S. Schiaffino and C. Reggiani, Fiber Types in Mammalian Skeletal Muscles, Physiological Reviews, vol.91, issue.4, pp.1447-1531, 2011.
DOI : 10.1152/physrev.00031.2010

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.657.1132

T. Van-wessel, A. De-haan, W. J. Van-der-laarse, and R. T. Jaspers, The muscle fiber type???fiber size paradox: hypertrophy or oxidative metabolism?, European Journal of Applied Physiology, vol.296, issue.4, pp.665-694, 2010.
DOI : 10.1007/s00421-010-1545-0

D. J. Glass, Molecular mechanisms modulating muscle mass. Tr, Mol. Med, vol.9, pp.344-35000138, 2003.
DOI : 10.1016/s1471-4914(03)00138-2

G. Goldspink, Mechanical Signals, IGF-I Gene Splicing, and Muscle Adaptation, Physiology, vol.20, issue.4, pp.232-238, 2005.
DOI : 10.1152/physiol.00004.2005

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1027.9055

S. J. Lee and A. Mcpherron, Regulation of myostatin activity and muscle growth, Proc. Natl. Acad. Sci. USA 98, pp.9306-9311151270098, 2001.
DOI : 10.1006/excr.1997.3575

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC55416

T. A. Zimmers, Induction of Cachexia in Mice by Systemically Administered Myostatin, Science, vol.296, issue.5572, pp.1486-148810, 2002.
DOI : 10.1126/science.1069525

L. Bihan and M. C. , In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts, Journal of Proteomics, vol.77, pp.344-356008, 2012.
DOI : 10.1016/j.jprot.2012.09.008

S. Duguez, Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion, Cellular and Molecular Life Sciences, vol.80, issue.6, pp.2159-217410, 2013.
DOI : 10.1007/s00018-012-1248-2

U. Gurriarán-rodríguez, The Obestatin/GPR39 System Is Up-regulated by Muscle Injury and Functions as an Autocrine Regenerative System, Journal of Biological Chemistry, vol.287, issue.45, pp.38379-3838910, 2012.
DOI : 10.1074/jbc.M112.374926

U. Gurriarán-rodríguez, Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling, Molecular Therapy, vol.23, issue.6, pp.1003-102140, 2015.
DOI : 10.1038/mt.2015.40

I. Santos-zas, ??-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells, Cellular and Molecular Life Sciences, vol.52, issue.3, pp.617-635, 1994.
DOI : 10.1007/s00018-015-1994-z

J. V. Zhang, Obestatin, a Peptide Encoded by the Ghrelin Gene, Opposes Ghrelin's Effects on Food Intake, Science, vol.310, issue.5750, pp.996-9991117255, 2005.
DOI : 10.1126/science.1117255

N. Chartrel, Comment on "Obestatin, a Peptide Encoded by the Ghrelin Gene, Opposes Ghrelin's Effects on Food Intake", Science, vol.315, issue.5813, pp.766-766, 2007.
DOI : 10.1126/science.1135047

B. Holst, GPR39 Signaling Is Stimulated by Zinc Ions But Not by Obestatin, Endocrinology, vol.148, issue.1, pp.13-2010, 2007.
DOI : 10.1210/en.2006-0933

G. Gourcerol, Lack of interaction between peripheral injection of CCK and obestatin in the regulation of gastric satiety signaling in rodents, Peptides, vol.27, issue.11, pp.2811-2819012, 2006.
DOI : 10.1016/j.peptides.2006.07.012

L. M. Seoane, O. Al-massadi, Y. Pazos, U. Pagotto, and F. Casanueva, Central obestatin administration does not modify either spontaneous or ghrelin-induced food intake in rats, Journal of Endocrinological Investigation, vol.75, issue.8, pp.13-1510, 2006.
DOI : 10.1007/BF03344174

