1 resonance. In this situation, the energy gets localized at the driving frequency 2.. Further increasing A,
leads to odd harmonic waves 3 {2, and then 5 2. to appear; thus, the propagating waves become quasiperiodic.
At the critical amplitude A, the propagating wave cascades into chaos. Ao has the same behavior as LEs. In the
route toward chaos, energy localization switches to energy dispersion, and therefore the energy is pumped [56]
and spread within a broad high-frequency passband and even within the stop bands.

If the NAM is excited by the wave at the bottom of the LR bandgap, the periodic solution exhibits multiple
folded branches that induce multiple jumps, as shown by the case 2 = 1.124 in figure 5(b). There are still some
discrete TR points on the unstable branches. The SN bifurcation points act as the terminals of branches. The first
SN bifurcation occurs at Ay = 3.807 x 10 °.When A, < 3.807 x 10, the periodic solutions remain stable
and their amplitude tends to zero; both LEs and dy p reveal that the long-term motion of the system is periodic.
The amplitudes issued from numerical integration also approaches zero. This result means that the LR bandgap
remains a complete stop band and that the bandgap is linearly stable in this interval. After this SN point, the
periodic solutions become constantly unstable and a jump occurs. Both the bifurcation diagram and the mean
amplitude show that the motion jumps to a high-energy chaotic branch at this SN point. Then, as illustrated
both by LEs and by dj p, the propagation through the NAM is along a chaotic way. Meanwhile, the hardened
nonlinear stiffness shifts up the lower boundary of the LR bandgap.
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Figure 7. Sketch plot of quantum states in NAMs. The solid circles represent the excited quantum states and the dashed curves denote
the fluctuations in the neighborhood of these states. The shade circle and the black point in the center represent the bound quantum
state.

Along this chaotic branch, the mean amplitude has almost constant value with LEs and d;  fluctuating in a
neighborhood of the corresponding constants. Another SN bifurcation point appears at Ay = 7.676 x 10>,
where the motion jumps to a higher chaotic orbit. However, this point does not fit well the long-term motion, as
attested by the jumps of the mean amplitude to a higher-energy chaotic orbitat A; = 0.013. Like the mean
amplitude, LEs and d; , remain almost constant. These results show that the system has multiple approximately
constant states in this frequency range, and that only discrete values of these states can be achieved: the system
behaves as a ‘quantum object’, as sketched in figure 7. Therefore, when manipulating waves in bandgaps via
amplitudes, the system can switch suddenly between the stop state (i.e. the bound state) and the propagation
states (i.e. the excited quantum states). These characteristics may be helpful to realize acoustic devices with small
dimensions, such as acoustic diodes or switches. As shown in figure 5(b), it should be noted that, at some value of
Ay, the amplitude may jump from the highest obit (the third one) to alower one. However, these jumps are
unstable and a small perturbation may stimulate a jump back to the highest orbit.

The case of 2 = 2.2 in figure 5(¢) is similar to the case of 2 = 1.124 except that the motion turns from
periodic into chaotic for only one jump at the first unstable periodic solution. The trend shown in the
bifurcation diagram agrees well with the mean amplitude variations. After the jump, the amplitude first slowly
increases and then remains constant as do both LEs and dy p. This suggests a mechanism to suppress elastic waves
in strongly NAMs: strengthening the nonlinearity decreases the wave transmissibility.

More bifurcation diagrams at other frequencies are depicted in figure 8. According to the statements above,
it can be anticipated that the chaos would occur at the first unstable periodic solutions. In the examined
amplitude range, neither bifurcations nor unstable solutions occur on the low-frequency periodic orbits
(© < 0.3), and the amplitude linearly increases with driving amplitude, i.e. the transmissibility is constant and
the linear regime is preserved. At higher frequency the motion turns to weak chaos that behaves asa
quasiperiodic wave, which explains why the responses of NAMs in the low-frequency parts of the acoustic
branch are similar to those of LAMs. The transmission shows this feature (see above and figure 3). In the acoustic
branch, strong chaos can be observed at frequencies near the LR bandgap.

Bifurcation diagrams in the optical branch have similar characteristics. The amplitudes increase along an
orbit where both periodic and chaotic behaviors may occur. However, when the motions jump to a higher orbit
ata SN point, the amplitudes of the periodic solutions do not increase with the input wave. Instead, they remain
constant or even decrease.
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Figure 9. Sketch of the band structure of the diatomic NAM model. The green lines represent the transmission of the NAM.

In the bandgap, the periodic orbits at {2 = 1.25 feature folding and multiple jumps, as is the case for
Q) = 1.124. However, alarger critical amplitude is required to force the wave into chaos. This is because the
influences of the nonlinearity on the bandgap spread from low to high frequencies. This is further demonstrated
by the bifurcation diagram at {2 = 1.4: although there are unstable solutions, the amplitudes are so small that
only subharmonic and superharmonic waves can propagate, and this frequency interval keeps its ability to
reflect incident waves. In the high-frequency stop band, as shown by the bifurcation diagram at 2 = 2.4, much
stronger nonlinearity is needed to generate unstable solutions.

