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Abstract

This contribution explains how the topological methods of analysis of the electron density and related functions such
as the electron localization function (ELF) and the electron localizability indicator (ELI-D) enable the theoretical
characterization of various metal-metal (M-M) bonds (multiple M-M bonds, dative M-M bonds). Examples are taken
in both bulk metals, alloys and molecular complexes. Metallic bonds as well as weak partially covalent M-M in-
teractions, are described and characterized unambiguously combining AIM (atoms in molecules) and ELF/ELI-D
topological analysis.
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1. Introduction

Among the 88 metallic elements, 20 belong to the main groups, 40 to the transition periods, 14 to the lanthanides
and 14 to the actinides offering a potentially large panel of metal-metal (M-M) bonding situations. M-M bonding is
encountered in a wide variety of molecular compounds or crystalline systems such as bulk metals, alloys, supercon-
ducting materials, Zintl-Klemm phases. Although compounds featuring M-M bonds are known for many decades, the
chemistry of M-M bonds is still a hot topic as attested by several reviews dedicated to recent advances in both main
group and transition element chemistry [1–5]. Compounds with homometallic or heterometallic extended metal atom
chains (EMACs) are considered as potential molecular wires [3, 6, 7].

For a given metal, the M-M interatomic distance can be modulated by a suitable choice of the number and the
nature of the ligands which implies specific synthesis approaches. The evidence by X-ray crystallography of a very
short Re-Re distance in the [ReCl8]2– dianion [5, 8, 9] identified later as a quadruple bond [10] is a significant landmark
in inorganic chemistry. It opened the way of a rich chemistry of multiple M-M bonding in bimetallic complexes[8–10]
as illustrated by the Cr-Cr distances ranging from 1.7056 Å[11] to 2.498 Å in the bulk metal and even to 2.612 Å[12].
The wealth and diversity of M-M bonding across the transition element series has no equivalent in rare-earth metals,
but recent compounds involving heavy main group elements such as Sn, Pb, Sb or Bi complexes [13–15] challenges
the long-held assumption that multiple bonds are stable only between first-row elements.

The interpretation of the bonding requires at least pieces of information concerning the geometry, the charge den-
sity, the spin state of the metallic centres and the curvature of the energy hypersurface at the equilibrium. These
data can be either obtained by experimental techniques such as single-crystal X-Ray Diffraction (XRD), X-Ray pho-
toelectron spectroscopy (XPS), vibrational, Nuclear Magnetic Resonance (NMR), Electron Spin Resonance (ESR),
Electron spectroscopy for chemical analysis (ESCA), electronic spectroscopies [12, 16] or by quantum mechanical
calculations. Which are the pieces of information available by experiment?

1. M-M distance from XRD analysis;

2. Electron density maps: X-ray scattering, incorrectly termed as “experimental densities” fit of promolecular
density;

3. Number of interacting metal atoms from NMR coupling constants or ESR hyperfine structures;

2



4. Bond strength from Raman M-M force constants, from δ→ δ∗ electronic transitions or from X-ray photoelec-
tron spectroscopy XPS (δ bond only [17]);

5. Oxidation state from NMR and XPS [18, 19] or from electrochemical measurements;

6. Enhanced photoluminescence because of LMMCT excited states (electronic spectroscopy).

Molecular M-M bonding is primarily characterized by the intermetallic distance in the crystal structure. A M-M
interaction is anticipated when the intermetallic distance is shorter than the sum of van der Waals radii (and comparable
to the sum of covalent radii) of the metal atoms. Pt(II)-Pt(II) bonding was indeed assumed in switchable platinum
tweezers on the basis of intermolecular Pt-Pt distances of 3.21 Å shorter than twice the van der Waals radii of Pt,
namely 3.44 Å (covalent radii of Pt 1.4 Å) [20]. The intermetallic distance criterion should however be taken with
care, because molecular charge, bridging ligands, symmetry or crystal packing forces may significantly influence the
M-M contacts and rule out any quantitative relationship between the M-M distance and bond strength [21].

Besides short intermetallic distances, M-M bonding exhibit unique spectroscopic signatures. Nuclear Magnetic
Resonance signatures of M-M bonding are:

1. A downfield shift of the NMR signal of either the metal nuclei or a proximal nuclei of the ligands with non-
zero nuclear spin, that are strongly affected by the M-M bonding [22]. A strongly deshielded resonance of δ =

1142.3 ppm in the 199Hg NMR spectrum was assigned to the [Hg−Hg]2+ unit [22, 23]. 1H NMR chemical shift
of methylene protons by as much as 3.5 ppm was reported in d10−d10 bimetallics [21].

2. Large 1J(M,M) or 1J(M,13C) coupling constants. In a trinuclear silver-carbene complex with three short Ag–
Ag distances (av. 2.724 Å), the 13C NMR signal for the carbon atoms of the N-heterocyclic carbene ligand
shows all the expected 1J(107,109Ag,13C) couplings which are compatible with significant interactions between
the three silver atoms [24].

3. Electron Spin Resonance may be used for open-shell polymetallic complexes: the intramolecular antiferromag-
netic coupling of two Cu(II) centres was evidenced by the characteristic half-field ESR signal [25]. The number
of bonded metal atoms may be also evidenced through the hyperfine structure of the ESR signal of the radical
formed upon oxidation of the polynuclear complex [21, 26].

4. M-M bond strength from infrared and Raman spectroscopy: although difficult to detect, the low frequency
Raman M-M stretching and corresponding force constant may be used to estimate the M-M bond strength.
Aurophilic interactions have been therefore reported significantly stronger (ν(Au-Au) = 88 cm−1, force constan
f = 0.449 mdyn Å−1) than argentophilic interactions in cyclic diphosphine dinuclear dicationic complexes of
comparable M-M distance (ν(Ag-Ag) = 80 cm−1, force constant f = 0.203 mdyn Å−1) [16])

5. M-M bonding studies using electronic spectroscopy: in tetrathiomolybdatorhodium(I) monoanionic complexes,
the maximum absorption band was found to involve a charge transfer ν(Rh→Mo) electronic transition, the
wavelength of which correlates linearly both with Tolman’s electronic parameter of the phosphite ligands and
the calculated HOMO-LUMO gap of the complexes [27]. The red-shifted photoluminescence observed in bi-
and polynuclear silver complexes was assigned to Ligand to Metal Charge transfer (LMCT) emissions perturbed
by the short Ag-Ag contacts (LMMCT electronic transitions) [16]. Delta-bonding electrons should manifest a
δ → δ∗ transitions, which can indirectly probe the M-M bond strength [28]. For example δ2 → δδ∗ transitions
in quadruply bonded complexes are well-known, but reports of δ4 → δ3δ∗ transitions in quintuply bonded
species are missing [21]. Upon oxidation of the polynuclear complex, a mixed-valence complex may be formed.
Depending on the strength of the coupling of the metal centres, an intervalence charge transfer absorption band
in the near-infrared range, signature of the class of the mixed-valence complex may be observed [26].

The bonding between two or more metallic elements is described in physics and in chemistry by several simple
models. Bulk metals and alloys are currently explained by the band structure theory and implies the closure of the
energetic gap between the valence and conduction bands [29, 30]. This combined energetic-orbital picture is related to
the reciprocal space representation of the crystal. In the absence of a direct space representation, the metallic bond is
rather difficult to include in any general chemical theory of the bonding. For example, G. N. Lewis has not considered
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the metallic bond in his classical textbook [31] while Pauling describes it as a partial covalent bond between nearest
neighbour atomic centres [32]. This covalent description has been more recently advocated by Anderson et al. [33]
and by L. C. Allen and J. Capitani [34] in order to remove the metallic bond from the vocabulary of Chemistry.
The simplest model, the jellium model, describes a bulk metal or alloy as a periodic array of positively charged
ions embedded in a uniform homogeneous gas. The interstitial-electron model (IEM) has been developed in the
generalized-valence-bond method by Mo and Goddard [35] for lattice dynamics in close-packed structures which
considers orbitals centred in the tetrahedral site at equilibrium, but able to shift position adiabatically under lattice
vibrations.

The bonding in molecular polymetallic complexes is usually interpreted in the framework of the Molecular Orbital
(MO) theory. A very detailed survey has been written by Mc Grady [36]. In addition to standard σ and π bonds, δ
bonds have to be considered in the case of transition metals [37] as well as φ-OMs for lanthanides and actinides. The
MO analysis provides bond orders which can formally reach 6 for an approximate single determinant wave function
but which are lowered when a more accurate description of the bond, using a bonding orbital and its anti-bonding
counterpart, is considered [38].

An example of application of MO analysis may be found in the report about the mixed-valence tri-Zinc complex,
[LZnZnZnL] (L = bulky amide) bearing a linear chain of two-coordinate zinc atoms [39]. NBO and NPA analyses of
the compounds revealed that their Zn-Zn bonds have a significant covalent Zn-Zn σ-bonding character (Wiberg bond
index of the Zn-Zn σ-bonding WBO = 0.68).

M-M bonds may be first classified into supported or unsupported interactions depending on the absence or pres-
ence of a bridging ligand between the metal atoms [36].

Table 1: Formal bond orders and electronic configuration of the M-M bond resulting from two interacting metal
centres in D4h symmetry.

Interaction type Formal bond order Electronic configuration
d1 − d1 Single bond σ2

d2 − d2 Double bond σ2π2

d3 − d3 Triple bond σ2π4

d4 − d4 Quadruple bond σ2π4δ2

d5 − d5 Triple bond σ2π4δ2δ∗2

d6 − d6 Double bond σ2π4δ2δ∗2π∗2

d7 − d7 Single bond σ2π4δ2δ∗2π∗4

d8 − d8 No-bond σ2π4δ2δ∗2π∗4σ∗2

In molecular systems, three classes of M-M bonding may be further derived from an orbital diagram restricted to
d orbitals interactions and electron countings in a square-planar ligand field. as shown by Figure 1:

– Covalent multiple M-M bonding. It is the most common type of M-M bonding. Formal bond orders up to
four may be derived by filling the d orbitals with one electron coming from each metal centre (Table 1). The
quadruple M-M bond related to a σ2π4δ2 electronic configuration is obtained for the optimum d4 − d4 interac-
tion. Generally σ-bonding plays by far the dominant role, while π and δ components are of lesser importance
[36]. Similarly to charge-shift bonds, such M-M bonds are indeed at the borderline of the electron-shared and
electron-unshared interactions [40].

– Dative M-M bonding. One metal uses a filled d orbital lone pair to coordinate to an empty orbital of a second
metal more unsaturated [41].

– Weak M-M interactions due to symmetry. Based on the above MO diagram, d8 − d8 systems shouldn’t have any
M-M bonding due to the filling of all the M-M antibonding orbitals, which cancels out the M-M bonding orbitals
(Table 1). However, few bi- or polymetallic d8 complexes do show the presence of weak M-M interactions. For
example, the rhodium and iridium tetrakis(phenylisocyanide) [M(CNPh4]+ complexes form oligomeric M-M
bonded stacks both in solution and in the solid-state [42]. Because of symmetry, molecular orbital interaction
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Figure 1: Molecular diagram restricted to d orbitals for two interacting metal centres in D4h symmetry.

between both dz2 orbitals of the metal centres with the pz and π∗ orbitals of the isocyanide ligand pushes the
filled orbitals down in energy [43]. This generates a weak M-M bond, strong enough, however, to allow these
complexes to form M-M bonds even in solution. Non-covalent weak attractive d10 − d10 interactions, referred
to as metallophilic interactions are also well-known in homo-or heterometallic transition element clusters and
have been reviewed recently [16, 44].

The MO interpretation provides quantum chemical explanations for the understanding of the bonding in polymetallic
compounds. Though this method has proved its efficiency in both predictive and interpretative purposes, it has a con-
stitutive epistemological weakness because it mostly relies on the interpretation of the approximate wave function in
terms of its atom related components rather than upon observable quantities. As pointed out by Coulson [45]: “This
epistemological difficulty is mostly due to the weakness of interpretative methods that give a physical significance to
quantities, such as molecular orbitals or valence bond structures, appearing as intermediates during the course of so-
lution of the many-body Schrödinger equation”. In another approach, no more than quantum mechanics interpretative
postulates is required and no approximation is considered in the principles. Theories derived accordingly should [46]
“provide the mathematical bridge between the chemical intuition and wave mechanics, which may be considered as a
theoretical justification of the main chemical ideas.” Several interpretative methods have been developed in this spirit:
the loge theory [46–50], the Quantum Theory of Atoms in Molecules (QTAIM)[51–62], the topological analysis of the
electron localization function(ELF) [63–67] and of the electron localizability indicator (ELI) [68–70] as well as the
determination of maximum probability domains [71–73] and the determination of the electron number probability dis-
tribution functions [74–77]. Among these different methods, only those based on the topological analysis of gradient
dynamical systems, namely QTAIM, ELF and ELI-D analyses, have been applied so far to compounds involving M-M
bonds. The aim of this tutorial review is to show how these topological analyses provide pieces of information which
help to understand the M-M bonding. A first section provides a detailed presentation of the QTAIM and ELF/ELI-D
methods of analysis, it is followed by three section describing the applications to a specific class of compound: bulk
metals and alloys, M-M two centre bonds in molecular systems, multicentre polymetallic bonds in molecular systems
and small aggregates. Each of these sections is divided in three subsections according to the chemical composition of
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the investigated compounds (i.e. main group elements, transition element, lanthanides and actinides, heterometallic
systems). For each subsection an example will be discussed in a detailed tutorial fashion.

2. AIM and ELF analysis overview

The term Quantum Chemical Topology (QCT) has been introduced by Popelier and Aicken [78] to encompass
the study of various molecular vector fields by topological tools belonging to the mathematical theory of dynamical
systems. It has mostly been applied not only to the electron density in the framework of the Quantum Theory of
Atoms in Molecules [58, 61, 79–83] but also to other scalar fields such as those of the Laplacian of the electron
density [84], of the Becke and Edgecombe electron localization function [64, 85], of the source function [86–90], of
the Electron Localization Indicator (ELI-D) [68–70], of the Fukui function [91] and non-scalar fields [92]. Since these
methods share a common mathematical background and vocabulary, it appears useful to us to present the common
features before considering the aims and possibilities of the QTAIM and ELF approaches which is the subject of this
review. The dynamical system theory is a branch of mathematics which deals with the analysis of the behaviour of
vector fields bound on manifolds. Inspired by classical mechanics, it had been pioneered by Poncarsé, Lyapunov at
the end of the XIXth and by Birkhoff at the beginning of the XXth, it has been further developed in its contemporary
presentation in the 1960s and 1970s by mathematicians like Peixotto, Abraham, Palis, Smale [93–95]. The catastrophe
theory of René Thom is an example of a very fruitful branch of the dynamical system theory [96]. A practical example
of application of the dynamical system has been given a long time before the development of the mathematical theory
by the partition of land made in hydrology in terms of drainage basins limited by watersheds. The mathematical
vocabulary used in the dynamical system and consequently in QCT is given in appendix A.

