R. Abou-khalil, F. Yang, S. Lieu, A. Julien, J. Perry et al., Role of Muscle Stem Cells During Skeletal Regeneration, STEM CELLS, vol.66, issue.suppl 1, pp.1501-1511, 1945.
DOI : 10.1002/stem.1945

M. Adhami, H. Rashid, H. Chen, and A. Javed, Runx2 activity in committed osteoblasts is not essential for embryonic skeletogenesis, Connective Tissue Research, vol.55, issue.sup1, pp.102-106, 2014.
DOI : 10.1002/dvdy.10100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269215

H. Akiyama, M. Chaboissier, J. Martin, C. , and B. D. , The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6, Genes & Development, vol.16, issue.21, pp.2813-2828, 2002.
DOI : 10.1101/gad.1017802

D. M. Anderson, J. Arredondo, K. Hahn, G. Valente, J. F. Martin et al., is a novel homeobox gene expressed in the developing mouse embryo, Developmental Dynamics, vol.183, issue.3, pp.792-801, 2006.
DOI : 10.1002/dvdy.20671

A. Asakura, Skeletal Muscle-derived Hematopoietic Stem Cells: Muscular Dystrophy Therapy by Bone Marrow Transplantation, Journal of Stem Cell Research & Therapy, vol.01, issue.S11, pp.11-15, 2012.
DOI : 10.4172/2157-7633.S11-005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918728

L. Bajard, F. Relaix, M. Lagha, D. Rocancourt, P. Daubas et al., A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb, Genes & Development, vol.20, issue.17, pp.2450-2464, 2006.
DOI : 10.1101/gad.382806

J. Beauchamp, L. Heslop, D. Yu, S. Tajbakhsh, R. Kelly et al., Expression of Cd34 and Myf5 Defines the Majority of Quiescent Adult Skeletal Muscle Satellite Cells, The Journal of Cell Biology, vol.85, issue.6, pp.1221-1233, 2000.
DOI : 10.1093/nar/19.23.6433

M. Benjamin, R. , and J. R. , The cell and developmental biology of tendons and ligaments, Int. Rev. Cytol, vol.196, issue.00, pp.85-130, 2000.
DOI : 10.1016/S0074-7696(00)96003-0

C. F. Bentzinger, Y. X. Wang, J. Von-maltzahn, V. D. Soleimani, H. Yin et al., Fibronectin Regulates Wnt7a Signaling and Satellite Cell Expansion, Cell Stem Cell, vol.12, issue.1, pp.75-87, 2013.
DOI : 10.1016/j.stem.2012.09.015

URL : http://doi.org/10.1016/j.stem.2012.09.015

W. Bi, J. M. Deng, Z. Zhang, R. R. Behringer, D. Crombrugghe et al., Sox9 is required for cartilage formation, Nature, vol.22, pp.85-89, 1999.

A. Birbrair, T. Zhang, Z. Wang, M. L. Messi, G. N. Enikolopov et al., Role of Pericytes in Skeletal Muscle Regeneration and Fat Accumulation, Stem Cells and Development, vol.22, issue.16, pp.2298-2314, 2013.
DOI : 10.1089/scd.2012.0647

A. Birbrair, T. Zhang, Z. M. Wang, M. L. Messi, A. Mintz et al., Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle, Frontiers in Aging Neuroscience, vol.210, issue.105, 2014.
DOI : 10.1159/000310725

F. Bladt, D. Riethmacher, S. Isenmann, A. Aguzzi, C. A. Birchmeier et al., Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud, Nature, vol.376, issue.6543, pp.768-771, 1995.
DOI : 10.1038/376768a0

B. Brand-saberi, T. S. Müller, J. Wilting, B. Christ, and C. Birchmeier, Scatter Factor/Hepatocyte Growth Factor (SF/HGF) Induces Emigration of Myogenic Cells at Interlimb Levelin Vivo, Developmental Biology, vol.179, issue.1, pp.303-3080260, 1996.
DOI : 10.1006/dbio.1996.0260

Y. Bren-mattison, M. Hausburg, and B. B. Olwin, Growth of limb muscle is dependent on skeletal-derived Indian hedgehog, Developmental Biology, vol.356, issue.2, pp.486-495, 2011.
DOI : 10.1016/j.ydbio.2011.06.002

A. E. Brent, R. Schweitzer, C. J. Tabin, E. Brzoska, M. Kowalewska et al., A somitic compartment of tendon progenitors Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells, Cell Biol. Cell, vol.113, issue.104, pp.235-248, 2003.