R. Nogueiras, Effects of Obestatin on Energy Balance and Growth Hormone Secretion in Rodents, Endocrinology, vol.148, issue.1, pp.212-2162006, 2007.
DOI : 10.1210/en.2006-0915

D. Yamamoto, Neither intravenous nor intracerebroventricular administration of obestatin affects the secretion of GH, PRL, TSH and ACTH in rats, Regulatory Peptides, vol.138, issue.2-3, pp.141-144, 2007.
DOI : 10.1016/j.regpep.2006.09.001

P. Zizzari, R. Longchamps, J. Epelbaum, and M. T. Bluet-pajot, Obestatin Partially Affects Ghrelin Stimulation of Food Intake and Growth Hormone Secretion in Rodents, Endocrinology, vol.148, issue.4, pp.1648-1653, 2007.
DOI : 10.1210/en.2006-1231

URL : https://hal.archives-ouvertes.fr/inserm-00122945

D. Spiegeleer, B. Vergote, V. Pezeshki, A. Peremans, K. Burvenich et al., Impurity profiling quality control testing of synthetic peptides using liquid chromatography-photodiode array-fluorescence and liquid chromatography-electrospray ionization-mass spectrometry: The obestatin case, Analytical Biochemistry, vol.376, issue.2, pp.229-234014, 2008.
DOI : 10.1016/j.ab.2008.02.014

D. Spiegeleer and B. , In vitro metabolic stability of iodinated obestatin peptides, Peptides, vol.33, issue.2, pp.272-278, 2012.
DOI : 10.1016/j.peptides.2011.12.010

J. V. Zhang, Obestatin Induction of Early-Response Gene Expression in Gastrointestinal and Adipose Tissues and the Mediatory Role of G Protein-Coupled Receptor, GPR39, Molecular Endocrinology, vol.22, issue.6, pp.1464-1475, 2008.
DOI : 10.1210/me.2007-0569

B. O. Alén, The NMR Structure of Human Obestatin in Membrane-Like Environments: Insights into the Structure-Bioactivity Relationship of Obestatin, PLoS ONE, vol.7, issue.10, 2012.
DOI : 10.1371/journal.pone.0045434.s012

L. Trovato, Obestatin: Is It Really Doing Something?, Front. Horm. Res, vol.42, pp.175-18510, 2014.
DOI : 10.1159/000358346

U. Gurriarán-rodríguez, Obestatin as a regulator of adipocyte metabolism and adipogenesis, Journal of Cellular and Molecular Medicine, vol.57, issue.9, 1927.
DOI : 10.1111/j.1582-4934.2010.01192.x

R. Granata, Obestatin Promotes Survival of Pancreatic ??-Cells and Human Islets and Induces Expression of Genes Involved in the Regulation of ??-Cell Mass and Function, Diabetes, vol.57, issue.4, pp.967-799, 2008.
DOI : 10.2337/db07-1104

C. J. Alvarez, Obestatin stimulates Akt signalling in gastric cancer cells through ??-arrestin-mediated epidermal growth factor receptor transactivation, Endocrine Related Cancer, vol.16, issue.2, pp.599-61110, 2009.
DOI : 10.1677/ERC-08-0192

U. Gurriarán-rodríguez, Preproghrelin expression is a key target for insulin action on adipogenesis, Journal of Endocrinology, vol.210, issue.2, pp.1-710, 2011.
DOI : 10.1530/JOE-11-0233

L. Cohen, I. Sekler, and M. Hershfinkel, The zinc sensing receptor, ZnR/GPR39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon, Cell Death and Disease, vol.5, issue.6, 1307.
DOI : 10.1016/S0887-2333(02)00020-6

L. Cohen, H. Azriel-tamir, N. Arotsker, I. Sekler, and M. Hershfinkel, Zinc Sensing Receptor Signaling, Mediated by GPR39, Reduces Butyrate-Induced Cell Death in HT29 Colonocytes via Upregulation of Clusterin, PLoS ONE, vol.60, issue.4, 2012.
DOI : 10.1371/journal.pone.0035482.g007