2.1. Population analysis based on dynamical system partitioning

The dynamical system theory provides a partition of real space occupied by a molecule or a crystal in terms of
space-filling non-overlapping basins. The evaluation of the properties associated with a given basin is conceptually
straightforward provided the relevant density of property is available. In quantum mechanics the density of property
is defined as:

ρA(r) =

∫
Â(r,p)F(r,p)dp (1)

where Â(r,p) is a one electron operator and F(r,p) the joint distribution of position and momentum. Although it is
not possible to define the joint distributions in quantum mechanics, it is possible to introduce a so-called phase-space
quasi distributions, such as the Wigner function [97], in order to get an expression which yields the proper expectation
value of the operator when integrated over all space. The quasi distributions are built up from correspondence rules
but, in general, do not fulfill the requirement of uniqueness [98]. For an operator which only depends upon the position
coordinates they are expressed as the product of this operator and the electron density function, i.e.

ρA(r) = A(r)ρ(r) (2)

Basin properties, 〈Â〉ΩI , are calculated by integrating the densities of property over the volume of the basin labelled
by ΩI :

〈Â〉ΩI =

∫
ΩI

ρA(r)dr (3)

The partition in spin components is achieved considering the α and β spin electron density instead of the total density.
The α population (Eq. 4), β population (Eq. 5), total population (Eq. 6) and integrated spin density (Eq. 7) are given
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below:

N̄α[ΩI] =

∫
ΩI

ρα(r)dr (4)

N̄β[ΩI] =

∫
ΩI

ρβ(r)dr (5)

N̄[ΩI] = N̄α[ΩI] + N̄β[ΩI] =

∫
ΩI

ρ(r)dr (6)

〈S z〉ΩI =
1
2

(
N̄α[ΩI] − N̄β[ΩI]

)
(7)

The electrostatic multipoles of basins are defined as the negative integral over volume of the product of electron
density distribution and a multipole operator Qm

l (r − rc), here expressed on the basis of the spherical harmonics:

〈Qm
l 〉ΩI = −

∫
ΩI

Qm
l (r − rc)ρ(r)dr (8)

Except for the unipole (l = 0), the multipole operators are origin dependent. As a general rule, the origin is taken at
the attractor of the basin.

The generalization to two-electron properties is done by substituting one-electron densities by pair functions, the
integration is then performed over the same basin volume or over two basins. Particularly interesting are the pair
populations:

Π̄αβ[ΩI ,ΩJ] =

∫
ΩI

∫
ΩJ

παβ(r, r′)drdr′ (9)

Π̄αα[ΩI ,ΩJ] =

∫
ΩI

∫
ΩJ

παα(r, r′)drdr′ (10)

Π̄ββ[ΩI ,ΩJ] =

∫
ΩI

∫
ΩJ

πββ(r, r′)drdr′ (11)

Π̄[ΩI ,ΩJ] =

∫
ΩI

∫
ΩJ

π(r, r′)drdr′ (12)

The populations are averaged values which can be expressed as the expectation value of the population operator
[99].

N̂[ΩI] =

N∑
i

ŷ(ri) with ŷ(ri)
{

ŷ(ri) = 1 ri ∈ ΩI

ŷ(ri) = 0 otherwise

where N is the number of electrons of the system. The eigenvalues of the population operator belong to the series of
integer 0, . . . ,N and represent all the accessible numbers of electrons within ΩI . The eigenvalues of the population
operators of ithe different basins spanning the entire space are correlated since they also obey the closure relation∑

I

N[ΩI] = N (13)

which enables to carry out a statistical analysis of the basins populations through the definition of a covariance matrix
[100]. The covariance operator is a matrix operator whose elements are deduced from the classical expression of the
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covariance:

σ̂2(ΩI ,ΩI) = N̂[ΩI]N̂[ΩI] − N̄[ΩI]2 = Π̂[ΩI ,ΩI] + N̂[ΩI] − N̄[ΩI]2 (14)

σ̂2(ΩI ,ΩJ) = N̂[ΩI]N̂[ΩJ] − N̄[ΩI]N̄[ΩJ] = Π̂[ΩI ,ΩJ] − N̄[ΩI]N̄[ΩJ] (15)

the expectation value of which

〈σ2(ΩI ,ΩI)〉 = Π̄[ΩI ,ΩI] + N̄[ΩI](1 − N̄[ΩI]) (16)
〈σ2(ΩI ,ΩJ)〉 = Π̄[ΩI ,ΩJ] − N̄[ΩI]N̄[ΩI] (17)

provide a measure of the delocalization of the electrons among the basins. Moreover, the covariance matrix element
operators as well as their expectation values satisfy:∑

J

σ̂2(ΩI ,ΩJ) = 0 (18)∑
J

〈σ2(ΩI ,ΩJ)〉 = 0 (19)

as a consequence of Eq. 13

2.2. The QTAIM method
The Quantum Theory of Atoms in Molecules (QTAIM), which has been developed since 1972 by Richard F. W.

Bader and his coworkers, relies on the partition of the position space in terms of the basins of the attractors of the
density gradient field ∇ρ(r). The motivation is to be found in the papers published in 1972 [101] and 1973 [102]
where the kinetic energy integrated over fragments bounded by zero-flux surfaces of the density function, S (Ω; rs), is
shown to have a definite value. This follows from the general expression of the kinetic energy density:

T (r) = Ts(r) + a∇2ρ(r) (20)

where Ts(r) is the definite positive kinetic energy and a an arbitrary multiplicative constant. The condition for a
definite integrated kinetic energy density is that the integral of ∇2ρ(r) vanishes, which happens when the integration is
performed over the whole space or, according to the divergence theorem, if the bounding surface is a zero flux surface:∫

Ω

∇2ρ(r)dr =

∮
S

n(r) · ∇ρ(r)ds = 0 (21)

where n(r) denotes a unit vector normal to S (r) at point r. The virial theorem provides a simple relationship between
the kinetic, 〈T̂ 〉, and potential, 〈V̂〉 energies of a quantum system. For a molecule at its equilibrium geometry:

−2〈T̂ 〉 = 〈V̂〉 (22)

It is possible to derive an analogous equation for a subsystem Ω, provided its kinetic energy has a definite value, in
other words that eq. 21 be satisfied. In the case:

E(Ω) = −

∫
Ω

Ts(r)dr (23)

The domain energy is therefore defined in each fragment Ω such as a local variational principle holds enabling the
virial and hypervirial theorems to be proved [103]. Collard and Hall [104] recognized the basins of the attractors of
∇ρ(r) in the fragments provided by the virial partitioning. The QTAIM is rooted on firm mathematical and quantum
mechanical foundations, it provides an acknowledged theoretical framework for the study of the chemical bonding
giving access to both rigorous qualitative and quantitative information. Being based on an observable quantity, this
theory applies to both experimental and calculated densities.
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2.2.1. The QTAIM basins
Large maxima of the charge density are located at the nuclear positions RA, and therefore these points are only

ω-limits for the trajectories of ∇ρ(r). In this sense, they are attractors of the gradient field, although they are not
critical points as the nuclear cusp condition makes ∇ρ(RA) not defined. The stable manifold of the nuclear attractors
are the atomic basins. Non-nuclear attractors (NNAs) occur in metal clusters [105–108] and bulk metals [109] at
their equilibrium geometry and between homonuclear groups at internuclear distances far away from the equilibrium
geometry [110].

In the QTAIM approach, an atom is defined as the union of a nucleus and of its atomic basin. It is either limited
by zero-flux surfaces, the interatomic separatrices, or extends to infinity. It is therefore an open system bounded by its
zero-flux surfaces for which a Lagrangian formulation of quantum mechanics [58, 61, 62, 81, 111, 112] enables the
derivation of many theorems such as the atomic force theorem:

m
∫
Ω

∂J(r)
∂t

dr =

∫
Ω

dr
∫

Ψ∗(−∇V̂)Ψdτ′ +
∮
←→σ (r) · n(r)dS (r) (24)

the atomic virial theorem:

m
∫
Ω

r ·
∂J(r)
∂t

dr = 2T (Ω) +

∫
Ω

dr
∫

Ψ∗(−r · ∇V̂)Ψdτ′ +
∮

r · ←→σ (r) · n(r)dS (r) (25)

In the latter equation, T (Ω) is the kinetic energy of the atom, J(r) the current density:

J(r) = −
ı~
2m

∫
{Ψ∗∇Ψ − Ψ∇Ψ∗} dτ′ (26)

and←→σ (r) the stress tensor density:

←→σ (r) =
~2

4m

∫
{(∇∇Ψ∗)Ψ − ∇Ψ∗∇Ψ − ∇Ψ∇Ψ∗ + Ψ∗∇∇Ψ} dτ′ (27)

In a molecule, an atom has parts which extend to infinity. It is bounded by the interatomic surfaces inside the molecule
and unbounded outside.

2.2.2. Bond path, molecular graph and definition of the molecular structure
The connectivity of the critical points of the electron density gradient field provides a characterization of its

topology and of the molecular structure.There are four types of critical points in R3 summarized in Table 2. Instead
of the index IP a couple of integers (r, s), the rank and the signature, is used to characterize the critical points in the
QTAIM framework. The rank is the number of non-zero eigenvalues of the Hessian matrix and the signature is the
algebraic sum of their signs. A critical point is connected by the trajectories belonging to its unstable manifold to

Table 2: Critical points of the charge density gradient field. Index IP, rank r, signature s. The dimensionality of the
stable and unstable manifolds are respectively 3 − IP and IP.

IP (r, s) stable manifold

attractor (peak) 0 (3,-3) basin
bond critical point (pass) 1 (3,-1) separatrix
ring critical point (pale) 2 (3,+1) separatrix
cage critical point (pit) 3 (3,+3) empty

critical points of the lower indexes. A critical point of index 1 is called bond critical point (BCP). It is connected to
two attractors as the dimension of its unstable manifold, the bond path, is also 1. The index of a ring critical point
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(RCP) is 2. It is connected to at least three attractors and BCPs, whereas critical points of index 3, the cage critical
points are connected to four or more non coplanar attractors.

The bond paths are the lines of maximum density linking the neighbouring atoms. Keith et al. have demonstrated
the structural homeomorphism between the negative of the virial fieldV(r) and the electron density [113]. Both have
their attractors located at the nuclear position, which are linked by pairs of trajectories to BCPs [114]. Exceptions to
this rule have been evidenced for piano-stool complexes, such as (η3-C3H3)Co(CO)3, in which the region between the
metal centre and the carbocyclic ligand is characterized by a very flat density [115].

A molecular graph is defined as the set of the unstable manifolds of the index 1 critical points of the charge
density gradient field, in other words the set of the bond paths linking each BCP to its associated nuclei. Within a
given structural stability domain (SSD), all molecular graphs have the same topology and are therefore equivalent;
they form an equivalence class called molecular structure [116].

2.2.3. The QTAIM population analysis
The integration of the electron density over the atomic basins provides the atomic population, N̄(A), and the

atomic charge, Q(A), by subtracting the atomic population from the atomic number, Q(A) = ZA − N̄(A). With respect
to orbital based populations, the QTAIM approach generally yields larger absolute values of the net charges than
the Mulliken, Löwdin, Natural Population Analysis (NPA) and Hirshfeld population analyses. This has been often
interpreted as a spurious overestimation of the ionic contribution to the bonding [117], possibly due to the fact that
the location of the zero-flux surface ”depends on atomic sizes, which ought otherwise irrelevant” [118]. The reason
of this criticism was shown irrelevant and due to simplistic and erroneous assumptions in the models adopted to claim
the spurious “size effect” on QTAIM populations [119]. This criticism also originates in the belief of chemists that
the charge distribution in the atomic basin is spherical and isotropic, so that the atomic charge directly reproduce
the dipole moment, which is not the case. The anisotropy of the charge distribution in atomic basins can be further
described by nucleus centred multipole distributions [120]. Moreover, the calculation of orbital contributions to the
basin population can be achieved in order to analyze charge transfers and substituent effects [120].

The bond order interpretation has been pioneered by Cioslowski and Mixon [121] for closed-shell Hartree-Fock
(HF) wave functions. The bond order BAB is expressed in terms of the diagonal elements of the molecular orbital, ϕi,
overlap matrix over the atomic basins A and B:

BAB = 2
∑

i

〈i|i〉A〈i|i〉B (28)

where
〈i|i〉A =

∫
A

ϕi(r)ϕi(r)dr

This definition based on the decomposition of the total integrated density into atomic and diatomic contributions, is a
generalization of the Wiberg bond indexes [122] WAB, avoiding the assignment of basis functions to individual atoms.

The analysis of the pair function usually made in the QTAIM framework, relies on a decomposition of this function
in two contributions, a non-interacting one and the exchange-correlation density Πxc(r, r′):

Π(r, r′) = ρ(r)ρ(r′) + Πxc(r, r′) (29)

The integrals of the exchange-correlation density over the basins ΩA and ΩB:

F(ΩA,ΩB) =

∫
ΩA

dr1

∫
ΩB

Πxc(r1, r2)dr2 (30)

satisfy the sum rule: ∑
B

F(ΩA,ΩB) = −N̄[ΩA] (31)

Different complementary interpretations have been given to these integrals. Bader and Stephens consider F(ΩA,ΩA)
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and F(ΩA,ΩB) respectively as the measure of the total correlation within ΩA and of the inter-basin correlation. Ángyan
et al. [123] working with Mayer’s definition of bond orders [124, 125] identify −F(ΩA,ΩA) as a free valence index
and F(ΩA,ΩB)+F(ΩB,ΩA) as a topological bond order. This interpretation has been criticized by Fradera et al. [126],
because F(ΩA,ΩB) + F(ΩB,ΩA) which is related to the number of electrons shared by ΩA and ΩB does not determine
the number of electron pairs. For this reason, λ(ΩA) = −F(ΩA,ΩA) and δ(ΩA,ΩB) = F(ΩA,ΩB) + F(ΩB,ΩA) are
respectively called localization and delocalization indexes (DI). A connection with the Wiberg indexes and further
with the effective pair populations [127] has been made for F(ΩA,ΩB) by Ponec and Uhlik [128]:

WAB = 2Πeff
AB = −2F(ΩA,ΩB) (32)

In fact, as discussed by Bochicchio et al. [129], there is not a strict equality between the effective pair populations
and −F(ΩA,ΩB). The definition of multicentre bond indexes can be achieved by a generalization of the covariance
operator (Eq. 15), for example the three-centre bond index is the expectation value of the operator [130]:

ÎABC =
(
N̂(ΩA) − N̄(ΩA)

) (
N̂(ΩB) − N̄(ΩB)

) (
N̂(ΩC) − N̄(ΩC)

)
(33)

which implies that the actual calculation of the three centre bond indexes requires the third order density distribution
function. As a general rule, the three-centre two-electron (3c − 2e) bonds have positive indexes whereas the three-
centre four-electron (3c − 4e) ones have negative indexes.