M. Buckingham, Myogenic progenitor cells and skeletal myogenesis in vertebrates, Current Opinion in Genetics & Development, vol.16, issue.5, pp.525-532, 2006.
DOI : 10.1016/j.gde.2006.08.008

O. Cappellari and G. Cossu, Pericytes in Development and Pathology of Skeletal Muscle, Circulation Research, vol.113, issue.3, pp.341-347, 2013.
DOI : 10.1161/CIRCRESAHA.113.300203

J. W. Chen and J. L. Galloway, The development of zebrafish tendon and ligament progenitors, Development, vol.141, issue.10, pp.2035-2045, 2014.
DOI : 10.1242/dev.104067

B. Christ, C. Ordahl, B. Christ, and J. Wilting, Early stages of chick somite development, Anatomy and Embryology, vol.188, issue.5, pp.381-396, 1992.
DOI : 10.1007/BF00304424

D. D. Cornelison and B. J. Wold, Single-Cell Analysis of Regulatory Gene Expression in Quiescent and Activated Mouse Skeletal Muscle Satellite Cells, Developmental Biology, vol.191, issue.2, pp.270-283, 1997.
DOI : 10.1006/dbio.1997.8721

D. Costamagna, H. Mommaerts, M. Sampaolesi, P. G. Tylzanowski, P. M. Coltey et al., Noggin inactivation affects the number and differentiation potential of muscle progenitor cells in vivo The developmental fate of the cephalic mesoderm in quail-chick chimeras, Development, vol.114, pp.1-15, 1992.

J. F. Crane and P. A. Trainor, Neural Crest Stem and Progenitor Cells, Annual Review of Cell and Developmental Biology, vol.22, issue.1, pp.267-286, 2006.
DOI : 10.1146/annurev.cellbio.22.010305.103814

T. F. Day, X. Guo, L. Garrett-beal, Y. , and Y. , Wnt/?-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis, Developmental Cell, vol.8, issue.5, pp.739-750, 2005.
DOI : 10.1016/j.devcel.2005.03.016

URL : http://doi.org/10.1016/j.devcel.2005.03.016

M. Delfini and D. Duprez, Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addition to inducing skeletal muscle differentiation, in the chick neural tube, Development, vol.131, issue.4, pp.713-723, 2004.
DOI : 10.1242/dev.00967

C. Deng, A. Wynshaw-boris, F. Zhou, A. Kuo, and P. Leder, Fibroblast Growth Factor Receptor 3 Is a Negative Regulator of Bone Growth, Cell, vol.84, issue.6, pp.911-921, 1996.
DOI : 10.1016/S0092-8674(00)81069-7

M. Deries and S. Thorsteinsdóttir, Axial and limb muscle development: dialogue with the neighbourhood, Cellular and Molecular Life Sciences, vol.4, issue.2, pp.4415-4431, 2016.
DOI : 10.1242/jcs.182469

S. Dietrich, F. Abou-rebyeh, H. Brohmann, F. Bladt, and E. Sonnenberg-riethmacher, The role of SF / HGF and c-Met in the development of skeletal muscle, Development, vol.1629, pp.1621-1629, 1999.

P. Ducy, M. Starbuck, M. Priemel, J. Shen, G. Pinero et al., A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development, Genes & Development, vol.13, issue.8, pp.1025-1036, 1999.
DOI : 10.1101/gad.13.8.1025

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC316641/pdf

D. Duprez, Signals regulating muscle formation in the limb during embryonic development, Int. J. Dev. Biol, vol.46, pp.915-925, 2002.

F. Edom-vovard, B. Schuler, M. Bonnin, M. Teillet, and D. Duprez, Fgf4 Positively Regulates scleraxis and Tenascin Expression in Chick Limb Tendons, Developmental Biology, vol.247, issue.2, pp.351-3660707, 2002.
DOI : 10.1006/dbio.2002.0707

URL : http://doi.org/10.1006/dbio.2002.0707

S. Eloy-trinquet, H. Wang, and D. Duprez, Fgf signaling components are associated with muscles and tendons during limb development, Developmental Dynamics, vol.109, issue.5, pp.1195-1206, 2009.
DOI : 10.1002/dvdy.21946

J. Farup, L. Madaro, P. L. Puri, and U. R. Mikkelsen, Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease, Cell Death and Disease, vol.18, issue.7, pp.1830-1813, 2015.
DOI : 10.1002/mus.21891

URL : http://doi.org/10.1038/cddis.2015.198

G. Ferrari, G. C. Angelis, M. Coletta, E. Paolucci, A. Stornaiuolo et al., Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors, Science, vol.279, issue.5356, pp.1528-1530, 1998.
DOI : 10.1126/science.279.5356.1528

E. G. Frolova, J. Drazba, I. Krukovets, V. Kostenko, L. Blech et al., Control of organization and function of muscle and tendon by thrombospondin-4, Matrix Biology, vol.37, pp.35-48, 2014.
DOI : 10.1016/j.matbio.2014.02.003

G. Frommer, G. Vorbruggen, G. Pasca, H. Jackle, and T. Volk, Epidermal egr-like zinc finger protein of Drosophila participates in myotube guidance, EMBO J, vol.15, pp.1642-1649, 1996.