H. Asraf, The ZnR/GPR39 Interacts With the CaSR to Enhance Signaling in Prostate and Salivary Epithelia, Journal of Cellular Physiology, vol.310, issue.7, pp.868-87710, 2014.
DOI : 10.1002/jcp.24514

M. Provinciali, E. Pierpaoli, B. Bartozzi, and G. Bernardini, Zinc Induces Apoptosis of Human Melanoma Cells, Increasing Reactive Oxygen Species, p53 and FAS Ligand, Anticancer Res, vol.35, pp.5309-5316, 2015.

Y. Wang, S. Zhang, and S. J. Li, Zn2+ induces apoptosis in human highly metastatic SHG-44 glioma cells, through inhibiting activity of the voltage-gated proton channel Hv1, Biochemical and Biophysical Research Communications, vol.438, issue.2, pp.312-317067, 2013.
DOI : 10.1016/j.bbrc.2013.07.067

S. H. Hong, Induction of Apoptosis of Bladder Cancer Cells by Zinc-Citrate Compound, Korean Journal of Urology, vol.53, issue.11, pp.800-806, 2012.
DOI : 10.4111/kju.2012.53.11.800

S. H. Hong, Antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer, Chinese Journal of Cancer Research, vol.24, issue.2, pp.124-12910, 2012.
DOI : 10.1007/s11670-012-0124-9

M. Provinciali, Reactive oxygen species modulate Zn2+-induced apoptosis in cancer cells, Free Radical Biology and Medicine, vol.32, issue.5, pp.431-44510, 2002.
DOI : 10.1016/S0891-5849(01)00830-9

W. Wu, L. M. Graves, G. N. Gill, S. J. Parsons, and J. M. Samet, Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation, Journal of Biological Chemistry, vol.277, issue.27, pp.24252-24257, 2002.
DOI : 10.1074/jbc.M200437200

J. M. Samet, B. J. Dewar, W. Wu, and L. M. Graves, Mechanisms of Zn2+-induced signal initiation through the epidermal growth factor receptor, Toxicology and Applied Pharmacology, vol.191, issue.1, pp.86-9310, 2003.
DOI : 10.1016/S0041-008X(03)00219-9

W. Wu, p38 and EGF receptor kinase-mediated activation of the phosphatidylinositol 3-kinase/Akt pathway is required for Zn2+-induced cyclooxygenase-2 expression, AJP: Lung Cellular and Molecular Physiology, vol.289, issue.5, pp.883-889, 2005.
DOI : 10.1152/ajplung.00197.2005

N. D. Holliday, B. Holst, E. A. Rodionova, T. W. Schwartz, and H. M. Cox, Importance of Constitutive Activity and Arrestin-Independent Mechanisms for Intracellular Trafficking of the Ghrelin Receptor, Molecular Endocrinology, vol.21, issue.12, pp.3100-3112102007, 1210.
DOI : 10.1210/me.2007-0254

J. J. Hwang, M. H. Park, S. Y. Choi, and J. Koh, Activation of the Trk Signaling Pathway by Extracellular Zinc: ROLE OF METALLOPROTEINASES, Journal of Biological Chemistry, vol.280, issue.12, pp.11995-2000110, 2005.
DOI : 10.1074/jbc.M403172200

S. Unniappan, M. Speck, and T. J. Kieffer, Metabolic effects of chronic obestatin infusion in rats, Peptides, vol.29, issue.8, pp.1354-1361, 2008.
DOI : 10.1016/j.peptides.2008.03.023

B. O. Alén, The role of the obestatin/GPR39 system in human gastric adenocarcinomas, Oncotarget, vol.7, pp.5957-59716718, 2016.