2.2.4. Energy partitioning in the QTAIM framework
In actual calculations the virial theorem is not exactly fulfilled and for an equilibrium geometry the ratio γ =

〈V̂〉/〈T̂ 〉 = −2 is not satisfied. The error in the molecular virial is corrected by multiplying each atomic kinetic energy
by −γ − 1 such as the corrected atomic energies Ee(ΩA) = (γ + 1)T (ΩA) sum to the total energy [58, 131]. The
transferability of atomic energies in organic molecules has been discussed by Mandado et al. [132] who conclude that
the virial correction should be avoided in order to get transferable energies and by Cortés-Guzmán and Bader [133]
who recommend a self consistent virial scaling procedure. The atomic electronic energy is the sum of the kinetic
energy contribution T (ΩA) and of the basin virialV(ΩA):

Ee(ΩA) = T (ΩA) +V(ΩA) = T (ΩA) +

∫
ΩA

Tr←→σ (r)dr (34)

which can be expressed as the sum of four components arising from the action of −r · ∇ on the potential energy
operator V̂:

V(ΩA) = Ven(ΩA) +
∑

B

RB · FB(ΩA) + Vee(ΩA) +
∑
B,A

V(ΩA,ΩB) (35)

where
Ven(ΩA) = −

∑
B

∫
ΩA

ZB

|r − RB|
ρ(r)dr (36)

is the interaction energy of the density in basin ΩA with the nuclei,

Vee(ΩA) = Vee(ΩA,ΩA) +
∑
B,A

Vee(ΩA,ΩB)

=
1
2


∫
ΩA

∫
ΩA

Π(r, r′)
|r′ − r|

drdr′ +
∑
B,A

∫
ΩA

∫
ΩB

Π(r, r′)
|r′ − r|

drdr′
 (37)
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is the electron-electron repulsion which is equal to the sum of the electron-electron repulsion within ΩA and half the
electron-electron repulsion between ΩA and the remaining basins,

FB(ΩA) = −ZB

∫
ΩA

(r − RB)
|r − RB|

3 ρ(r)dr (38)

is the force exerted on the charge density of ΩA by the nucleus of atom B, for equilibrium geometries

−
∑

A

∑
B

RB · FB(ΩA) =
∑
A>B

ZAZB

|RB − RA|
= Vnn (39)

and

V(ΩA,ΩB) =

∫
ΩA

∫
ΩB

(
r′ · ∇r′ − r · ∇r

) Π(r, r′)
|r′ − r|

drdr′ (40)

a remaining term arising of the action of the virial operator on the two-electron Coulomb operator which vanishes for
the total system.

The Interacting Quantum Atoms (IQA) approach [134–137] is based on the QTAIM partitioning. It provides a
decomposition of the energy of a molecule into atomic and diatomic contributions:

E =
∑

A

(T (ΩA) + Ven(ΩA) + Vee(ΩA,ΩA)) +
∑
B,A

Vee(ΩA,ΩB) +
∑
A>B

ZAZB

|RB − RA|

=
∑

A

(T A + VAA
en + VAA

ee ) +
∑
A>B

(VAB
nn + VAB

en + VAB
ne + VAB

ee )

=
∑

A

EA
self +

∑
A>B

EAB
int (41)

The atomic deformation energy EA
def is defined as the difference of EA

self and an energetic reference EA,0
self . This enables

to compute the binding energy as: Ebind =
∑
A

EA
def +

∑
A>B

EAB
int . The decomposition of the pair function into a classical

Coulombic part and an exchange-correlation contribution (29) enables to divide VAB
ee into a classical electrostatic term

VAB
C and a non-classical exchange-correlation term VAB

xc .
The evaluation of the two-electron terms is hampered by numerical difficulties and therefore attempts have been

made to compute VAB
C and VAB

xc with multipole expansions. The convergence of the atomic expansion of the electro-
static potential has been investigated by Kosov and Popelier [138, 139] and different schemes such as the continuous
multipole method [140] and the introduction of inverse moments [141] enabled the potential to converge everywhere.
The exchange energy can be also expressed in terms of an exchange multipole expansion where the exchange moments
explicitly depend on the molecular orbitals [142].

2.2.5. QTAIM characterization of the bonding
In the QTAIM framework, two kinds of quantities can be used in order to characterize the bonding. On the one

hand are the delocalization indexes which can be related to the degree of covalence and also to the bond multiplicity
and on the other hand is a series of local indicators calculated at the BCP. These indicators rely on the local expression
of the virial theorem: [58]

1
4
∇2ρ(r) = 2G(r) +V(r) (42)

where G(r) ≡ Ts(r) is the definite positive kinetic energy and V(r) = Tr←→σ (r) is the virial potential energy density.
The sign of the Laplacian indicates which of the kinetic and potential energy densities locally dominates with respect
to the average value 〈∇2ρ(r)〉 = 0.0. Negative and positive values of the Laplacian at the BCP, ∇2ρb, are therefore
associated respectively to “shared” and “closed-shell” interactions [58, 143]. The other BCP indicators are the Gb/ρb

ratio [143], the energy density at the BCP Hb = Gb +Vb introduced by Cremer and Kraka [144–146] the |Vb|/Gb

dimensionless ratio [147] and Hb/ρb. These additional indicators enable to refine the classification of interactions and
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to approach the current chemical terminology. Bianchi et al [148] proposed the classification of Table 3 based on the
values of ρb, ∇2ρb, Gb, Vb and Hb. This classification says nothing on important bonding types such as hydrogen
bonding or metallic bond. The |Vb|/Gb ratio distinguishes three bonding regimes limited by two values, 1 and 2,

Table 3: Trends of the BCP descriptors according to Bianchi et al [148]. ρb: density at the BCP, ∇2ρb: Laplacian of
the density at the BCP, Gb: kinetic energy density at the BCP,Vb: virial potential energy at BCP, Hb: energy density
at BCP. Gb, |Vb| and |Hb| increase from the top to the bottom of the table.

ρb ∇2ρb Gb Vb Hb

van der Waals low > 0 Gb � |Vb| < 0 > 0
ionic low > 0 Gb � |Vb| < 0 > 0
M-M low > 0 Gb � |Vb < 0 < 0
dative low > 0 Gb � |Vb| < 0 < 0
polar-covalent high < 0 Gb � |Vb| � 0 � 0
covalent high < 0 Gb � |Vb| � 0 � 0

of this ratio [147]. When |Vb|/Gb > 2, the importance of the potential energy in the local energy is larger than in
the averaged virial regime, the bond degree Hb/ρb is large and negative and its absolute value provides a measure
of the covalent character. This region is the shared-shell region. The intermediate or transit region corresponds to
1 < |Vb|/Gb < 2, the potential energy remains the dominant contribution to Hb. Therefore the bond degree is negative
and smaller than in the shared-shell region. Hb/ρb tends to zero as |Vb|/Gb approaches 1 whereas ∇2ρb is positive.
In the closed-shell region, |Vb|/Gb < 1, the kinetic energy is the leading contribution, the bond degree and ∇2ρb are
both positive; weak closed-shell interactions give rise to large bond degrees. Table 4 presents a third chart proposed
by Macchi et al. [149, 150]. It takes into account both local BCP indicators and two integral properties, namely
the delocalization index δ(A,B) and the electron density integrated over the whole interatomic surface

∮
AB ρ(rs)drs.

This latter quantity is expected large for shared interactions and small for closed-shell ones. In bulk metals ∇2ρb is

Table 4: Macchi’s classification based on local (BCP) and integral properties

bond type ρb ∇2ρb Gb/ρb Hb/ρb δ(A,B)
∮

AB
ρ(rs)drs

bonds between light atoms
covalent large � 0 < 1 � 0 ∼ formal bond order large
intermediate large any value ≥ 1 � 0 <formal bond order large
closed-shell small > 0 ≥ 1 > 0 ∼ 0 small
bonds between heavy atoms (Z > 18)
open-shell (e.g. Co-Co) small ∼ 0 < 1 < 0 formal bond order medium/large
donor-acceptor (e.g. Co-As) small > 0 ∼ 1 < 0 <formal bond order medium/large

generally positive [151, 152], but it may be negative as calculated for Al. The ratio ξ j = ρb/∇
2ρb has been introduced

by Jenkins [153] as metallicity index, it had been further reformulated [154] as:

ξm =
36(3π2)2/3

5
ρ2/3

b ξ j (43)

The classification due to Mori-Sánchez et al. [155] is dedicated to bonding in solids. It relies on three dimensionless
indexes, all in the [0,1] interval: the valence electron density flatness, f , the global charge transfer index, c, and the
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molecularity µ. The flatness is provided by the ratio

f =
ρmin

c

ρmax
b

(44)

where ρmin
c and ρmax

b are the minimum and maximum values of the density found at respectively cage and bond critical
points. The global charge transfer index is defined as:

c =
1
N

N∑
Ω=1

Q(Ω)
OS (Ω)

(45)

where Q(Ω) is the net charge of atom Ω, OS (Ω) is its nominal oxidation state. The sum runs over all atoms forming
the unit cell of the crystal. In ionic compounds Q(Ω) approaches the nominal oxidation number OS (Ω) for each atom
and the ratio of these two quantities measures the separation from the ideal ionic model for the Ω basin. Finally, the
molecularity is given by:

µ =

{
(ρmax

b − ρmin
b )/ρmax

b if ∇2ρmax
b × ∇2ρmin

b < 0
0 otherwise (46)

It is then possible to build a f − c − µ three-dimensional diagram in the spirit of the van Arkel-Katelaar triangle
[156–159] to characterize a given compound. This classification nicely works for isotropically bonded crystals but
both indexes are not well adapted to the case of layered crystals such as graphite or clay minerals.

The eigenvalues λ1, λ2 and λ3 of the Hessian matrix of ρ(r) at the BCP provide an additional piece of information
for the characterization of the bonding. By convention λ1 ≤ λ2 < 0 and λ3 > 0. The ratio λ1/λ2 measures the
anisotropy of the orthogonal curvatures and leads to the bond ellipticity ε = (λ1/λ2) − 1 which ranges from 0 to
infinity. The ellipticity is related to the π-character of the bond.

2.2.6. The Laplacian of the electron density
The topology of the charge density shows atoms in molecules, but nothing on the atomic shell structure or on the

Lewis model of electron pairing. The Laplacian of the charge distribution, ∇2ρ(r), reveals where the electron density
is locally concentrated and where it is depleted [160]. This follows from a property of the second derivative of a scalar
function expressed as a finite difference:

f ′′(x0) =
1
h2 ( f (x0 + h) + f (x0 − h) − 2 f (x0)) (47)

which shows that for f ′′(x0) < 0, f (x0) is greater than the average ( f (x0 +h)+ f (x0−h))/2 and therefore the function is
said concentrated at x0 whereas for f ′′(x0) > 0 the function is depleted (( f (x0 +h)+ f (x0−h))/2 > f (x0)). The regions
where ∇2ρ(r) < 0 are called charge concentrations whereas those for where it is positive are the charge depletions.
The negative of the Laplacian, denoted L(r) is often used instead of ∇2ρ(r). L(r) displays the shell structure of light
atoms as a succession of pairs of charge concentrations and charge depletions whereas for transition elements with
Z > 20, the pair corresponding to the valence shell is usually missing. The outermost region of charge concentration is
the valence shell charge concentration (VSCC) which persists upon bond formation but happens to be very distorted.
In a molecule, local maxima of L(r) are found in both bonding and non-bonding regions of the VSCCs; their number
and their size are found in general agreement with the pair domains of the VSEPR model providing a theoretical
support to the model [160, 161]. The correlation with the topological properties of the conditional pair probability has
been further discussed by Bader and Heard [162] who found a homeomorphism between the Laplacian of the charge
density and that of the conditional pair probability. Moreover, the maxima of the charge concentration of the core
outer shell explains why heavy alkaline-earth dihalides have bent geometries in contradiction with the VSEPR rules
[163]. A similar behaviour of external core shell charge concentrations can be found in transition element carbonyls
[164]. Figure 2 displays the 0.3 isocontour of the density Laplacian of ferrocene. The VSCCs correspond to the
atomic cores, to the C−H and to the C−C bonds. The iron core presents bulges in the ring centre directions.

The full topology of the Laplacian has been studied by Popelier [165]. As L(r) has both negative and positive
values, Popelier was led to consider four types of regions: the valence shell charge concentrations, the valence shell
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charge depletions (VSCDs), the core shell charge concentrations and the core shell charge depletions. The critical
points are organized in three graphs corresponding the valence and core charge depletion regions. The valence shell
charge concentration graph recovers the bonding and non-bonding maxima of the VSEPR picture, however bonds
often give rise to two colinear maxima as it can be seen in Figure 2. The integration of the density over the L(r)
gradient field basins is very disappointing. For instance one gets 0.96 e− for the core population of the ammonia
nitrogen atom [166] because the partitioning does not assign the whole density.