C. S. Fry, T. J. Kirby, K. Kosmac, J. J. Mccarthy, and C. A. Peterson, Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy, Cell Stem Cell, vol.20, issue.1, pp.1-14, 2016.
DOI : 10.1016/j.stem.2016.09.010

B. G. Galvez, M. Sampaolesi, S. Brunelli, D. Covarello, M. Gavina et al., Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability, The Journal of Cell Biology, vol.89, issue.2, pp.231-243, 2006.
DOI : 10.1089/hyb.1997.16.355

S. K. Gara, P. Grumati, S. Squarzoni, P. Sabatelli, A. Urciuolo et al., Differential and restricted expression of novel collagen VI chains in mouse, Matrix Biology, vol.30, issue.4, pp.248-257, 2011.
DOI : 10.1016/j.matbio.2011.03.006

L. Gaut and D. Duprez, Tendon development and diseases, Wiley Interdisciplinary Reviews: Developmental Biology, vol.19, issue.1, 2016.
DOI : 10.1002/wdev.201

URL : https://hal.archives-ouvertes.fr/hal-01190806

J. Grenier, M. Teillet, R. Grifone, R. G. Kelly, and D. Duprez, Relationship between Neural Crest Cells and Cranial Mesoderm during Head Muscle Development, PLoS ONE, vol.134, issue.2, 2009.
DOI : 10.1371/journal.pone.0004381.g008

URL : https://hal.archives-ouvertes.fr/hal-00409364

C. A. Griffin, L. H. Apponi, K. K. Long, and G. K. Pavlath, Chemokine expression and control of muscle cell migration during myogenesis, Journal of Cell Science, vol.123, issue.18, pp.3052-3060, 2010.
DOI : 10.1242/jcs.066241

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931603/pdf

J. M. Gu, D. J. Wang, J. M. Peterson, J. Shintaku, S. Liyanarachchi et al., An NF-?B - EphrinA5-Dependent Communication between NG2+ Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates, Developmental Cell, vol.36, issue.2, pp.215-224, 2016.
DOI : 10.1016/j.devcel.2015.12.018

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732710

M. Guerquin, B. Charvet, G. Nourissat, E. Havis, O. Ronsin et al., Transcription factor EGR1 directs tendon differentiation and promotes tendon repair, Journal of Clinical Investigation, vol.123, issue.8, pp.3564-3576, 1172.
DOI : 10.1172/JCI67521DS1

URL : https://hal.archives-ouvertes.fr/hal-01239410

A. Hacker, G. , and S. , A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo, Development, vol.125, pp.3461-3472, 1998.

O. Halperin-barlev and C. Kalcheim, Sclerotome-derived Slit1 drives directional migration and differentiation of Robo2-expressing pioneer myoblasts, Development, vol.138, issue.14, pp.2935-2945, 2011.
DOI : 10.1242/dev.065714

M. A. Haniffa, M. P. Collin, C. D. Buckley, and F. Dazzi, Mesenchymal stem cells: the fibroblasts' new clothes?, Haematologica, vol.94, issue.2, pp.258-263, 2009.
DOI : 10.3324/haematol.13699

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635401

P. Hasson, ???Soft??? tissue patterning: Muscles and tendons of the limb take their form, Developmental Dynamics, vol.30, issue.suppl 1, pp.1100-1107, 2011.
DOI : 10.1002/dvdy.22608

P. Hasson, J. Del-buono, and M. P. Logan, Tbx5 is dispensable for forelimb outgrowth, Development, vol.134, issue.1, pp.85-92, 2007.
DOI : 10.1242/dev.02622

P. Hasson, A. Delaurier, M. Bennett, E. Grigorieva, L. A. Naiche et al., Tbx4 and Tbx5 Acting in Connective Tissue Are Required for Limb Muscle and Tendon Patterning, Developmental Cell, vol.18, issue.1, pp.148-156, 2010.
DOI : 10.1016/j.devcel.2009.11.013

P. Hasty, A. Bradley, J. H. Morris, D. G. Edmondson, J. M. Venuti et al., Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene, Nature, vol.364, issue.6437, pp.501-506, 1993.
DOI : 10.1038/364501a0

E. Havis, M. Bonnin, J. De-lima, B. Charvet, C. Milet et al., TGF?? and FGF promote tendon progenitor fate and act downstream of muscle contraction to regulate tendon differentiation during chick limb development, Development, vol.143, issue.20, pp.3839-3851, 2016.
DOI : 10.1242/dev.136242

S. Heymann, M. Koudrova, H. Arnold, M. Köster, and T. Braun, Regulation and Function of SF/HGF during Migration of Limb Muscle Precursor Cells in Chicken, Developmental Biology, vol.180, issue.2, pp.566-5780329, 1996.
DOI : 10.1006/dbio.1996.0329

A. H. Huang, T. J. Riordan, L. Wang, S. Eyal, E. Zelzer et al., Repositioning Forelimb Superficialis Muscles: Tendon Attachment and Muscle Activity Enable Active Relocation of Functional Myofibers, Developmental Cell, vol.26, issue.5, pp.544-551, 2013.
DOI : 10.1016/j.devcel.2013.08.007

URL : http://doi.org/10.1016/j.devcel.2013.08.007

C. Hunger, V. Ödemis, and J. Engele, Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration, Experimental Cell Research, vol.318, issue.17, 2012.
DOI : 10.1016/j.yexcr.2012.06.020

Y. Ito, N. Toriuchi, T. Yoshitaka, H. Ueno-kudoh, T. Sato et al., The Mohawk homeobox gene is a critical regulator of tendon differentiation, Proceedings of the National Academy of Sciences, vol.24, issue.3, pp.10538-10542, 2010.
DOI : 10.1016/j.gep.2007.11.001