Based on these results, the band structure of a strongly diatomic NAM is sketched in figure 9.

4.2. Tetratomic model
The dispersion relations of this model were elaborated in [46]. In the linear regime, there are three bandgaps for
this metamaterial: an LR bandgap and two Bragg (BG) bandgaps. The frequency ranges of the linear bandgaps
are as follows: LR, [0.3065, 0.4195]; BG1, [1, 1.078]; and BG2, [1.732, 1.777]. It is shown in [46] that, in the
nonlinear regime, BG1 and BG2 are not altered if the amplitude Ay = 0.01, but the LR bandgap is shifted to
[0.42,0.5807]. The cutoff frequency of the passband is 2 = 2.

We have considered a weak damping { = 0.02 in the tetratomic NAM comprised of four cells. T,y computed
with different algorithms, and the transfer function H(w) upon sine-sweep excitations [46], are shown in
figure 10. For the LAM model, thanks to its strong sensibility to localization properties, only the LR bandgap is
clearly evidenced by the four-cell chain. In contrast, more cells are needed for the BG bandgaps to open up. With
regard to the nonlinear model, this allows for a fair position of the BG bandgaps. As is the case with the diatomic
model, the tetratomic NAM also proves that broadband elastic waves are suppressed. The results from HAA
establish that a strong nonlinearity causes the wave transmissibility to decrease. However, the elastic waves can
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still propagate in the nonlinear LR bandgap. The continuation method emphasizes the nonlinear modes that
compose the unstable peaks and multiple branches. Overall, these behaviors are similar to that of the diatomic
NAM. As shown in figure 10(c), the first resonance in the case Ay = 0.01 germinates multiple bifurcations that
start unstable branches, which is different from other unstable nonlinear resonant peaks with only one branch.
Moreover, stable and unstable solutions appear alternatively along all the curves in this case. However, in the
amplitude range A, < 0.01, the nonlinear modes composing of complex unstable branches are not found.

With the discrete models, in conjunction with the results of the diatomic NAM, we can conclude that the
hardened NAM actually influences all passbands higher than the nonlinear LR bandgap, including a small region
below and near this bandgap.

We have further studied bifurcation and chaos to better understand the wave propagation properties in the
system. To this end, we have investigated the wave propagation in the passbands. We have considered three
frequencies €2 = 0.2463,0.672,and 1.42,located in the first, second, and third passbands, respectively, (see
figure 10). The properties of the fourth passband are similar to those of the third passband. The bifurcation
diagrams, mean amplitudes, LEs, and LDs are shown in figures 11(a)—(c). Comparing these results, it can be seen
that increasing the driving amplitude stimulates the motion into chaos. Moreover, there are differences between
the chaotic critical points in bifurcation diagrams and LEs, which are caused by (1) the damping that greatly
influences the long-term motion, and (2) the different principles implemented by the two algorithms that lead to
different critical points.

In the case of 2 = 0.2463, the bifurcation diagram is consistent with the mean amplitude: between
0.006 < Ay < 0.009 the general chaos (only one positive LE) arises, but the motion turns into hyperchaos when
Agincreases further. However, /\fL < 0.03andd;p < 33, and thus the wave undergoes a weak hyperchaos
whose behavior is similar to the quasiperiodic one. Therefore, it can be deduced that the low-frequency waves in
the first passband are quasiperiodic or weakly chaotic.

In fact, the propagation of the waves in the subsequent three passbands are similar except for some local
differences. Along with the increasing driving amplitude, the variation law of the wave state in whole is
‘periodic — weakly chaotic — strongly hyperchaotic’. However, in these three passbands, the LLEs A, for the
strong chaos are 10 times larger than those calculated for the weak chaos in the first passband, and d; , — 33.
The mechanisms that suppress resonances in the passbands are identical to those observed with the diatomic
NAM. Chaos is induced by PD bifurcation, and the wave amplitudes along the chaotic branches slowly increase,
remain constant, or even decrease with Ay. Moreover, as illustrated in figures 11(b) and (c), periodic windows in
the chaotic region are observed, which means that LEs and LDs do not monotonously vary.

Closeto 2 = 1.42, T4 is equal to the transmission for the corresponding LAM. In fact, there are other
specific frequency domains. Comparison with the results obtained with the ten-cell model [46] indicates that
these domains relate to the density of the linear modes that is determined by the length of the chain. In the four-
cell model, this domain is a non-resonant region. The periodic solutions for {2 = 1.42 have two branches: a low-
energy one and a high-energy one. Along the low-energy branch, there is an unstable domain in between two
stable domains. If the motion had been periodic for Ay < 0.01, the mean displacement of the last oscillator
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should have been linear against A,. Instead, both the mean amplitude and LEs indicate that the system enters a
weak chaos regime in the range 0.006 < A, < 0.009. However, this weakly chaotic motion is different from that
described above. Here, the oscillators jump to a high-energy unstable orbit. In the subsequent range

0.009 < Ay < 0.011, the system jumps back to the low-energy weakly chaotic state, featuring quasiperiodic
behavior. Therefore, when the amplitude is A, = 0.01, the linear and nonlinear transmissibilities near {2 = 1.42
are equal. Further increasing the driving amplitude makes the system to jump to the strongly hyperchaotic state,
featuring constant amplitude and high energy, except in a narrow window around Aq = 0.014 where the motion
becomes periodic. However, in this small interval, amplitudes still are in the high-energy orbit.