Figure 2: From left to right L(r) = −0.5, 0.0 and 0.5 isosurfaces of Fe(C5H5)2

2.2.7. The source function
The source function has been introduced by Bader and Gatti [86]. The density at a given point r can be expressed

as the sum of contributions from all the other points of the space, i.e.:

ρ(r) =

∫
LS (r, r′)dr′ (48)

The Local Source Function, LS (r, r′), is expressed as:

LS (r, r′) = −
∇2ρ(r′)

4π|r − r′|
(49)

It measures how the Laplacian of the density at r′ contribute to the density at the reference point. The magnitude
of the contribution is proportional to the Laplacian absolute value and to the inverse distance to the reference point.
The integral of the Local Source Function over a volume Ω called the Source Function contribution of Ω is denoted
by S (r,Ω). For space-filling non overlapping volumes, the electron density at r is the sum of the self-contribution
(r ∈ Ω) and of the contributions of all the remaining volumes (r < Ω), i.e.:

ρ(r) = S (r,Ω) +
∑
Ω′,Ω

S (r,Ω′) (50)

Therefore, the Source Function provides a measure of the importance of the contribution of an atom or group of atoms
to the density at a given point. In practice, the Source Function is evaluated at the bond critical points, the integration
being carried out over atomic basins. The Source Function percentage contribution of Ω [90, 167] is given by:

S %(r,Ω) =

[
S (r,Ω)
ρ(r)

]
· 100 (51)
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The population of any atomic basin N̄(Ω) can be expressed as the sum of a self-contribution N̄i(Ω) and of an outer
contribution N̄o(Ω), since

N̄(Ω) =

∫
Ω

S (r,Ω)dr +
∑
Ω′,Ω

∫
Ω

S (r,Ω′)dr (52)

As mentioned by Gatti et al. [87] this partition of the atomic population presents some analogy with the Mulliken’s
decomposition of the gross population into net and overlap components [168]. Such a partitioning is reminiscent of
the decomposition of the Mulliken’s gross population of an atom in two parallel contributions, the net population, and
one half of the overlap population.

2.3. The ELF and ELI-D approaches

Are partitions other than atomic significant? In chemistry we are used to think the matter not only in terms of
atoms, but also in terms of bond and lone pairs, so it would be highly desirable to develop techniques enabling the
partition of the molecular space into regions corresponding to such concepts.

2.3.1. How subatomic regions can be defined
The concepts of bond, lone pairs and associated domains do not emerge from quantum mechanics. They belong to

a successful explanatory representation of the matter designed by the chemistry community in which groups of elec-
trons account for the structural and chemical properties. Electron count is therefore essential in chemical explanation
of the structure and reactivity.

The proof of the pudding being in the eating, such groups of electrons should leave their footprints in an organiza-
tion of the electron density. In other words, it should be possible to find regions of space in which it is possible to find
a given number of electrons, typically two, with a high probability. The concept of loge has been introduced by Ray-
mond Daudel in 1953 [47]. The loges are space filling non-overlapping volumes “in which there is a high probability
of finding a given number n of electrons (but not always the same) with a certain organization of their spins.” [46]
The determination of the best loge partition is a difficult problem which can be handled with the help of the missing
information function [46]. However, the implementation of the procedure yields a huge numerical complexity which
restrict its applicability to systems containing very few electrons. The Maximum Probability Domains (MPDs) are
defined as regions of space which maximize the probability of finding a given number of electrons, n, inside them
[71, 72, 169]. The MPDs are neither unique nor constrained non-overlapping.

The assumption that groups of electrons can be localized within space filling non-overlapping domains implies that
eigenvalues of the domain population operators (Eq. 13), i.e. of the electron count, are peaked around characteristic
values, say N(Ω). Therefore the population N̄(Ω) should be close to N(Ω) and its variance which expresses the
spread of the measurements of the number of electrons within Ω, should be minimal with respect to a variation of the
domain boundaries. This proposition is illustrated in Figure 3 which displays the variance σ2 of the integrated density

N̄(rm) = 4π
rm∫
0
ρ(r)r2dr as a function of N̄(rm) for the calcium atom. The shell structure is fairly reproduced as the

local minima of σ2(N̄(rm)) occur at the expected values. The partition into non-overlapping variance region can be
achieved by minimizing either the Froebenius norm of the covariance matrix [170]:

||σ2||F =

 ∑
ΩA,ΩB

〈σ̂2(ΩA,ΩA)〉

1/2

(53)

or its trace:
trσ2 =

∑
ΩA

〈σ̂2(ΩA,ΩA)〉 (54)

The minimization of the variance with respect to the shell volumes implies that the variational equation

δ||σ2||F

δV
= 0 (55)
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Figure 3: σ(N̄(rm)) vs. N̄(rm) for Ca

can be rewritten in terms of a surface integral thanks to the Stokes-Ostrogradskii theorem:

δ||σ2||F

δV
=

∮
S

n · ∇η(r)ds = 0 (56)

in which η(r) is a scalar function for which the bounding surface S is a zero flux surface. The determination of η(r)
from the expression of ||σ2||F is hampered by the fact that σ2(N̄) involves a six dimensional integral and therefore
good candidates have to be found among the function which account for the atomic shell structure already available.
Ayers has introduced the covariance measure [170]

ξh
σ(ρ; r) = ρσ

∫
hσσ(r, r′)dr′ (57)

where hσσ(r, r′) is the Fermi hole around the position r.

2.3.2. The Electron Localization Function of Becke and Edgecombe
The Electron Localization Function (ELF) has been designed by Becke and Edgecombe to identify “localized

electronic groups in atomic and molecular systems” [85]. It relies, through its kernel, χ(r) on the Laplacian of the HF
conditional same spin pair probability scaled by the homogeneous electron gas kinetic energy density:

χ(r) =
Dσ(r)
D0
σ(r)

(58)
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in which

Dσ(r) = τσ(r) −
1
4
|∇ρσ(r)|2

ρσ(r)
(59)

where τσ(r) is the σ spin contribution to the positive definite kinetic energy density. For a closed-shell singlet Dσ(r)
is the difference between the total positive definite kinetic energy density Ts(r) and the von Weizsäcker kinetic energy
density functional TvW (r) [171]:

Dσ(r) = Ts(r) − TvW (r) (60)

whereas
D0
σ(r) =

3
5

(6π2)2/3ρ5/3
σ (r) (61)

is the kinetic energy density of the homogeneous electron gas of density ρσ(r). χ(r) provides a good approximation to
Ayers’s local covariance measure. In order to confined the function in the [0, 1] interval, a Lorentzian form has been
adopted for the ELF:

ELF(r) =
1

1 + χ(r)2 (62)

ELF fairly reproduces the shell structure of atoms even for heavy atoms for which other method fails.
Many other interpretations of ELF have been given so far in order to get expressions beyond the HF approximation

or to provide relationships with other theoretical tools. Savin et al. have extended the ELF formula validity to
DFT and Kohn-Sham orbitals. In this case the ELF kernel has the physical meaning of the ratio of the local excess
kinetic energy density for the actual system and for the same density jellium. Orbital-based interpretations of ELF
have been proposed by Burdett [172] and by Nalewajski et al. [173], who considered the non-additive interorbital
Fisher information. Another route pioneered by Dobson [174] explicitly considers the pair functions. It has been
independently developed by Kohout et al. with the Electron Localization Indicator (ELI) [68, 70] and by one of us
[175], with the spin pair composition cπ(r) enabling to generalize ELF to correlated wave functions [176, 177].

The Electron Localization Indicator is based on the restricted population approach which considers two local
properties. On the one hand is the control property, ω, used to partition the space into mutually exclusive micro-cells
Ωi centred around the position ri, such as the integrated value of property ω has a fixed value. On the other hand,
for ELI Kohout and coworkers have considered the electron density ρ(r) and one of the spin components of the pair
distribution Π(r, r′), the control quantity can be either a charge q or a number of pairs D. The ELI distributions are
denoted by Υσ

ω(ri) for same spin pairs and Υ
αβ
ω (ri) for antiparallel spin pairs with ω = q or D. Connection with the

ELF kernel can be achieved in the limit of infinitesimal volumes.
The spin pair composition is defined from the dimensionless ratio:

Ds(r) = 2
N̄‖(r)
N̄(r)2

(63)

where
N̄‖(r) =

∫
V

∫
V

Παα(r1, r2)dr1dr2 +

∫
V

∫
V

Πββ(r1, r2)dr1dr2 (64)

and V(r) is a finite volume centred at the reference point r such as

N̄(r) =

∫
V

ρ(r1)dr1 (65)

It had been numerically shown that
cπ(r) = N̄(r)−2/3Ds(r) (66)

is independent of the size of the volume. Moreover, cπ(r) can be approximated by the ELF. That is:

ELF((r) ≈
1

1 + c2
π(r)

(67)
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2.3.3. ELF gradient field analysis
Applying the gradient dynamical system partitioning technique to the ELF yields basins of attractors which cor-

respond to cores, lone pairs and bond regions [63, 64]. As noted by Gillespie and Robinson: “This function (ELF)
exhibits maxima at the most probable positions of localized electron pairs and each maximum is surrounded by a
basin in which there is an increased probability of finding an electron pair. These basins correspond to the qualitative
electron pair domains of the VSEPR model and have the same geometry as the VSEPR domains.” [178]

The basins of the gradient field of ELF faithfully match the density partition of the Lewis’s model. On the one
hand are the core basins which gather the electron density of the inner atomic shells and on the other hand the valence
basins accounting for the bond, lone pair and single electron domain. The core basins, labeled as C(A) where A is the
atomic symbol of the element, surround nuclei with atomic charge Z > 2. The number of core basins varies with the
number of core shell of the element and also with the local symmetry in the molecule. For isolated atoms the spherical
symmetry implies that the attractors corresponding to the electron pairs of the L, M, . . . inner shells are degenerated
on a sphere. There is therefore one basin for each shell. In molecules, the symmetry being lower than in isolated
atoms, the number of core basins of atoms heavier than neon is larger than 1 and it is convenient to gather them in a
single superbasin. It is sometimes interesting to consider the basins of the external core shell, the subvalence basins,
to explain geometrical features [179, 180].

In the spirit of Lewis’s model, the valence basins are characterized by the atomic valence shells to which they
participate, or in other words by the core basins with which they share a boundary. The number of such atomic
valence shells is called the synaptic order. Thus, there are monosynaptic, disynaptic, trisynaptic basins and so on.
Monosynaptic basins, labeled V(A), correspond to the lone pairs of the Lewis model, and polysynaptic basins to the
shared pairs of the Lewis model. In particular, disynaptic basins, labeled V(A, B) correspond to two-centre bonds,
trisynaptic basins, labeled V(A, B, C) to three-centre bonds and so on. The valence shell of a molecule is the union
of its valence basins. As hydrogen nuclei are located within the valence shell, they are counted as a formal core in the
synaptic order because hydrogen atoms have a valence shell. For example, the valence basin of C-H bond is labeled
V(C, H) and called protonated disynaptic. The valence shell of an atom, say A, in a molecule is the union of the
valence basins whose label lists contain the element symbol A.

The concept of localization domain has been introduced [181] in order to discuss ELF isosurface graphical rep-
resentations and also to define a hierarchy of the localization basins which can be related to chemical properties. A
localization domain is defined as a volume limited by one or more closed isosurfaces ELF(r) = f . It surrounds at
least one attractor, in this case it is called irreducible, whereas if it contains more than one attractor, it is said reducible.
Except for atoms and linear molecules, the irreducible domains are filled volumes, whereas the reducible ones can
be either filled, hollowed or donuts. The increase of the bounding isosurface value splits the reducible domain into
domains containing less attractors than the parent domain. The reduction of localization occurs at turning points
which are index 1 critical points, located on the separatrix of the two basins involved in the parent domain. These
critical points are called basin interconnection points often abbreviated by bips [182]. Ordering these turning points
(localization nodes) by increasing η(r) enables to build tree-diagrams reflecting the hierarchy of the basins [183].

2.3.4. The ELF population analysis
The ELF population analysis mostly relies on the calculation of the basin populations and of their covariance. The

ELF populations are in general close to the intuitive values expected from the Lewis’s pair model. This is consistent
with the minimum variance interpretation of the ELF partition: the decomposition of Eq. 17 into spin contributions
indicates that in the perfect localization limit σ2 is zero only for a single electron or an opposite spin pair. The
differences with the ideal population values are interpreted as consequences of local symmetry, electronegativity or
mesomery. The basis set and correlation effects are consistent with chemical intuition [184]. The core populations are
almost independent from the basis set quality, except for the STO-3G minimal basis set which systematically yields
smaller values and some post Hartree-Fock methods (MP2, MP3, MP4 and QCISD) which often overestimate them
by c.a. 0.1 e− with respect to other methods. The populations of the monosynaptic basins decrease when polarization
functions are added, whereas those of the disynaptic basins increase. The introduction of polarization functions does
not change the separated atom energies but lowers the energy of the equilibrium geometry. In other words it increases
the binding energy and thus the integrated density participating to the bond, i.e. the disynaptic basin population, is
therefore expected. This implies a transfer of density from the monosynaptic basin (or lone pair) to the bond.
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The ELF population analysis enables to define the valence shell population of an atom as the sum of the popula-
tions of the valence basins which encompass its core basin, i.e.:

N̄v(A) =
∑

i

N̄[Vi(A)] +
∑
B,A

∑
i

N̄[Vi(A,B, . . . )] (68)

This definition is consistent with the Lewis picture and it can be used to check the validity of electron count rules. The
orbital contributions to the valence basins is another piece of information which, for example, enables to quantitatively
estimate the σ-donation and π-back-donation in transition element complexes [185]. Combining the QTAIM and
ELF/ELI-D approaches enables to define the contribution of the X atomic basin to the valence basin V(X,. . . ) denoted
by N̄[V(X, . . . )|X]. Raub and Jansen [186] have introduced a bond polarity index defined as:

pXY =
N̄[V(X,Y)|X] − N̄[V(X,Y)|Y]
N̄[V(X,Y)|X] + N̄[V(X,Y)|Y]

(69)

A more general index is the bond fraction of the QTAIM atom X for the valence basin V(X,. . . ), i.e.:

p(V(X, . . . )X) =
N̄[V(X, . . . )|X]
N̄[V(X, . . . )]

(70)

The bond fraction ranges from 0.0, when the ELF/ELI-D basin does not overlap with the atomic basin of X, to 1.0 for
a monosynaptic basin V(X) and is equal to 0.5 for a non polar bond [187]. In the ELI-D/QTAIM (or ELF/QTAIM)
intersection technique, it is possible to recover the concept of oxidation numbers. The ELI-D based oxidation numbers
(ELIBON) are calculated with the following formula:

ELIBON(X) = Z(X) − N̄[C(X)] −
∑

N̄[V(X, . . . )] · Θ(N[V(X, . . . )]) (71)

where the sum runs over the valence basins defining the valence shell of centre X with

Θ(N[V(X, . . . )]) =


0, if there exists an atom Y with p(V(X, . . . )Y) > p(V(X, . . . )X)
1
m , if there exists (m − 1)X′with p(V(X, . . . )X′ ) = p(V(X, . . . )X) = max
1, if all p(V(X, . . . )Y) < p(V(X, . . .)X)

The population analysis is completed by considering the variance and covariance of the basin populations which
help to understand the delocalization. A chemical explanation in terms of superposition of mesomeric structures can
be derived from the population analysis data [100, 188] with the following assessments:

1. The electrons of the valence shell of an atom are distributed among the valence basins of this atom,

2. Non-bonding electrons are assigned to monosynaptic basins.

3. Bonding electrons are assigned to the polysynaptic basin whose label corresponds to the interpenetrating atomic
shells,

4. several pairs may be assigned to one basin.