S. Ciciliot, A. C. Rossi, K. A. Dyar, B. Blaauw, and S. Schiaffino, Muscle type and fiber type specificity in muscle wasting, The International Journal of Biochemistry & Cell Biology, vol.45, issue.10, pp.2191-2199016, 2013.
DOI : 10.1016/j.biocel.2013.05.016

R. Bassel-duby and E. N. Olson, Signaling Pathways in Skeletal Muscle Remodeling, Annual Review of Biochemistry, vol.75, issue.1, pp.19-37, 2006.
DOI : 10.1146/annurev.biochem.75.103004.142622

M. J. Potthoff, Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibers, Journal of Clinical Investigation, vol.117, issue.9, pp.2459-2467, 2007.
DOI : 10.1172/JCI31960DS1

T. A. Mckinsey, C. L. Zhang, J. Lu, and E. N. Olson, Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation, Nature, vol.408, pp.106-11110, 2000.

T. A. Mckinsey and E. N. Olson, Toward transcriptional therapies for the failing heart: chemical screens to modulate genes, Journal of Clinical Investigation, vol.115, issue.3, pp.538-54610, 2005.
DOI : 10.1172/JCI24144

T. A. Mckinsey, C. L. Zhang, and E. N. Olson, Signaling chromatin to make muscle, Current Opinion in Cell Biology, vol.14, issue.6, pp.763-77210, 2002.
DOI : 10.1016/S0955-0674(02)00389-7

M. J. Potthoff and E. N. Olson, MEF2: a central regulator of diverse developmental programs, Development, vol.134, issue.23, pp.4131-414010, 2007.
DOI : 10.1242/dev.008367

J. C. Correia, D. M. Ferreira, and J. L. Ruas, Intercellular: local and systemic actions of skeletal muscle PGC-1s, Trends in Endocrinology & Metabolism, vol.26, issue.6, pp.305-314, 2015.
DOI : 10.1016/j.tem.2015.03.010

S. Schiaffino, K. A. Dyar, S. Ciciliot, B. Blaauw, and M. Sandri, Mechanisms regulating skeletal muscle growth and atrophy, FEBS Journal, vol.163, issue.17, pp.4294-431417, 2013.
DOI : 10.1111/febs.12253

K. S. Röckl, Skeletal Muscle Adaptation to Exercise Training, Diabetes, vol.56, issue.8, pp.2062-206910, 2007.
DOI : 10.2337/db07-0255

R. S. Lee-young, Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercise in Vivo, Journal of Biological Chemistry, vol.284, issue.36, pp.23925-23934, 2009.
DOI : 10.1074/jbc.M109.021048

K. S. Röckl, C. A. Witczak, and L. J. Goodyear, Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise, IUBMB Life, vol.282, issue.3, pp.145-53, 2008.
DOI : 10.1002/iub.21

H. Wu, Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway, The EMBO Journal, vol.20, issue.22, pp.6414-64236414, 2001.
DOI : 10.1093/emboj/20.22.6414

C. L. Zhang, Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy, Cell, vol.110, issue.4, pp.479-48810, 2002.
DOI : 10.1016/S0092-8674(02)00861-9

URL : http://doi.org/10.1016/s0092-8674(02)00861-9

E. R. Chin, A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type, Genes & Development, vol.12, issue.16, pp.2499-25092499, 1998.
DOI : 10.1101/gad.12.16.2499

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317085/pdf

B. B. Friday, P. O. Mitchell, K. M. Kegley, and G. K. Pavlath, Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD, Differentiation, vol.71, issue.3, pp.217-227, 2003.
DOI : 10.1046/j.1432-0436.2003.710303.x

J. Lin, Transcriptional co-activator PGC-1?? drives the formation of slow-twitch muscle fibres, Nature, vol.16, issue.6899, pp.797-80110, 2002.
DOI : 10.1006/bbrc.2000.3134

C. Handschin, J. Rhee, J. Lin, P. T. Tarr, and B. M. Spiegelman, An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle, Proc. Natl. Acad. Sci. USA, pp.7111-711610, 2003.
DOI : 10.1073/pnas.1232352100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC165838