A. L. Jacob, C. Smith, J. Partanen, and D. M. Ornitz, Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation, Developmental Biology, vol.296, issue.2, pp.315-328, 2006.
DOI : 10.1016/j.ydbio.2006.05.031

A. W. Joe, L. Yi, A. Natarajan, F. Le-grand, L. So et al., Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis, Nature Cell Biology, vol.439, issue.2, pp.153-163, 1038.
DOI : 10.1038/ncb2015

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580288

R. N. Judson, R. Zhang, and F. M. Rossi, Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs?, FEBS Journal, vol.4, issue.17, pp.4100-4108, 2013.
DOI : 10.1111/febs.12370

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880469

G. Kardon, Muscle and tendon morphogenesis in the avian hind limb, Development, vol.125, pp.4019-4032, 1998.

G. Kardon, B. D. Harfe, and C. J. Tabin, A Tcf4-Positive Mesodermal Population Provides a Prepattern for Vertebrate Limb Muscle Patterning, Developmental Cell, vol.5, issue.6, pp.937-944, 2003.
DOI : 10.1016/S1534-5807(03)00360-5

URL : http://doi.org/10.1016/s1534-5807(03)00360-5

E. Karouzakis, M. Trenkmann, R. E. Gay, B. A. Michel, S. Gay et al., Epigenome Analysis Reveals TBX5 as a Novel Transcription Factor Involved in the Activation of Rheumatoid Arthritis Synovial Fibroblasts, The Journal of Immunology, vol.193, issue.10, pp.4945-4951, 2014.
DOI : 10.4049/jimmunol.1400066

G. Karsenty and E. F. Wagner, Reaching a Genetic and Molecular Understanding of Skeletal Development, Developmental Cell, vol.2, issue.4, pp.389-406, 2002.
DOI : 10.1016/S1534-5807(02)00157-0

L. Kassar-duchossoy, B. Gayraud-morel, D. Gomes, D. Rocancourt, M. Buckingham et al., Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice, Nature, vol.127, issue.7007, pp.466-471, 1038.
DOI : 10.1083/jcb.113.6.1255

L. Kassar-duchossoy, E. Giacone, B. Gayraud-morel, A. Jory, D. Gomès et al., Pax3/Pax7 mark a novel population of primitive myogenic cells during development, Genes & Development, vol.19, issue.12, pp.1426-1431, 2005.
DOI : 10.1101/gad.345505

R. G. Kelly, L. A. Jerome-majewska, and V. E. Papaioannou, The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis, Human Molecular Genetics, vol.13, issue.22, pp.2829-2840, 2004.
DOI : 10.1093/hmg/ddh304

URL : https://hal.archives-ouvertes.fr/hal-00311148

M. Kieny and A. Chevallier, Autonomy of tendon development in the embryonic chick wing, J. Embryol. Exp. Morph, vol.49, pp.153-165, 1979.

M. Kieny and A. Mauger, Immunofluorescent localization of extracellular matrix components during muscle morphogenesis. I. In normal chick embryos, Journal of Experimental Zoology, vol.158, issue.2, pp.327-341, 1984.
DOI : 10.1002/jez.1402320220

T. Komori, H. Yagi, S. Nomura, A. Yamaguchi, K. Sasaki et al., Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation owing to Maturational Arrest of Osteoblasts, Cell, vol.89, issue.5, pp.755-764, 1997.
DOI : 10.1016/S0092-8674(00)80258-5

S. G. Kramer, T. Kidd, J. H. Simpson, C. S. Goodman, S. G. Kramer et al., Switching Repulsion to Attraction: Changing Responses to Slit During Transition in Mesoderm Migration, Science, vol.292, issue.5517, pp.737-740, 2001.
DOI : 10.1126/science.1058766

H. M. Kronenberg, PTHrP and Skeletal Development, Annals of the New York Academy of Sciences, vol.18, issue.1, 2006.
DOI : 10.1038/387151a0

L. Kutchuk, A. Laitala, S. Soueid-bomgarten, P. Shentzer, A. H. Rosendahl et al., Muscle composition is regulated by a Lox-TGF?? feedback loop, Development, vol.142, issue.5, pp.983-993, 2015.
DOI : 10.1242/dev.113449

Y. Lan, P. D. Kingsley, E. Cho, and R. Jiang, Osr2, a new mouse gene related to Drosophila odd-skipped, exhibits dynamic expression patterns during craniofacial, limb, and kidney development, Mechanisms of Development, vol.107, issue.1-2, pp.175-179, 2001.
DOI : 10.1016/S0925-4773(01)00457-9

URL : http://doi.org/10.1016/s0925-4773(01)00457-9

C. Lance-jones, The effect of somite manipulation on the development of motoneuron projection patterns in the embryonic chick hindlimb, Developmental Biology, vol.126, issue.2, pp.408-419, 1988.
DOI : 10.1016/0012-1606(88)90150-9