The calculation of ELF basin distributed multipoles moments [189] provides gives local moments related to bonds
and lone pairs. A local multipole moment is expressed as the sum of the origin dependent charge transfer contribution,
arising from lower order multipoles and the polarization contribution. The local dipolar polarization of the lone pairs
is related to chemical reactivity, whereas bond quadrupole polarization moments which are related to the π character
of the bonds, enable to discuss bond multiplicities, and to sort families of molecules according to their bond order.

The generalization to ELF basins of the interacting quantum atoms energy decomposition [134–137] can be
achieved for the only potential energy because the ELF basin separatrix are not zero flux surfaces of the electron
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density gradient field. However, the decomposition of the electron-electron repulsion into two-basin contributions:

Vee(Ω,Ω′) =

∫
Ω

∫
Ω′

Π(r, r′)
|r′ − r|

drdr′ (72)

which decompose in a purely Coulombic energy

VC(Ω,Ω′) =

∫
Ω

∫
Ω′

ρ(r)ρ(r′)
|r′ − r|

drdr′ (73)

and an exchange-correlation contribution

Vxc(Ω,Ω′) =

∫
Ω

∫
Ω′

Πxc(r, r′)
|r′ − r|

drdr′ (74)

is directly related to the VSEPR model as shown by Martín Pendás et al. [190].

2.3.5. The ELF classification of chemical interactions
The ELF analysis considers a dichotomous classification into shared-electron and unshared-electron interactions,

proposed initially by Bader and Essén [143] in the QTAIM framework. In a shared-interaction the considered inter-
acting atoms have at least one common polysynaptic basin in their valence shell. Covalent, dative and metallic bonds
are subclasses of the shared-electron interaction whereas ionic, hydrogen and electrostatic bonds belong to the other
class. The subclasses of each interaction are determined with the help of secondary criteria.

1. The core-valence bifurcation index, defined as the difference of ELF(cv, the lowest value of the ELF for which
the AH core basin is separated from the valence, and ELFvv′ , the value at the saddle point linking the proton
donor to the acceptor domains, called hydrogen bond interaction point. It indicates if an interaction is chemical
or not. This index is useful to classify hydrogen bonds [191–193] and to characterize the adsorption on a catalyst
[194]. It has been recently found that it provides a measure of the delocalization between the proton donor and
proton acceptor moieties [195].

2. The topological behaviour of the ELF gradient field along the dissociative pathway is characterized by the
variation of the number of basins, ∆µ, and if ∆µ = 0 by the variation of the synaptic order of the valence basin
involved in the interaction (∆σ) [196].

3. The multiplicity of the disynaptic basin V(A,B) is not automatically correlated to an equal multiplicity of the
A−B bond. On the one hand, the location of the attractors should be consistent with the symmetry of the system
and therefore the disynaptic basins multiplicity can be explained by symmetry considerations rather than by
chemical arguments. On the other hand, conventional multiple bonds are not always the dominant mesomeric
structure of in realistic descripton of the system.

4. Multicentre bonds imply the presence of polysysnaptic basins.

5. When the bonding can be represented by a dominant mesomeric structure, the V(A,B) basin population should
be approximately twice the expected bond order.

6. The covariance matrix elements (i) 〈ĉov(N̄[Vt(A)], N̄[Vt(B)])〉where Vt is the union of the basins of the valence
shell of A except V(A,B) or the V(A) and V(B) components of a protocovalent bond and (ii) 〈ĉov(N̄[C(A)], N̄[C(B)])〉
quantify respectively the delocalization in three-electron and charge-shift bonds and on the other hand in M-M
bonds in polynuclear transition element complexes.

7. The bond polarity (pAB) index enables to discuss polar bonds.
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The properties of the different subclasses of bonds with respect to the above criteria are summarized in Table 5.
Charge-shift and M-M bonds are on the borderline of the electron-shared and electron unshared interactions, because
the disynaptic basin may be absent or replaced by a protocovalent pair of monosynaptic basins. The main difference
with QTAIM based classification is that donor-acceptor bonds belong to the electron shared interaction.

Table 5: Classification of bonding interaction, according to ELF criteria. In the case of the charge-shift bonding
V(A,B) may be replaced by a protocovalent pair of basin or absent, in M-M bond it may be absent.

bond type ϑ ∆µ ∆σ N̄[V(A,B)] pAB covariance
〈ĉov(N̄[Vt(A)], N̄[Vt(B)])〉 〈ĉov(N̄[C(A)], N̄[C(B)])〉

electron-unshared interactions
van der Waals >0 0 0 ∼ 0.0 0.0
weak H-bond >0 0 0 ∼ 0.0 0.0
medium-strong H-bond <0 0 0 ∼ 0.0 0.0
3e-bonds <0 ∼ −0.3 0.0
intermediate bonds
charge-shift bond <0 , 0 <1.0 ∼ −0.2 0.0
M-M <0 � 2× BO ∼ −0.5× BO
electron-shared interactions
donor-acceptor <0 0 , 0 ∼ 2× BO ∼ 0.0 0.0
covalent <0 , 0 0 ∼ 2× BO ∼ 0.0 ∼ 0.0 0.0
polar covalent <0 , 0 0 < 2× BO , 0.0 ∼ 0.0 0.0

2.4. Treatment of heavy elements

In systems involving heavy elements, typically of period 6 and beyond, relativistic effects cannot be ignored. They
can be taken into account by relativistic approximate calculations carried out in terms of one-electron 4-component
Dirac orbitals within Dirac-Hartree-Fock, Dirac DFT and Dirac HF-CI. However, cruder approximations such as
the Zero Order Regular Approximation (ZORA) hamiltonian, lead leading 2-component equations including spin-
orbit and scalar interactions are also available. Spin-free core pseudo-potentials including corrections for the scalar
interactions provide satisfactory results for a large number of cases.

Core pseudo-potentials must be used very carefully in topological analysis. In the QTAIM analysis the local
maxima of the density which define the atomic basins are located at the nuclear position. In contrast, with core
pseudo-potentials, there is a density hole and it is then necessary to search the interatomic bounding surfaces outside
exclusion spheres surrounding the nuclear centres. In the case of the ELF analysis, the situation is even more critical
because the valence basins must share a boundary with core basins. Consequently, only small core pseudopotentials
can be used.

The two-component formalism is able to take the spin orbit coupling into account. A first indication of the
importance of the spin coupling in ELF calculations has been presented by Schott et al. [197] in the framework of DFT
calculations carried out with the ZORA hamiltonian incorporating scalar and spin-orbit (SO) relativistic corrections.
The ELF and QTAIM analyses have been recently implemented in the spin-orbit DFT method [198] by Pilmé et al.
[199, 200].

2.5. Computer programs

Richard Bader and coworkers have developed the first computational tools for the analysis of the electron density
[201, 202]. The AIMPAC suite of program is available in open access at the URL: http://www.chemistry.mcmaster.ca/aimpac/-
imagemap/imagemap.htm. The EXTREME 94 (EXT94b) locates the critical points (CPs) of the gradient fields of the
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electron density as well as those of several other scalar fields such as the Laplacian of the electron density, the def-
inite positive kinetic energy, the nuclear potential and the virial field. The properties used to classify the bonds are
computed at these points. PROAIM [201, 202] and PROMEGA calculate integrated atomic basin properties: vol-
ume populations, multipoles, atomic kinetic, potential and total energies. These programs require a molecular wave
function read in a wfn file provided by molecular program like Gaussian [203–206] or GAMESS [207]. AIM2000
[208–210] is an interactive program derived from AIMPAC which benefits from powerful graphical functionalities.
AIMAll [211] works with wfn, wfx or Gaussian formatted checkpoint as input file. It handles correlated wave func-
tions such as CCSD, CASSCF, CIS and support high angular momentum, up to h, basis functions. MORPHY98 is
a program developed by Paul Popelier and his group [212–217] enabling the full topological analysis of the Lapla-
cian. Cioslowski and coworkers have implemented vectorial algorithms and have contributed to introduce the QTAIM
analysis in Gaussian94 and Gaussian98 [218, 219].

The electron density of periodic systems calculated with either CRYSTAL-98 [220] or EMBED-96 [221] pro-
grams can be analyzed with TOPOND98 [222]. This program carries out the topological analysis of ρ(r) and ∇2ρ(r),
calculates the atomic basin properties (atomic volumes, spin components and total atomic populations, atomic kinetic
and virial energies, atomic forces, “radial” atomic expectation values, atomic multipoles). TOPOND is now interfaced
also with CRYSTAL-06 [223] and CRYSTAL-09 [224, 225]. These new versions of the code do not deal with proper-
ties depending on the non diagonal parts of the first-order density matrix. CRITIC [226, 227] is a program performing
the topological analysis of the electron densities of crystalline solids. It works with LAPW (Linear Augmented Plane
Wave) densities calculated by the WIEN2k package [228] or with ab initio Perturbed Ion (aiPI) densities [229]. It has
the same functionality as TOPOND98.

An alternative procedure calculates the density on a grid further read in input by the QTAIM program. This
technique pioneered by Iversen et al [230] uses the maximum entropy experimental density or a sampling of the
density calculated by a muffin-tin plane wave method [231]. The analysis is restricted to the localization and char-
acterization of the CPs and to the calculation of the Hessian matrix eigenvalues. Various algorithms provide accu-
rate separatrices from numerical densities [232–235], enabling tthe calculation of basin properties. The InteGriTy
program developed by C. Katan and coworker [233] is available in open access at the URL: http://www.gmcm.univ-
rennes1.fr/moleculaire/integrity/index.htm whereas the program of Arnaldsson, Tang and Henkelman [234, 235] can
be downloaded from http://theory.cm.utexas.edu/bader/

The TOPXD program [236] performs the complete topological analysis of experimental charge densities based
on the Hansen-Coppens multipole formalism [237]. It is an adaptation of TOPOND98 to densities calculated within
the aspherical atom refinement by the XD program [238]. The latest version of XD, XD2006 [239], includes the full
topological analysis of electron densities and its derivatives and the Source Function analysis. PAMoC [240] carries
out the analysis of experimental densities obtained by the Stewart multipole refinement formalism [241] and stored
by the ValRay [242] program in a dedicated binary file.

The TopMod program [176, 177, 243] carries out the topological analysis of the ELF and electron densities gra-
dient fields. The derivatives and the integrated basin properties are calculated analytically. TopChem [244] performs
the analysis of different scalar functions (ρ(r),−∇2ρ(r), ELF, Molecular Electrostatic Potential (MEP)) with a fully
numerical grid-based algorithm. It enables the study of both molecular and periodic systems. An ELF version of
CRITIC has been developed by Contreras-Garcia et al. [245] DGrid [246] is a very complete and general topological
analysis program. It treats many local functions as ρ, ELF, ELI-D, ELI-A [68, 69], LOL [247], the Local Source
function [86], the domain averaged Fermi-hole [248], etc... It performs the conversion of wave functions generated by
many quantum chemical programs to an internal format. It locates the CPs, calculates their properties, determines the
basins and carries out integrations over their volumes and calculates the delocalization indexes. It can be downloaded
at http://www.cpfs.mpg.de/ kohout/dgrid.html. Multiwfn [249] is a multi-purpose wave function analysis program.
It enables to carry out almost all the population analyses as well as the topological analysis of large sample of local
functions such as ρ(r),∇2ρ(r), ELF, LOL, . . . . In input it accepts many types of files such as wfn, wfx, and fch. It
includes a visualization module. The souce code iand the executables for several platforms (Windows, Linux and Mac
OS X) can be downloaded at https://multiwfn.codeplex.com.

Finally we notice the EDF program [250] which computes the probability distribution functions over QTAIM and
ELF basins determined in a previous calculation.
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3. Bulk metals alloys and intermetallic phases

There is no clear chemical explanation of the diversity of the crystalline structures of bulk metallic elements.
Usually the number of nearest neighbours is larger than the formal valence of the elements. In this case, neither
partial two-centre nor multicentre bonding pictures are able to predict the local environment of each atom of the cell.
The applications of the topological methods are expected to help the understanding of bonding in bulk metals. On
the QTAIM side several questions have to be answered: are there bond paths between nearest neighbour atoms? are
there non-nuclear attractors (NNAs)? how large is the population of these latter? how large is the variance of the
atomic basin populations? The ELF/ELI analyses would provide the location of the valence attractors, the synapticity
of the valence basins, the populations of these latter as well as insights on the delocalization. For both approaches
very few papers have been published on this topic and unfortunately there are many missing entries. The reliability
of the results often depends on the method used to determine the electron density and the localization function which
are expected very flat in the valence regions. For example, the occurrence of NNAs in hexagonal close packed (hcp)
Be has been a debated problem. Experimentally, their absence or their occurrence depends on the model used to
extract the electron density. The maximum entropy method (MEM) with a procrystal density as a non-uniform prior
does not yield NNAs [251] while they are recovered by a MEM analysis with uniform prior or a more conventional
multipole model refinement approach [230]. Jayatilaka used the same set of experimental data to invert the Kohn-
Sham equations in order to reconstruct Kohn-Sham crystalline orbitals which in the present case do not yield NNAs
[252].