M. P. Czubryt, J. Mcanally, G. I. Fishman, and E. N. Olson, Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5, Proc. Natl. Acad. Sci. USA, pp.1711-171610, 2003.
DOI : 10.1073/pnas.0337639100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC149898

G. Pallafacchina, E. Calabria, A. L. Serrano, J. M. Kalhovde, and S. Schiaffino, A. protein kinase B-dependent and rapamycinsensitive pathway controls skeletal muscle growth but not fiber type specification, Proc. Natl. Acad. Sci. USA 99, pp.9213-921810, 2002.
URL : https://hal.archives-ouvertes.fr/pasteur-00508865

A. A. Kazi, L. Hong-brown, S. M. Lang, and C. H. Lang, Deptor knockdown enhances mTOR Activity and protein synthesis in myocytes and ameliorates disuse muscle atrophy, Mol. Med, vol.17, pp.925-961, 2011.

C. H. Lee, K. Inoki, and K. L. Guan, mTOR Pathway as a Target in Tissue Hypertrophy, Annual Review of Pharmacology and Toxicology, vol.47, issue.1, pp.443-467, 2007.
DOI : 10.1146/annurev.pharmtox.47.120505.105359

L. Lantier, Coordinated maintenance of muscle cell size control by AMP-activated protein kinase, The FASEB Journal, vol.24, issue.9, pp.3555-356110, 2010.
DOI : 10.1096/fj.10-155994

URL : https://hal.archives-ouvertes.fr/inserm-00484177

H. Zong, AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proc. Natl. Acad. Sci. USA 99, pp.15983-15987, 2002.
DOI : 10.1073/pnas.91.4.1309

P. Moens, P. H. Baatsen, and G. Maréchal, Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch, Journal of Muscle Research and Cell Motility, vol.100, issue.4, pp.446-45110, 1993.
DOI : 10.1007/BF00121296

C. Dellorusso, R. W. Crawford, J. S. Chamberlain, and S. V. Brooks, Tibialis anterior muscles in mdx mice are highly susceptible to contraction-induced injury, Journal of Muscle Research and Cell Motility, vol.22, issue.5, pp.467-47510, 2001.
DOI : 10.1023/A:1014587918367

E. Bachrach, Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells, Proc. Natl. Acad. Sci. USA, pp.3581-35860400373101, 2004.
DOI : 10.1126/science.1082254

L. Boldrin, A. Neal, P. S. Zammit, F. Muntoni, and J. Morgan, Donor satellite cell engraftment is significantly augmented when the host niche is preserved and endogenous satellite cells are incapacitated, Stem Cells, vol.30, pp.10-1002, 1971.
DOI : 10.1002/stem.1158

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465801

T. A. Partridge, The mdx mouse model as a surrogate for Duchenne muscular dystrophy, FEBS Journal, vol.22, issue.17, pp.4177-418617, 2013.
DOI : 10.1111/febs.12267

J. Seok, Genomic responses in mouse models poorly mimic human inflammatory diseases, Proc. Natl. Acad. Sci. USA, pp.3507-35121222878110, 2013.
DOI : 10.1126/scitranslmed.3001318

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587220

A. Bareja, Human and Mouse Skeletal Muscle Stem Cells: Convergent and Divergent Mechanisms of Myogenesis, PLoS ONE, vol.110, issue.2, p.90398, 2014.
DOI : 10.1371/journal.pone.0090398.s001

URL : http://doi.org/10.1371/journal.pone.0090398

K. Mamchaoui, Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skeletal Muscle 1, pp.10-1186, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00651121

D. Bloemberg and J. Quadrilatero, Rapid Determination of Myosin Heavy Chain Expression in Rat, Mouse, and Human Skeletal Muscle Using Multicolor Immunofluorescence Analysis, PLoS ONE, vol.28, issue.3, 2012.
DOI : 10.1371/journal.pone.0035273.s004