V. Lefebvre, R. R. Behringer, D. Crombrugghe, and B. , L-Sox5, Sox6 and Sox9 control essential steps of the chondrocyte differentiation pathway, Osteoarthritis and Cartilage, vol.9, pp.69-750447, 2001.
DOI : 10.1053/joca.2001.0447

V. Lefebvre, P. Li, D. Crombrugghe, and B. , A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene, The EMBO Journal, vol.17, issue.19, pp.5718-5733, 1998.
DOI : 10.1093/emboj/17.19.5718

V. Lejard, F. Blais, M. J. Guerquin, A. Bonnet, M. A. Bonnin et al., EGR1 and EGR2 Involvement in Vertebrate Tendon Differentiation, Journal of Biological Chemistry, vol.286, issue.7, pp.5855-5867, 2011.
DOI : 10.1074/jbc.M110.153106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037698

X. Li, C. , and X. U. , BMP Signaling and Skeletogenesis, Annals of the New York Academy of Sciences, vol.126, issue.1, pp.26-40, 2006.
DOI : 10.1074/jbc.M303932200

Y. Li, Q. Qiu, S. S. Watson, R. Schweitzer, J. et al., Uncoupling skeletal and connective tissue patterning: conditional deletion in cartilage progenitors reveals cell-autonomous requirements for Lmx1b in dorsal-ventral limb patterning, Development, vol.137, issue.7, pp.1181-1188, 2010.
DOI : 10.1242/dev.045237

H. Liu, Y. Lan, J. Xu, C. Chang, S. A. Brugmann et al., Odd-skipped related-1 controls neural crest chondrogenesis during tongue development, Proceedings of the National Academy of Sciences, vol.214, issue.2, pp.18555-18560, 2013.
DOI : 10.1006/dbio.1999.9432

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3831959

J. Lu, R. Bassel-duby, A. Hawkins, P. Chang, R. Valdez et al., Control of Facial Muscle Development by MyoR and Capsulin, Science, vol.298, issue.5602, pp.2378-2381, 2002.
DOI : 10.1126/science.1078273

S. J. Mathew, J. M. Hansen, A. J. Merrell, M. M. Murphy, J. A. Lawson et al., Connective tissue fibroblasts and Tcf4 regulate myogenesis, Development, vol.138, issue.2, pp.371-384, 2011.
DOI : 10.1242/dev.057463

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005608

A. J. Merrell, B. J. Ellis, Z. D. Fox, J. A. Lawson, A. Jeffrey et al., Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias, Nature Genetics, vol.265, issue.5, pp.496-504, 2015.
DOI : 10.1063/1.1712836

K. J. Mitchell, A. Pannerec, B. Cadot, A. Parlakian, V. Besson et al., Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development, Nature Cell Biology, vol.22, pp.257-266, 1038.
DOI : 10.1038/ncb2025

G. F. Mok, R. Cardenas, H. Anderton, K. H. Campbell, and D. Sweetman, Interactions between FGF18 and retinoic acid regulate differentiation of chick embryo limb myoblasts, Developmental Biology, vol.396, issue.2, pp.214-223, 2014.
DOI : 10.1016/j.ydbio.2014.10.004

N. Motohashi and A. Asakura, Muscle satellite cell heterogeneity and self-renewal. Front, Cell Dev. Biol, 2014.
DOI : 10.3389/fcell.2014.00001

URL : http://doi.org/10.3389/fcell.2014.00001

N. D. Murchison, B. A. Price, D. A. Conner, D. R. Keene, E. N. Olson et al., Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons, Development, vol.134, issue.14, pp.2697-2708, 2007.
DOI : 10.1242/dev.001933

M. M. Murphy, J. A. Lawson, S. J. Mathew, D. A. Hutcheson, and G. Kardon, Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration, Development, vol.138, issue.17, pp.3625-3637, 2011.
DOI : 10.1242/dev.064162

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152921

K. Nakashima, X. Zhou, G. Kunkel, Z. Zhang, J. M. Deng et al., The Novel Zinc Finger-Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation, Cell, vol.108, issue.1, pp.17-29, 2002.
DOI : 10.1016/S0092-8674(01)00622-5

URL : http://doi.org/10.1016/s0092-8674(01)00622-5

A. Natarajan, D. R. Lemos, and F. M. Rossi, Fibro/adipogenic progenitors: A double-edged sword in skeletal muscle regeneration, Cell Cycle, vol.9, issue.11, pp.2045-2046, 2010.
DOI : 10.4161/cc.9.11.11854

D. Noden, The embryonic origins of avian cephalic and cervical muscles and associated connective tissues, American Journal of Anatomy, vol.164, issue.3, pp.257-276, 1983.
DOI : 10.1002/aja.1001680302

D. M. Noden, F. , and P. , The differentiation and morphogenesis of craniofacial muscles, Developmental Dynamics, vol.86, issue.5, pp.1194-1218, 2006.
DOI : 10.1002/dvdy.20697

D. M. Noden and P. A. Trainor, Relations and interactions between cranial mesoderm and neural crest populations, Journal of Anatomy, vol.270, issue.5, pp.575-601, 2005.
DOI : 10.1111/j.1469-7580.2005.00473.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571569

L. E. Olson and P. Soriano, Increased PDGFRa activation disrupts connective tissue development and drives systemic fibrosis, Dev. Cell, vol.16, 2009.
DOI : 10.1016/j.devcel.2008.12.003

URL : http://doi.org/10.1016/j.devcel.2008.12.003

N. P. Omelyanenko and L. I. Slutsky, Chapter 1: Peculiarities of Connective Tissue Histophysiology, Biochemistry and Molecular Biology, pp.1-15, 2013.