A systematic study of the ELI attractors has been carried out by Baranov and Kohout [253] for the hexagonal
crystalline structure of 21 elements belonging to the main groups 1 and 2 as well as transition series. Except for Os,
the positions of the attractors are near the centre of interstitial polyhedra or on the face of two similar polyhedra.
The proposed nomenclature is Td and Oh for positions near the centre of a tetrahedron and of an octahedron, Td|Td
and Oh|Oh for positions on shared faces. Table 6 summarizes the results of Baranov and Kohout obtained with vawe
functions calculated with the FLPO code [254] with minimal localized basis functions. Calculations carried out with

Table 6: Attractor positions,synaptic order, basin populations of hexagonal crystalline structure of metals. For osmium
OsOs positions are located near the middle of nearest neighbour lines, ab in a plane parallel to (001), c in a direction
parallel to [00]

Attractors synaptic order population Metals

Td|Td 5 1.94 Be, Mg

Td|Td 5 1.06-1.47 Sc, Ti, Y, Zr
Oh 6 1.04-1.13

Td 4 0.22-0.43 Ca, Sr, Ba
Oh 6 0.83-1.03

Oh|Oh 3 or 9 (Li) 0.19-1.17 Li, Na, Zn, Cd, Re
Td 4 0.18-1.21

Oh|Oh 3 0.07-0.52 Cr, Fe, Co, Ni, Tc, Ru
Td 4 0.65-0.92
Oh 6 0.39-0.85

OsOs-ab 2 0.47 Os
OsOs-c 2 0.34

the Exciting program [255], which uses both augmented plane waves and localized orbitals, yield different attractor
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patterns for 13 of the 21 the investigated metals due to migration, splitting or annihilation of attractors. Such effects
are also observed upon isotropic cell rescaling. Non nuclear attractors are found for Li, Be and Sc at the positions of
the ELI-D attractors. These results support the picture provided by the jellium model in which the density as well as
the ELI-D function are strictly constant outside the core basins. Therefore both the gradient and the Hessian matrix
elements of these two functions are identically zero in these regions and all the points are non hyperbolic critical
points. In real and calculated systems the fulfilment of the hyperbolicity requirement ensures the structural stability of
the gradient dynamic systems. However, it is conceivable that a rather small variation of the control space parameters
(i.e., the nuclear coordinates, the method of calculation, . . . ) should be strong enough to make some of them non
hyperbolic and therefore to yield a changes of topology through bifurcation catastrophes.

Alkali and alkaline-earth elements. At zero pressure and room temperature, the stable modification of alkali metal
is body centred cubic (bcc). However, at low temperature, Li and Na lattices are of the α-Sm (9R) type [256] which
can be viewed as a distorted hcp structure. Under compression both bcc and 9R evolve towards a face-centred cubic
(fcc) structure and later exhibit the same pressure-induced symmetry lowering [257]. The electron density of the bcc
structure of Li and Na have been first investigated by Mei et al. who found a network of NNAs located at position
(8c). In another periodic calculation, carried out with a split-valence basis set the NNAs are found at positions
(12d) for Li and K and (24h) for Na [109]. In all investigated systems, the density function is almost constant
in the interstitial regions. Baranov and Kohout [258] have calculated and analyzed the covariance of the atomic
populations of bcc sodium. The value of the diagonal element 〈σ2(Na,Na)〉 = 0.80, is almost twice that calculated
for Na2 (0.50), whereas the covariance elements amount −0.05 which each first neighbour atom and −0.03 with each
second neighbour. This implies that the sum of the covariance matrix elements involving the remaining atoms is
8 × 0.05 + 6 × 0.03 − 0.6 = −0.22 showing that the delocalization extends to atoms which do not share any boundary.

The ELF and ELI-D attractors are found in interstitial tetrahedral or octahedral positions which varies with the
method used to determine the wave function. For example, the valence attractors are found in position (6b) by
periodic Hartree-Fock [109] and TB-LMTO-ASA [259] or in (12d) by FPLO calculations [259]. The localization
window defined as the interval [ELF(ra), ELFrs)] where ELF(ra) and ELF(rs) are the value of ELF at the valence
attractors and at the index 1 saddle points between valence basins. For all systems, the localization window is very
narrow: 0.003 for Li and Na, 0.016 for K.

Under very high pressure, the valence density of bulk alkali metals tends to be more localized than in the low
pressure phases. This is evidenced by the value of ELF at the valence attractors which takes values of the order of
0.9 and higher [260, 261]. In the potassium crystal above 25 Gpa, ELF displays valence maxima (ELF ≈ 0.95) at
interstitial positions the basins of which containing roughly 2 e− each [260]. In the C2cb − 40 phase of Li at 85 Gpa,
the ELF analysis reveals three sets of attractors, denoted M1,M2,M3, each located on a 8b site with rather high
values of ELF of 0.961 (M1), 0.947 (M2), and 0.896 (M3). The basins of these attractors form pseudo anions holding
2, 2, and 1 e−, for M1,M2 and M3 respectively which can merge in superbasins containing up to six electrons and
separated by regions where ELF < 0.4 [261].

The structures of alkaline-earth metals are closed packed except for Ba and Ra which crystallize in the bcc system.
Non nuclear attractors are found in tetrahedral sites for hcp Be [253] and cubic closed packed (ccp) Ca [109]. The
ELI-D attractors are found on the shared face of two tetrahedral interstices for hcp Be and Mg, in both tedrahedral
and octahedral sites for hcp Ca-Ba. The valence population decreases as Z increases: 1.98 e− for Be and Mg, 1.75
e− for Ca and Sr and 1.27 e− for Ba. The populations of the basins located in octahedral sites are always larger than
those of the tetrahedral ones. In the ccp structure of Ca the ELF attractors are located at positions (8c) at the centre
of tetrahedra.

Transition elements. The shell populations of the first transition atoms are close to the occupancies of the correspond-
ing atomic ground state atomic configurations [262]. It can be therefore expected that the bonding in bulk transition
elements would present similarities with alkaline and alkaline-earth elements. Most of transition series elements crys-
tallize in closed packed structures (hcp and ccp), however group 5 and 6 metals have a bcc structure whereas Mn is
cubic and Hg rhombohedral. In all systems studied either by ELF [109] or by ELI-D [253, 258] the attractors are
found either in interstitial positions or on shared faces of polyhedra. The calculated valence populations are generally
slightly larger than those found for alkali and alkaline-earth metals, for example it attains 1.75 e− for the hcp mod-
ification of Sc which has formally one electron in its valence shell [253]. The excess with respect with the formal
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occupancy increases with the atomic number.

Group 13-15 elements. Only few topological studies have been published so far on the bonding in metallic main
group elements crystals and all concern Aluminium. Aluminium crystallizes in the fcc system and therefore each
atom is surrounded by twelve nearest neighbours. The one-electron density analysis based on a periodic Hartre-Fock
wave function [109] revealed the presence of NNAs at special positions 24d and 96k. The attractors of the ELF are
found at positions 24d, i.e. at the bond midpoints for calculations carried out either in the LMTO-ASA [259, 263] or
Hartree-Fock [109] frameworks whereas FLPO yields attractors at positions 32 f , that is shifted towards the tetrahedral
voids. The ELF value at the saddle points linking the valence basins are slightly lower than those at the attractors, i.e.
0.58 vs. 0.62.

In order to have a flavour on the bonding in bulk main group metals we have carried out periodic Hartree-Fock
calculations on the crystalline phases of gallium, indium and tin at their experimental lattice parameter values [264].
Gallium has a Bmab structure in which each atom is surrounded by seven neighbours: one at 2.44 Å and the six
remaining ones in three groups of two at distances between 2.7 and 2.8 Å. The left side of Figure 4 displays the
ELF = 0.6 localization domains of Ga. The valence attractors are distributed in two sets. In the first group, 8
attractors with ELF = 0.77 are located at position 8 f whereas the 16 attractors of the second group found in 16g
correspond to a lower ELF value (0.70). Each pair of Ga atoms at 2.44 Å is connected by two disynaptic valence
basins whose attractors belong to the first set. The basins on the attractors of the second group are also disynaptic and
involve the Ga pairs at 2.70 Å. The basins of the ELF = 0.70 attractors are connected by ELF = 0.46 saddle points.
They determine successive strata of localization domains extending in the directions perpendicular to the c axis. The
connections along the c direction happen for ELF = 0.29. This is consistent with the anisotropy of the electrical
resistivity [265]

Figure 4: Left: Ga ELF = 0.6 localization domains, right: In ELF = 0.45 domains. Color code: magenta = core,
green = disynaptic valence.

The valence attractors of indium are located at the nearest neighbour bond midpoints (position 4c of the I4/mmm
group) as shown in the right side of figure Figure 4. The ELF function value at these attractors is 0.535. In order
to merge the irreducible valence domains into a single reducible one it is necessary to lower the ELF value of the
bounding isosurface to 0.353, the linking saddle points being in position 8 f , in other words at the midpoints of the
second neighbour distance.

The crystalline structure of the conducting phase of tin (white tin) is I41/amd. Each atom is surrounded by a first
shell of four neighbours at 3.02 Å forming a distorted tetrahedron and by a second shell of six atoms slightly farther.
Figure 5 displays the localization domains of white (left side) and grey (right side) tin. The ELF attractors are located
at the midpoints of the first neighbour bonds. The value of ELF at this point is rather high, 0.74 whereas the saddle
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points between the basins have an ELF value of 0.46. Grey tin is an insulator, it has a diamond structure and the
attractors of the ELF, also located at the Sn-Sn bond midpoints, have a larger value (0.85) than those of white tin.
This value is consistent with the picture of a covalent bonding expected in an insulating material.

Figure 5: Left: white tin ELF = 0.65 localization domains, right: grey tin ELF = 0.76 domains. Color code: magenta
= core, green = disynaptic valence.

The bonding in bulk metals appears to result of a competition between the jellium and the covalent limit pictures.
Although the number of valence electrons and the core size of the element are certainly the dominant factors which
determine the bonding, the lack of data on main group metals prevent from drawing conclusions. As a general
rule, when the number of valence electrons is less than 3 (i.e. alkali, alkaline-earth and transition elements) the
jellium picture prevails and therefore the maxima of the ELF or ELI-D are found within the interstitial voids yielding
polysynaptic localization basins. Such non directional bonding favours closed packed (hcp and ccp) or semi closed
packed (bcc) structures. However, the phase diagrams of many metals present several modifications. Our preliminary
results on Ga, In and Sn, and to a lesser extend those on Al, indicate that the two centre character of the bonding
becomes predominant for group 13-16 metals. The closed packed structures of thallium and lead are not consistent
with this statement.

3.1. Alloys and intermetallic phases

Alloys and intermetallic phases display a great diversity of M-M interactions including ionic bonding as well as
covalence. With this respect, the topological analysis of ELF (or ELI-D) is particularly suitable to characterize the
bonding as exemplified in the classical review article of Savin et al. [65] on the ELF and in several more recent
reviews dedicated to particular classes of alloys and intermetallic phases [187, 266, 267]. The QTAIM partition
provide additional pieces of information since it enables to quantify the charge transfers occurring between different
atoms. Among the studied systems we can mention systems containing aluminium atoms [63, 263, 268–270], gallium
[182, 271, 272], Laves phases [273], Heusler and half-Heusler alloys [187, 274] and Zintl Klemm phases [275–278].

3.1.1. Al-containing alloys and intermetallic phases
Historically, the study of the intermetallic phases containing aluminium has been one of the motivations for car-

rying out the ELF partitioning [63, 263] who studied the series Al −−→ CaAl −−→ SrAl −−→ BaAl −−→ CaAlSi −−→ Si
with the help of the LMTO method in order to observe the qualitative as well as quantitative changes occuring when
going from an expected purely metallic bonding to a purely covalent one. CaAl2 belongs to the particular category
of intermetallic compounds called Laves phase, in this system, each calcium transfers one electron to the Al network
as indicated by the QTAIM analysis. Each Al atom has 6 Al nearest neighbours which are involved in disynaptic
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V(Al,Al) basins populated by 1.30 e−. In SrAl2 the alkaline-earth centres are formally Sr+. Each Al has 5 nearest
neighbours which form a covalent network of hexagonal and square rings; there are three types of Al-Al bonds cor-
responding to internuclear distances of 2.786 Å, 2.799 Å and 2.930 Å which give rise to V(Al,Al) disynaptic basins
with populations of 2.01, 2.13 and 1.60 e−, respectively. The bonding situation is quite different in BaAl4: on the one
hand the net charge of Ba is +0.65 e− and there are two kinds of Al atoms, the basal atoms with a positive charge of
0.63 e− and the apical ones with a negative charge of -0.75 e−. Disynaptic basins connect both apical atoms one an-
other (N̄[V(Alap,Alap)] = 2.05e− and apical atoms to basal ones (N̄[V(Alap,Albas)] = 1.45e−). In the last compound,
CaAl2Si2, there are only V(Al,Si) and V(Si) valence basins.

The CuAl2 structure is usually described in terms of a common building element, a square antiprism [CuAl8/4]
. Closely related arrangements are found in other intermetallic phases such as Pt3Ga7, PdSn4, PtSn4, PtPb4, RhBi4
and PdGa5. The atomic net charges evaluated in the QTAIM framework are respectively -1.6 for Cu and +0.8 for
Al in agreement with the electronegativity difference [268]. The ELF analysis reveals three kinds of valence basins
(see Figure 6) which account for the bonding in polyhedra and between polyhedra. The V(Al,Al) basin, denoted ΩA

in Figure 6, has its attractor located at the midpoint of the shortest Al-Al contact which connects a building block
to another. The ELF value at the attractor, 0.80, and the calculated population close to 2 e− are consistent with a
covalent bond. The V(Al,Al,Cu,Cu) basin (ΩB) is shared by two polyhedra. Its population which is very sensitive to
the quantum chemical method of calculation ranges from 1.4 e−(LMTO-ASA) to 2.7 e− (FLPO). The third kind of
basin, V(Al,Cu,Cu) which has a population ranging from 0.8 e−(LMTO-ASA) to 0.3 e− (FLPO) belongs to a single
polyhedron. The ELF is very flat in the regions close to the V(Al,Al,Cu,Cu) and V(Al,Cu,Cu) basin boundary and the
values at the attractors are respectively 0.60 which can be interpreted as a consequence of the delocalization between
these basins.

Figure 6: ELF basins of CuAl2. Color code: green= C(Al), red=C(Cu), magenta=V(Al,Al) (ΩA),
blue=V(Al,Al,Cu,Cu) (ΩB) and V(Al,Cu,Cu) (ΩC). Adapted with permission from Journal of Solid Sate Chemistry,
179, 177O. Copyright (2006) Elsevier Inc.