The jumps between low-energy and high-energy orbits explains why the waves are amplified under non-
resonant conditions. This amplification scheme can be applied to design a broadband wave amplifier. For the
finite LAM, the waves can be amplified at the discrete resonant frequencies in the passbands. In contrast, a four-
cell NAM can allow for a homogeneous amplification in a broad passband.

Another question we have addressed is why the nonlinear LR bandgap is less efficient than other bandgaps to
suppress the elastic waves in NAM. To answer this question, we have set frequenciesto {2 = 0.35and Q2 = 1. As
shown in figure 12, as for the diatomic model, there are multiple bifurcations and branches. However, stable
periodic solutions disappear for an amplitude as low as A; = 0.003 because of the strong nonlinearity; therefore,
this bandgap closes at a certain driving amplitude and is replaced by a high-energy chaotic orbit, as is the case in
the diatomic model. In contrast, for the BG bandgaps away from this nonlinear bandgap, much higher
amplitudes are needed to obtain the unstable periodic solution. In the example illustrated in figure 11(d), when
Q2 = 1in the first BG bandgap, a periodic motion is observed and the chaos is weak (\{” < 0.04) if the amplitude
Ap < 0.01, as for the quasi-linear state in the interval Ay = 0.01 ~ 0.015.Itisonlywhen Ay > 0.015 that the
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Figure 13. Sketch of the band structure of the tetratomic NAM model. The green lines represent the transmission of the strongly
nonlinear AM model. The dashed blue lines correspond to the much stronger nonlinearity.

motion is attracted to the high-energy hyperchaotic state. Combing the mechanisms in the diatomic model, one
concludes that the nonlinear LR bandgap has weaker ability to reflect incident waves when it jumps to high-
energy orbits.

Based on the results from this paper and [46], and combing them with some predications, we sketch the band
structure of the tetratomic NAM in figure 13. For the LAM here, the low-frequency LR bandgap is narrow. The
strong nonlinearity shifts this nonlinear LR upward; meanwhile, the responses in this gap jumps to the excited
state. Below the nonlinear gap, the band structures are similar to the diatomic ones. However, the second and the
third linear resonant passbands are replaced by strong hyperchaotic passbands with lower transmissions. When
the nonlinearity is weak, BG1, BG2, and the fourth resonant passband would remain in the linear or quasi-linear
state; however, when the nonlinearity becomes much stronger, BG1 and BG2 would also obtain multi-state
behaviors, while the fourth passband becomes a chaotic passband and its upper boundary spreads to the high-
frequency stop band. However, a detailed statement about the band structures should be based on the structure,
frequency, and amplitude.

5. Conclusions

The propagation of waves in NAMs is fundamentally different from that in conventional LAMs. However, these
features are still not fully understood. In this work we investigate the elastic wave propagations in the 1D
diatomic and tetratomic NAM models. We further demonstrate that nonlinear effects can greatly suppress
elastic waves in a broad band. This band consists of bandgaps and chaotic passbands. The nonlinear wave
behaviors, band structures, bifurcations, and chaos are studied to demonstrate the novel mechanisms that can
manipulate wave propagations.

HAA combined with the continuation are employed to calculate the frequency responses and nonlinear
modes. Bifurcations and chaos are analyzed using both the continuation algorithm and the spectra of LEs (and
d; p). Our results show that the nonlinear resonances feature multiple branches with unstable peaks. We have
further demonstrated that the PD process leads the motion from being periodic to chaotic, and the damping has
asignificant influence on the characteristics of chaotic attractors. Moreover, due to the dispersion process in the
chaotic regime, the localized energy spreads in the broadband high-frequency passbands and even in the stop
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bands. The trend for the positive LEs and d p is to increase with amplitude so that the weak chaos (or
hyperchaos) turns into strong hyperchaos.

Band structures of both diatomic and tetratomic NAMs are studied. The bifurcations and unstable solutions
do not occur on the low-frequency periodic orbits, and thus the responses in these regions are similar to those of
LAMs. Actually, the hardened NAM influences all passbands that are higher than the nonlinear LR bandgap,
including a small region below this bandgap.

In the nonlinear LR bandgap, we observed ‘quantum’ behaviors because of jumping bifurcations between
low-energy and high-energy orbits, whose propagation states (excited states) and stop states (bound states) have
discrete characteristics and switch suddenly. This behavior also explained why the nonlinear LR has a weaker
ability to reflect incident waves. Moreover, jumps in passbands would amplify non-resonant waves.

This work provides a theoretical base for further understanding and application of NAMs.
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