C. P. Ordahl, L. Douarin, and N. M. , Two myogenic lineages within the developing somite, Development, vol.114, pp.339-353, 1992.

E. Ordan, M. Brankatschk, B. Dickson, F. Schnorrer, and T. Volk, Slit cleavage is essential for producing an active, stable, non-diffusible short-range signal that guides muscle migration, Development, vol.142, issue.8, pp.1431-1436, 2015.
DOI : 10.1242/dev.119131

T. C. Pan, R. Z. Zhang, M. Arita, S. Bogdanovich, S. M. Adams et al., A Mouse Model for Dominant Collagen VI Disorders: HETEROZYGOUS DELETION OF Col6a3 EXON 16, Journal of Biological Chemistry, vol.289, issue.15, pp.10293-10307, 2014.
DOI : 10.1074/jbc.M114.549311

T. C. Pan, R. Z. Zhang, D. Markova, M. Arita, Y. Zhang et al., COL6A3 Protein Deficiency in Mice Leads to Muscle and Tendon Defects Similar to Human Collagen VI Congenital Muscular Dystrophy, Journal of Biological Chemistry, vol.288, issue.20, pp.14320-14331, 2013.
DOI : 10.1074/jbc.M112.433078

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656288

A. Pannérec, L. Formicola, V. Besson, G. Marazzi, and D. A. Sassoon, Defining skeletal muscle resident progenitors and their cell fate potentials, Development, vol.140, issue.14, pp.2879-2891, 2013.
DOI : 10.1242/dev.089326

R. Pearse, D. Esshaki, C. J. Tabin, and M. M. Murray, Genome-wide expression analysis of intra- and extraarticular connective tissue, Journal of Orthopaedic Research, vol.50, issue.9, pp.427-434, 2009.
DOI : 10.1002/jor.20774

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856484

O. Pourquié, C. Fan, M. Coltey, E. Hirsinger, Y. Watanabe et al., Lateral and Axial Signals Involved in Avian Somite Patterning: A Role for BMP4, Cell, vol.84, issue.3, pp.461-471, 1996.
DOI : 10.1016/S0092-8674(00)81291-X

B. A. Pryce, S. S. Watson, N. D. Murchison, J. A. Staverosky, N. Dünker et al., Recruitment and maintenance of tendon progenitors by TGF?? signaling are essential for tendon formation, Development, vol.136, issue.8, pp.1351-1361, 2009.
DOI : 10.1242/dev.027342

R. R. Rackley, P. M. Kessler, C. Campbell, W. , and B. R. , In situ expression of the early growth response gene-1 during murine nephrogenesis, The Journal of Urology, vol.154, issue.2, pp.700-705, 1995.
DOI : 10.1016/S0022-5347(01)67136-2

M. Ratajczak, M. Majka, M. Kucia, J. Drukala, Z. Pietrzkowski et al., Expression of Functional CXCR4 by Muscle Satellite Cells and Secretion of SDF-1 by Muscle-Derived Fibroblasts is Associated with the Presence of Both Muscle Progenitors in Bone Marrow and Hematopoietic Stem/Progenitor Cells in Muscles, Stem Cells, vol.21, issue.3, pp.363-371, 2003.
DOI : 10.1634/stemcells.21-3-363

F. Relaix, D. Montarras, S. Zaffran, B. Gayraud-morel, D. Rocancourt et al., Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells, The Journal of Cell Biology, vol.48, issue.1, pp.91-102, 2006.
DOI : 10.1083/jcb.200312007

URL : https://hal.archives-ouvertes.fr/hal-00311188

F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, Divergent functions of murine Pax3 and Pax7 in limb muscle development, Genes & Development, vol.18, issue.9, pp.1088-1105, 2004.
DOI : 10.1101/gad.301004

F. Relaix, D. Rocancourt, A. Mansouri, and M. Buckingham, A Pax3/Pax7-dependent population of skeletal muscle progenitor cells, Nature, vol.72, issue.7044, pp.948-953, 1038.
DOI : 10.1242/dev.01617

URL : https://hal.archives-ouvertes.fr/pasteur-00176824

A. Rinon, S. Lazar, H. Marshall, S. Büchmann-møller, A. Neufeld et al., Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis, Development, vol.134, issue.17, pp.3065-3075, 2007.
DOI : 10.1242/dev.002501

URL : http://www.zora.uzh.ch/115996/1/3065.full.pdf

M. Sampaolesi, S. Blot, G. D. Antona, N. Granger, R. Tonlorenzi et al., Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs, Nature, vol.4, issue.7119, pp.574-579, 2003.
DOI : 10.1038/nature05282

F. Schnorrer, I. Kalchhauser, and B. J. Dickson, The Transmembrane Protein Kon-tiki Couples to Dgrip to Mediate Myotube Targeting in Drosophila, Developmental Cell, vol.12, issue.5, pp.751-766, 2007.
DOI : 10.1016/j.devcel.2007.02.017

R. Schweitzer, J. H. Chyung, L. C. Murtaugh, A. E. Brent, V. Rosen et al., Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments, Development, vol.128, pp.3855-3866, 2001.