The QTAIM partition of the Al5Co2 crystal shows three types of aluminium centres, Al(1), Al(2), Al(3) with
atomic populations all close to 12 e− and two types of cobalt atoms Co(1) and Co(2). The Co(1) centres which are
surrounded by 3 Al(2) and 6 Al(3) have an atomic population of 29.5 e− while the Co(2)s have larger population of
30.5 e− and have 2 Al(1), 2 Al(2) and 6 Al(3) neighbours [270]. The ELI-D displays disynaptic basins V(Co(1),Al(3))
and V(Co(2),Al(2)) as well as small basins located in tetrahedron formed by one Co and 3 Al. The basin population
of V(Co(1),Al(3)), 0.92 − is the sum of contributions from Co(1), Al(3) and to a lesser extend Al(2) atomic basins
amounting to 0.49, 0.31 and 0.11 e−, respectively. The population of V(Co(2),Al(2)) is small, i.e. 0.39 e−, and equally
distributed between the two atomic basins. Finally, the sum of the population of the interstitial basins amounts to 1.07
e− distributed between the Co(1), Co(2), Al(1) and Al(3) type atoms. This bonding picture suggests an organization
in terms of interacting Co(1 )Al(3 )6 and Co(2 )3Al(2 )3 atomic clusters [270].

3.1.2. Laves phases, half-Heusler compounds and Zintl-Klemm phases
Laves phases are constituted by a group of intermetallic systems of stoichiometry AB2 in which A is generally an

alkaline or alkaline-earth element and B another metal element. The B atoms form tetrahedra around the A centres
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and the atomic site ratio ranges from 1.06 to 167. The bonding is mostly governed by the electronegativity difference
between A and B which is expected to rule the charge transfers between A and B atoms as well as the valence electron
concentration. The QTAIM and ELI-D partitions carried out on a large representative sample of systems by Ormeci
et al. [273] confirm this hypothesis as illustrated in Figure 7. All the ELI-D attractors are usually located inside

Figure 7: QTAIM charge transfer (left] and ratio of the valence electron density (right) vs. Sanderson’s electroneg-
ativity difference. Adapted with permission from Angew. Chem. Int. Ed. 49, 8997. Copyright (2010) Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim

polyhedra formed by A and B atoms, for example in the A4 and AB3 tetrahedra in systems containing only alkali
metals. In KPb2 six attractors are found in the external shell of each Pb atom which implies a local closed-shell like
configuration and therefore a rather covalent bonding within the Pb4 tetrahedra.

Non metal or semi-metal atoms enter in the composition of many half-Heusler phases of the MgAgAs-type and
Zintl Klemm compounds. In this case, most of the ELF or ELI-D studies do not report the presence of basins involving
two metal atoms [187, 274, 279] whereas the QTAIM delocalization indexes between atomic centres are often close to
zero. Exceptions have been found for compounds whose composition involves two transition elements like TMTM′Sb
or TMTM′Sn for which δ(TM,TM′) is calculated greater than 0.25 [279]. In Zintl-Klemm phases M-M interactions
other than ionic are observed in polyanions of post-transition elements. In the K8In11 and Rb8In11 systems, the ELF
attractors are located at the top of the In11 deltahedra [275]. The configuration of the valence attractors does not
correspond to any well known representation of the chemical bond and corresponds to a shell of valence electrons
experiencing a central potential, a picture consistent with the shell structure model of clusters [280, 281].

4. Two centre M-M bonds in molecular systems

4.1. M-M bonds of groups 1 and 2 elements

All the combinations of alkali metal diatomic molecules have been observed either in the gas phase or at very low
temperature in solids. Although no stable complex involving two bonded group 1 elements have been reported so far
[15], neutral and charged clusters, Mn or Ma+

n have been studied by quantum chemical techniques. QTAIM studies
have been reported for Li2 [105–107], Na2 and Na4 [105], Lin planar clusters (n = 4, 5, 6) [106]. In all systems there
is no bonding critical point between pairs of atoms, instead the alkali centres are linked through non-nuclear attractors
located either at the M-M midpoint for bimetallic clusters or close to the centres of triangles formed by the alkali
atoms for the planar systems. The populations reported for the basins of the non-nuclear attractors are of the order of
1 e−. The ELF and ELI-D of the gradient fields of Li2 [282, 283] are characterized by a circular attractor in the bond
mid-plane perpendicular to the Li-Li line which defines a unique V(Li,Li) disynaptic valence basin with a population
very close to 2 e−. In higher stoichiometry clusters Lin, n = 3, 6 in their ground state, only Li3 has clearly disynaptic
basins one with a population of 1.15 e− and a negligible spin density and two with a population of 0.98 e− in which the

29



unpaired electron is delocalized implying a large covariance of their populations [282]. In the high spin complexes, it
is again Li3 which has disynaptic basins, with a population of 0.98 e− each, the single electron being equally shared
[282]. In the complexes of stoichiometry larger than 3, the bonding is ensured by multisynaptic attractors as described
in section 5.

Alkaline-earth metals do not form chemically bounded dimers but instead van der Waals complexes. The stabi-
lization of the dimer at room temperature requires the presence of ligands like in guanidinato and β-diketiminato mag-
nesium(I) dimers [15] whereas computational studies predict a reasonable stability for PhMMPh. The study of Berski
and Durlak addresses the stability and the nature of the bonding in the [C10H18Mg2N4] and [C10H18Ca2N4] model
compounds. The ρ(r) gradient field of [C10H18Mg2N4] presents a non-nuclear attractor whatever is the functional used
to calculate the electron density, whereas there is no NNA whatever the DFT calculation level for [C10H18Ca2N4]. In
Mg2+

2 which has a D∞h symmetry, the ELF analysis shows a circular attractor in the σh plane, the presence of ligands
lowers the symmetry giving rise to three valence point attractors. The populations of the three V(Mg,Mg) basins sums
up to c.a. 1.96 e−. For the [C10H18Ca2N4] complex, there are only two V(Ca,Ca) attractors and the sum of their basin
populations is also close to 2 e− [284].

4.2. Transition elements homometallic bonds

4.2.1. Multiple M-M bonds
The concept of a multiple bond between two metal atoms was introduced by Cotton et al. in 1965, upon crys-

tallization of the dipotassium dirhenium octahalide compound, exhibiting a very short Re-Re distance of 2.24 Å[9].
The latter was assigned to a quadruple σ2π4δ2 bonding between two [ReCl4]– units. Since then, many transition
element complexes, featuring double up to quintuple M-M bonds were reported and reviewed [3, 36, 285]. Figure 8
displays some early representatives, the chromium complexes excepted. In the latter, the quintuple Cr-Cr bonds are
very short and confined in a much narrow bond distance range than the quadruple Cr-Cr bonds, suggesting that they
are approaching the lower limit of the M-M bond distance [286].

Ta-Ta: 2.68Å[287] Mo-Mo: 2.18Å[288] Mo-Mo: 2.092Å[289] Cr-Cr: 1.71Å[11]

Figure 8: Examples of multiple M-M bonds

Numerous theoretical studies, based on molecular orbital (MO) analysis, Energy Decomposition Analysis (EDA)
or QTAIM and ELF topological analyses, have been devoted to the nature and the strength of multiple M-M bonds.
They generally rely on single-determinant descriptions of the electronic structure, although multireference methods
such as CASPT2 may be sometimes required for the determination of the relative stability of the various electronic
states of the polymetallic compounds and the accurate description of the included M-M bonds [290].

J. Andres et al. performed QTAIM and ELF topological analyses of a series of so-called “paddlewheel” bimetallic
complexes [291], involving second row transition elements, bridged by four chelating formamidinate ligands (Fig-
ure 9). Within this series, the M-M bond fluctuates widely from a very strong quadruple Mo-Mo bond to a weak
Pd-Pd interaction (Table 7). Although a large QTAIM Mo-Mo delocalization index of about 3.0 is consistent with
the anticipated quadruple Mo-Mo bond, the low value of the electron density at the related bond critical point made
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the classification of the Mo-Mo bond ambiguous from QTAIM only. The four equivalent disynaptic V(Mo,Mo) va-
lence basins of low population (0.15 e) and the huge electron delocalization between the metallic cores (cov(C(Mo),
C(Mo)) = -1.255) are the ELF signatures of the Mo-Mo quadruple bond. This ELF picture of the M-M bond may be
related to charge-shift bonding, introduced recently for the description of the C-C bonds of the propellane ring and for
hydrogen-halide bonding [292]. Charge-shift or M-M bonds are at the borderline of electron-shared and closed-shell
interactions because their disynaptic basin may be absent or replaced by a protocovalent pair of monosynaptic basins
[40]. From this topological picture, the Mo-Mo multiple bond may be described by a resonance between several elec-
tron configurations due to the fluctuation of the metal d electrons within the cores. The bond orders ranging from zero
(Pd) up to four (Mo) linearly correlate with the M-M distances and the covariances between the metal cores (Table 7)
[291]. .

Figure 9: Calculated structure and ELF topological analysis of the paddlewheel bimetallic Mo complex featuring a
quadruple Mo-Mo bond. B3LYP/Def2TZVP level of calculation.

Table 7: Bond length R(M-M), formal bond order B.O., QTAIM delocalization index δ(M,M), basin population
N̄[V(M,M)] and core population covariance matrix element 〈σ̂2(C(M),C(M))〉 for a series of “paddlewheel” bimetal-
lic complexes

M = Mo M = Ru M = Rh M = Pd
R(M-M) (Å) 2·092 2·493 2·459 2·691
B.O. 4 2 1 0
δ (M,M) 2·93 1·316 1·035 0·294
N̄[V(M,M)] 0·15×4 0·25 0·32
〈σ̂2(C(M),C(M))〉 −1·255 −0·551 −0·373 −0·124

With a current record of 1.71 Å , the ultrashort Cr-Cr bonds in aminopyridinate, amidinates or guanidinates
chromium complexes [285, 293] have been assigned to quintuple Cr-Cr bonds enforced by chelating ligands steric
constraints [293]. The corresponding Cr-Cr bond order of 4.2, calculated from the QTAIM delocalization index be-
tween the Cr atoms [294], is consistent with a formal quintuple Cr-Cr bond. ELI-D studies show that the electrons
for the Cr-Cr bonding are not only localized in the valence region, but can also be found in the spatial region of
the third shell of chromium atoms. The majority of the QTAIM bond order contribution (57%) are indeed found to
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originate from the two chromium third atomic shell similarly to earlier reports and description of the quadruple bond
of Mo2(formamidinate)4 [288]. A significantly lower value of the QTAIM delocalization index of 3.6 was obtained
for a Cr2 dimer bonded to two diazadiene ligands, indicating a substantial difference from the Cr-Cr bonding in the
above amidinates complexes [295]. Bond orders weaker than 5 are also consistent with the MO analysis in which the
quintuple bond implies five metal-based orbitals for M-M bonding. Besides to the major electronic configuration with
all the bonding σ, π and δ occupied orbitals, a sizeable configuration corresponds to a double excitation (δ)2(δ∗)2. The
effective bond order is therefore smaller than five as a result of a sizeable occupation of the δ∗ antibonding orbitals
[296].

The above and today reported topological analyses show that in contrast to the ELF and QTAIM picture of covalent
bonding between main group elements, the two-centre multiple M-M bond is characterized by a large fluctuation
between the two metal cores and a low population of the disynaptic V(M, M) ELF basin and may be related to
charge-shift bonding.

4.2.2. Single M-M bonds
In addition to the binuclear rhodium complexes of the above “paddlewheel” metal complexes, single M-M bonds

have been characterized using topological analyses (mainly QTAIM) for transition elements of group 4 and group 12
at both ends of the transition series.

Figure 10: Representative complexes of single Ti-Ti and Zn-Zn bonds

The short intermetallic distance (2.543 Å ) and the diamagnetism of alkoxo-bridged dinuclear complexes of Ti(III)
indicated the presence of a Ti-Ti bond, as revealed by an attractor of weak ELF value located between the Ti(III) cen-
tres [297]. A short intermetallic contact (2.942 Å ) in a dinuclear Ti(III) formamidinate complex was also assigned to
the presence of a single Ti-Ti bond on the basis of the analysis of the calculated electron density (bond order 0.96)
[298]. Carmona’s discovery of the first structurally characterized example of a stable Zn-Zn bond in decamethyldizin-
cocene (Cp∗Zn−ZnCp∗), with a intermetallic distance of 2.305 Å and two parallel Cp∗ rings [23] prompted a number
of theoretical investigations [23]. In contrast to other M-M bonds of the transition element series, the Zn-Zn bond in
dizincocene and other Zn-Zn bonded species, is mediated primarily by overlap of the 4s orbitals with low s/pz or s/dz2
mixing depending on the ligands [23]. QTAIM topological analysis of homodinuclear metallocenes Cp−M−M−Cp
(M = Ni, Cu, Zn) display the typical signature of metallic bonding at the M-M bond critical point: a low electron
density, a positive Laplacian ∆ρ (closed-shell interaction) and a small negative energy density H (associated with an
electron-shared or covalent character of the bond) [299]. The covalent character is increasing according to the fol-
lowing Zn < Cu < Ni order. The large QTAIM delocalization indexes between the metal atomic basins ranging from
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0.94 (Zn), 1.44 (Cu) up to 2.29 (Ni) are consistent with a single Zn-Zn and multiple Cu-Cu and Ni-Ni bonds, that are
further supported by the presence of ELF disynaptic V(M, M) basins with populations of about 3 e. In contrast, the
M-M bonds in binuclear main-group-metal metallocenes (M = Be, Mg, Ca) exhibit topological signatures of covalent
M-M bonds [300].

ELF contour maps were calculated using periodic DFT and plane wave basis sets for various dimetallocenes of
group 12 metals (M = Zn, Cd, Hg). Zinc retains central η5−C5H5 coordination in the dimer while Cd shifts to an off-
centre position and mercury to the edge displaced η1−C5H5 coordination [301]. A point attractor and a torus attractor
of close ELF value (ELF ≈ 0.6) are found in the middle of the Zn-Zn bond [301]. The latter is not just a simple
σ-bond arising from overlap of Zn 4s orbitals and small contributions of s/pz and s/dz2 mixing. There is also a weak
π-bond contribution arising from zinc dxz and dyz overlap [301]. The heavier Cd-Cd and Hg-Hg molecular analogs of
the above Zn-Zn bonded systems are scarce because coordination of ligands tends to induce disproportionation to M◦

and MII . The Cd-Cd bond appears rather similar to the Zn-Zn analog, with dominant 5s character mixed with some
5pz. In the mercury congener, however, relativistic stabilization of the 6s orbital reduces the 5dz2/6s separation, and
∼ 5% dz2 character is present in the Hg-Hg bonding HOMO. In conjunction with the lanthanide contraction, the result
is that the Hg-Hg bond (2.5738(3) Å ) is slightly shorter than its Cd-Cd analog (2.6257(5) Å ) [4, 23].