M. A. Selleck and C. D. Stern, Fate mapping and cell lineage analysis of Hensen ' s node in the chick embryo, Development, vol.112, pp.615-626, 1991.

P. Smits, P. Li, J. Mandel, Z. Zhang, J. M. Deng et al., The Transcription Factors L-Sox5 and Sox6 Are Essential for Cartilage Formation, Developmental Cell, vol.1, issue.2, pp.277-290, 1999.
DOI : 10.1016/S1534-5807(01)00003-X

C. Soler, L. Laddada, and K. Jagla, Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg, Frontiers in Physiology, vol.11, 2016.
DOI : 10.1101/gad.11.20.2691

F. Stockdale, Myogenic cell lineages, Developmental Biology, vol.154, issue.2, pp.284-298, 1992.
DOI : 10.1016/0012-1606(92)90068-R

F. Stockdale, W. Nikovits, C. , and B. , Molecular and cellular biology of avian somite, 9999<::AID-DVDY1057>3.0.CO, pp.304-321, 2000.
DOI : 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1057>3.0.co;2-5

S. Stricker, N. Brieske, J. Haupt, M. , and S. , Comparative expression pattern of Odd-skipped related genes Osr1 and Osr2 in chick embryonic development, Gene Expression Patterns, vol.6, issue.8, pp.826-834, 2006.
DOI : 10.1016/j.modgep.2006.02.003

S. Stricker, S. Mathia, J. Haupt, P. Seemann, J. Meier et al., Odd-Skipped Related Genes Regulate Differentiation of Embryonic Limb Mesenchyme and Bone Marrow Mesenchymal Stromal Cells, Stem Cells and Development, vol.21, issue.4, pp.623-633, 2012.
DOI : 10.1089/scd.2011.0154

K. Sudo, M. Kanno, K. Miharada, S. Ogawa, T. Hiroyama et al., Mesenchymal Progenitors Able to Differentiate into Osteogenic, Chondrogenic, and/or Adipogenic Cells In Vitro Are Present in Most Primary Fibroblast-Like Cell Populations, Stem Cells, vol.126, issue.7, pp.1610-1617, 2007.
DOI : 10.1634/stemcells.2006-0504

M. E. Swartz, J. Eberhart, E. B. Pasquale, and C. E. Krull, EphA4/ephrin- A5 interactions in muscle precursor cell migration in the avian forelimb, Development, vol.128, pp.4669-4680, 2001.

I. T. Swinehart, A. J. Schlientz, C. A. Quintanilla, D. P. Mortlock, and D. M. Wellik, Hox11 genes are required for regional patterning and integration of muscle, tendon and bone, Development, vol.140, issue.22, pp.4574-4582, 2013.
DOI : 10.1242/dev.096693

S. S. Tajbakhsh and M. Buckingham, Skeletal muscle stem cells in developmental versus regenerative myogenesis The birth of muscle progenitor cells in the mouse: spatiotemporal considerations, J. Intern. Med. Curr. Top. Dev. Biol, vol.266, issue.4808, pp.372-389, 2000.

S. Tajbakhsh, D. Rocancourt, G. Cossu, and M. Buckingham, Redefining the Genetic Hierarchies Controlling Skeletal Myogenesis: Pax-3 and Myf-5 Act Upstream of MyoD, Cell, vol.89, issue.1, pp.127-138, 1997.
DOI : 10.1016/S0092-8674(00)80189-0

T. Takarada, E. Hinoi, R. Nakazato, H. Ochi, C. Xu et al., An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice, Journal of Bone and Mineral Research, vol.13, issue.10, pp.2064-2069, 1945.
DOI : 10.1002/jbmr.1945

F. S. Tedesco, A. Dellavalle, J. Diaz-manera, G. Messina, G. S. Cossu et al., Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells, Journal of Clinical Investigation, vol.120, issue.1, pp.11-19, 2010.
DOI : 10.1172/JCI40373

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798695

M. Tokita and R. Schneider, Developmental origins of species-specific muscle pattern, Developmental Biology, vol.331, issue.2, pp.311-325, 2009.
DOI : 10.1016/j.ydbio.2009.05.548

URL : http://doi.org/10.1016/j.ydbio.2009.05.548

S. Tozer and D. Duprez, Tendon and ligament: Development, repair and disease, Birth Defects Research Part C: Embryo Today: Reviews, vol.67, issue.3, pp.226-236, 2005.
DOI : 10.1002/bdrc.20049

P. A. Trainor, S. Tan, T. , and P. P. , Cranial paraxial mesoderm : regionalisation of cell fate and impact on craniofacial development in mouse embryos, Development, vol.120, pp.2397-2408, 1994.

P. Tylzanowski, L. Mebis, and F. P. Luyten, The Noggin null mouse phenotype is strain dependent and haploinsufficiency leads to skeletal defects, Developmental Dynamics, vol.86, issue.6, pp.1599-1607, 2006.
DOI : 10.1002/dvdy.20782

E. Tzahor, Heart and craniofacial muscle development: A new developmental theme of distinct myogenic fields, Developmental Biology, vol.327, issue.2, pp.273-279, 2009.
DOI : 10.1016/j.ydbio.2008.12.035

E. Tzahor, R. C. Mootoosamy, A. C. Poon, A. Abzhanov, C. J. Tabin et al., Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle, Genes & Development, vol.17, issue.24, pp.3087-3099, 2003.
DOI : 10.1101/gad.1154103

A. Uezumi, S. Fukada, N. Yamamoto, S. Takeda, and K. Tsuchida, P72. Mesenchymal progenitors distinct from muscle satellite cells contribute to ectopic fat cell formation in skeletal muscle, Differentiation, vol.80, pp.143-152, 1038.
DOI : 10.1016/j.diff.2010.09.078

A. Uezumi, M. Ikemoto-uezumi, and K. Tsuchida, Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle, Frontiers in Physiology, vol.5, 2014.
DOI : 10.3389/fphys.2014.00068

A. Uezumi, T. Ito, D. Morikawa, N. Shimizu, Y. et al., Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle, Journal of Cell Science, vol.124, issue.21, pp.3654-3664, 2011.
DOI : 10.1242/jcs.086629

A. Urciuolo, M. Quarta, V. Morbidoni, F. Gattazzo, S. Molon et al., Collagen VI regulates satellite cell self-renewal and muscle regeneration, Nature Communications, vol.44, p.10, 1038.
DOI : 10.1016/j.yexcr.2004.02.018

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682802

E. Vasyutina, J. Stebler, B. Brand-saberi, S. Schulz, E. Raz et al., CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells, Genes & Development, vol.19, issue.18, pp.2187-2198, 2005.
DOI : 10.1101/gad.346205

G. Volohonsky, G. Edenfeld, C. Klämbt, and T. Volk, Muscle-dependent maturation of tendon cells is induced by post-transcriptional regulation of stripeA, Development, vol.134, issue.2, pp.347-356, 2007.
DOI : 10.1242/dev.02735

J. Von-maltzahn, A. E. Jones, R. J. Parks, and M. A. Rudnicki, Pax7 is critical for the normal function of satellite cells in adult skeletal muscle, Proceedings of the National Academy of Sciences, vol.14, issue.2, pp.16474-16479, 2013.
DOI : 10.1083/jcb.200403004

A. Vortkamp, K. Lee, B. Lanske, G. Segre, H. Kronenberg et al., Regulation of Rate of Cartilage Differentiation by Indian Hedgehog and PTH-Related Protein, Science, vol.273, issue.5275, pp.613-622, 1996.
DOI : 10.1126/science.273.5275.613

F. Wachtler, B. Christ, J. , H. J. Wayburn, B. Volk et al., On the determination of mesodermal tissues in the avian embryonic wing bud, Anatomy and Embryology, vol.44, issue.3, pp.283-289, 1981.
DOI : 10.1007/BF00301826

H. Weintraub, V. J. Dwarki, I. Verma, R. Davis, S. Hollenberg et al., Muscle-specific transcriptional activation by MyoD., Genes & Development, vol.5, issue.8, pp.1377-1386, 1991.
DOI : 10.1101/gad.5.8.1377

K. Wong, H. T. Park, J. Y. Wu, Y. Rao, C. A. Yoshida et al., Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes, Current Opinion in Genetics & Development, vol.12, issue.5, pp.583-591, 2002.
DOI : 10.1016/S0959-437X(02)00343-X

A. L. Zacharias, M. Lewandoski, M. A. Rudnicki, and P. J. Gage, Pitx2 is an upstream activator of extraocular myogenesis and survival, Developmental Biology, vol.349, issue.2, pp.395-405, 2011.
DOI : 10.1016/j.ydbio.2010.10.028

URL : http://doi.org/10.1016/j.ydbio.2010.10.028

D. Zhang, E. M. Schwarz, R. N. Rosier, M. J. Zuscik, J. E. Puzas et al., ALK2 Functions as a BMP Type I Receptor and Induces Indian Hedgehog in Chondrocytes During Skeletal Development, Journal of Bone and Mineral Research, vol.66, issue.9, pp.1593-1604, 2003.
DOI : 10.1359/jbmr.2003.18.9.1593

G. Zhang, B. B. Young, Y. Ezura, M. Favata, L. J. Soslowsky et al., Development of tendon structure and function: regulation of collagen fibrillogenesis, J. Musculoskelet. Neuronal Interact, vol.5, pp.5-21, 2005.

Q. Zhao, H. Eberspaecher, V. Lefebvre, D. Crombrugghe, and B. , Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis, 4<377::AID-AJA5> 3.0.CO, pp.377-386, 1997.