Group 12 Di-uranium fullerene U2@C80 was detected recently using mass spectrometry. A cage-driven single U-
U bond was characterized in the latter U2@C80 fullerene using QTAIM analysis [302]. U-U bonds fall in the negative
energy density regions, denoting an electron-shared U-U interaction. The delocalization index between the U atoms
is close to one thus consistent with a single U-U bond. Lower delocalization indexes within the 0.25-0.65 range,
were reported for other similar dimetallofullerenes [303] in which the signature of the M-M bond is an ELF V(M,
M) valence basin with populations ranging from 1.40 in Sc2@C82 and 1.62 in Y2@C82 up to 1.8–1.9 in Lu2@C76,82.
Disynaptic V(M, M) attractors with an ELF value lower than 0.5 were also reported for group 12 metals (M = Zn,
Cd, Hg) encapsulated in C50X10 (X = CH, N, B) fullerenes and were assigned to a M-M bond analogous to the one in
M2Cp2 complexes described above [304]

The Laplacian of alpha-electron density highlights a spin density concentration between the U atoms. This is
consistent with the MO analysis showing that the one-electron two-centre U-U bond at 3.9 Å with a strength of about
18 kcal/mol is realized mainly via U(5 f ) orbitals. A concept of unwilling metal bonding is suggested: the encapsulated
U atoms are strongly bound to the cage and carry a positive charge. Pushing the U(5 f ) electron density into the U-U
bonding region reduces electrostatic repulsion between enclosed atoms, thus forcing U-U bonds of increasing strength
as the cage size decreases within the present U2@CN (N = 60, 70, 80, 84, 90) series.

The Th-Th bond could be tuned from quadruple (H3AsThThAsH3) to single (ONThThNO) by changing the ligand
L in the LThThL complexes series. QTAIM metrics (low ρi , positive ∆ρ and negative H) are typical of M-M bonds
and are linearly correlated with the Th-Th distance [305].

4.2.3. Weak covalent M-M interactions
Weak covalent Pd(II)-Pd(II) or Ag(I)-Ag(I) interactions were recently characterized by QTAIM analysis by Ofredi

et al. [306, 307]. The covalent character and the strength of the M-M bond were estimated from the QTAIM energy
densities at the bond critical point and were shown to increase upon oxidation of one or both metallic centres. Such
cation-cation interactions between d8 − d10 systems are referred to as metallophilic interactions [16, 308]. They are
weaker than most covalent or ionic bonds but stronger than other van der Waals interactions, and roughly comparable
in strength with typical hydrogen bonds. They are expected stronger in systems with larger relativistic effects and
are very sensitive to the electronic effects of the ligands. The metallophilic interactions weaken along the series of
metals of group 11 [309]. Cuprophilic interactions have been the subject of debates [309–313]. At the MP2 level,
their strength has been calculated three times weaker than aurophilic interactions [314]. However, the oxidation of
one Cu(I) centre involved in the cuprophilic interaction, results in the formation of a stronger single Cu(II)-Cu(I) bond
in the corresponding mixed-valence complex [315, 316].

Topological analyses are expected unique tools for characterizing such weak M-M interactions. QTAIM analyses
of unsupported or bridged Cu(I) dimers have been recently reported [317]. The range value of the ratio of the local
electron potential energy density (Vbcp) to the kinetic energy density (Gbcp) at the bond critical point located between
the copper atoms, namely 1 < |Vbcp|/Gbcp < 2, suggests that the Cu-Cu interactions are not perfectly ionic but have
some electron-shared (covalent) character [317].
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The interest of combining QTAIM and ELF analyses is illustrated below for the characterization of the binuclear
copper-amidinate complex (1). The latter is used as a precursor in the synthesis of copper nanoparticles [318]. It is
anticipated that the knowledge and control of the M-M bonding in the precursor complex may help in tuning the final
shape and size of the nanoparticles and the understanding of the mechanism of the formation of copper nanoparticles.

Scheme 1: Structure of binuclear copper complex 1

ELF topological analysis of the amidinate anion and of the bimetallic amidinate precursor. The weight of the most
representative mesomeric forms of the amidinate anion, estimated from the ELF populations and covariances of the
valence basins (Scheme 2) are shown below. The major mesomeric form exhibits a zwitterionic description of the
imine C-N bond.

46% 27% 27%

Scheme 2: mesomeric structures of the amidinate anion

In the experimental structure of copper-bisamidinate complex 1 of quasi-Ci symmetry [319], the intermetallic
distance (2.414 Å) is a little larger than twice the covalent radius of Cu (2.34 Å) and considerably shorter than twice
its van der Waals radius (5.76 Å), suggesting a cuprophilic interaction. The Ci or C2v-symmetric structures, calculated
at the B3PW91/Def2TZVP level are quasi-degenerated and in good agreement with the experimental structure. In
both the C2v-symmetric or centrosymmetric binuclear complex 1, the ELF description of both amidinate ligands is
very similar to the one of the free amidinate anion (almost same populations and covariances as shown in Figure 11).
The disynaptic ELF valence basin V(Cu,N) exhibits a population slightly larger than the one of V(N) in the free
amidinate anion (3.6 vs 3.4 e−) and the corresponding attractor is located closer to the nitrogen atom than the V(N)
attractor in the free amidinate anion (0.613 vs 0.725 Å ), suggesting that the weight of the zwitterionic mesomeric form
increased slightly in the copper complex 1. The covariance between V(Cu,N) and the core basin of copper, namely
Cov(V(Cu,N), C(Cu)) = -0.27 is indicative of a dative Cu-N bond although the QTAIM atomic contribution of Cu to
the V(Cu, N) basin is weak (0.22 e−, i.e. lower than 10% of the basin population). As expected, the formal oxidation
state of copper is calculated equal to I from the ELF populations substracting to the atomic number of copper the
populations of the core and sub-valence basins of copper (29 - C(Cu) -V(Cu) = 29 -27.5 - 0.38 = 1.1).

The dative Cu-N bond exhibits therefore a strong ionic character that may be described by two Cu+ ions in
electrostatic interaction with the major mesomeric form of the amidinate anion. The disynaptic V(Cu,Cu) basin is
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Figure 11: Average populations of ELF basins (in red) and QTAIM atomic charges (in blue) for the amidinate anion
(left) and for the Ci -symmetric bis-amidinate copper complex 1 (middle), one amidinate anion has been omitted for
clarity. B3PW91/Def2TZVP// PBE-D3/Def2TZVP level of calculation.

Scheme 3: Most representative mesomeric forms of binuclear copper complex 1.
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indicative of an electron-shared Cu-Cu bond, that is further supported by the large QTAIM covariance between Cu
atomic basins (-0.16). The low population of V(Cu, Cu) (0.3 e−) is however indicative of a weak covalent character
that is also supported by the existence of two sub-valence monosynaptic V(Cu) basins. Such sub-valence V(M) basins
have been already reported for transition element cations interacting with large biological molecules by Benoit de
Courcy et al., the volume and population of which increasing with the covalent character of the bond [180, 320].

Table 8: QTAIM topological parameters of complex 1 at the bond critical points (bcp). Eint (kcal/mol) = -313.754
Vbcp (au) [321][32]. B3PW91/Def2TZVP// PBE-D3/Def2TZVP level of calculation.

ρbcp (au) ∆ρbcp (au) δ Hbcp (au) Hbcp/ρbcp (au) Vbcp (au) Eint (kcal/mol)
Cu-N 0·112301 +0·441717 0·658 −0·041532 −0·369 −0·193493 60·7

0·112139 +0·441364 0·658 −0·041412 −0·369 −0·193164 60·6
0·112139 +0·441364 0·658 −0·041412 −0·369 −0·193164 60·6
0·112301 +0·441717 0·658 −0·041532 −0·369 −0·193493 60·7

Cu-Cu 0·039746 +0·115848 0·328 −0·005215 −0·044 −0·039391 12·4

Figure 12: QTAIM molecular graph B3PW91/Def2TZVP// PBE-D3/Def2TZVP level of calculation. Bond critical
points in green.

QTAIM analysis of the binuclear Cu2Amd2 complex 1. According to the Macchi’s classification [149], the QTAIM
topological parameters at the Cu-N bond critical points are indicative of a donor-acceptor (dative) Cu-N bond (∆ρbcp >
0 and Hbcp < 0). The degree of covalency as measured by the Hbcp/ρbcp ratio is the same for the four Cu-N bonds
(0.37) as well as the Cu-N interaction energies (60.7 kcal/mol) estimated from the Espinosa correlation [321] (Table 8).
Similar Cu-N dative bonds with a strong ionic character were recently characterized in copper-histidine complexes
[322].

The QTAIM topological parameters at the Cu-Cu bond critical points are indicative of a closed-shell Cu-Cu
interaction with a weak covalent character (∆ρbcp > 0 and Hbcp < 0). The degree of covalency as measured by the
Hbcp/ρbcp ratio is the same for the four Cu-N bonds (0.044) and is consistent with the above ELF analysis, as the
Cu-Cu interaction energies (12.4 kcal/mol).

The topological signature of the cuprophilic interaction in complex 1, namely a two-centre M-M bond with a weak
covalent character, is a disynaptic V(M, M) ELF basin of low population and sub-valence basins, that are consistent
with the low covalent character of the closed-shell interaction characterized from the QTAIM energy densities values.
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Non-covalent interactions. As already mentioned in the introduction, d8 metal centre should not be involved in M-M
bonding due to the filling of all the M-M antibonding orbitals, expected to cancel out the M-M bonding orbitals. How-
ever, the net overall bonding interaction in square-planar Rh(I), Ir(I) or Pt(II) oligomeric stacks, is well-documented
and was explained by the symmetry-allowed mixing of dz2 orbitals with the (n+1) metal s and pz orbitals [323]. The
Pd(II)-Pd(II) bond was considered only recently in a series of Pd(II)-pyridine dimers supported by bridging acetate or
triflate anions. A weak closed-shell interaction is characterized by QTAIM analysis (low electron density and positive
Laplacian at the bond critical point, that are linearly correlated to the Pd-Pd distance) [323]. The Pd-Pd interaction is
weaker than the one in related Rh, Ir and Pt systems.

Similar weak noncovalent Pd···Pd interactions have been reported recently in heterobimetallic (Pd-Pd) or het-
erotrimetallic (Pd-Ir) complexes involving the 2-indenylidene pincer ligand [324]. The low value of the Wiberg bond
index (0.11) and stabilizing energies of Pd(1)→Pd(2) (42 kcal/mol) and Pd(2)→Pd(1) (30 kcal/mol) of the same range
(2nd order perturbation Natural Bond Orbital analysis (NBO)), suggest weak noncovalent Pd···Pd interactions, further
supported by QTAIM analysis.

Grimme et al. pointed out that the M-M attractive d8 − d8 interactions accounts only for 10-15% of the total
dispersion contribution to the binding energy, suggesting a strong effect of the ligands [325]

4.3. Heterometallic bonds
In a complementary approach to the previous section dedicated to homometallic MM bonds, the scope of this

section is restricted to the description of the specificities of a M-M bond resulting from the interaction of two different
metal centres.

One specificity is the degree of polarity of the heterometallic M-M′ bonds, expected large by combining metal
from both ends of the transition metal series, for example an electron-rich “early-late” transition element with another
electron-poor metal centre. This will be illustrated below through the characterization of a polar Ti-Co covalent bond
by combining QTAIM and ELF topological analyses [326].

Alternatively to covalent bonds, unsymmetrically bonded mononuclear fragments may result in the formation of
a dative M-M′ bond, one metal centre acting as a ligand for the other unsaturated metal centre (M→M′). The great
variety of dative bonds involving a Lewis basic transition element and a Lewis acidic metal was illustrated in a recent
review [41]. ELF and QTAIM topological analysis of a dative nickel-iron interaction in model complexes of [NiFe]
hydrogenase will be presented in the next section.

4.3.1. Dative M-M bonds
When a transition element centre M is adjacent to another unsaturated or electron-poor metal centre M′, the more

electron-rich metal centre can act as a ligand L (Green classification [327]) to form a dative M→M′ bond. This is
illustrated hereafter for a bimetallic nickel complex exhibiting a short intermetallic distance of 2.41 Å in the crystal
structure [328].

Scheme 4: Bimetallic nickel complex 2 exhibiting a dative Ni-Ni bond.

The Ni-Ni bond in the above diamagnetic complex 2 may be understood either as (i) covalent or (ii) dative:
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(i) covalent Ni(I)-Ni(I) and antiferromagnetic coupling between two Ni(I) centres with 16 and 18 e− respectively
(symmetrically dividing the +2 charge on the nickel needed to balance the two anionic phosphide ligands).

(ii) dative Ni(0 )→Ni(II). The tetrahedral symmetry may be related to a d10 Ni(0) centre, while the planar geometry
may be related to a d8 Ni(II) centre, bonded to two anionic phosphide ligands thus giving a “neutral” three-
coordinate 14 e− Ni(II) moiety. The dative bond with the electron-rich Ni(0)-carbonyl moiety (18 e−) is bringing
up the Ni(II) moiety to 16e−, i.e. the electron-count expected for a square-planar d8 Ni(II) atom.

The geometry and chemical reactivity of the binuclear Ni complex is consistent with the dative bond assignement.
A dative Ni→Fe bond was characterized in model complexes of [NiFe] hydrogenase, catalyzing the reversible ox-

idation of molecular hydrogen thus playing a vital role for anaerobic bacteria [329]. Thiolate-bridged heterobimetallic
Ni-Fe complexes such as complexes 3 and 4 (Scheme 5) have been used to mimic the protonation of the active site of
[NiFe] hydrogenases,

Consistently with previous theoretical studies of complex 3, ELF, ELI-D and QTAIM studies are in favor of
a covalent Ni(I)-Fe(I) bond [330]. However, the Ni-Fe bonding is released in the quasi-degenerated Fe(0): Ni(II)
isomer or in the oxidized Ni(II) Fe(I) complex [3]+ [331] Although complex 4 has the same electron count than [3]+,
it exhibits a dative Ni(I)→Fe(II) bond and the related geometric distinction, namely a planar Ni(I) in [3]+ versus a
SF4-like Ni(I) in 4 [ [330, 332]

Scheme 5: Thiolate-bridged heterobimetallic Ni−Fe complexes 3 (left) [3]+ (middle) and 4 (right), studied as mimics
of [Ni−Fe] hydrogenase.

Os→Cr and Os→W adducts featuring a donor-acceptor M-M interaction with a weak degree of covalency, ac-
cording to NBO (Wiberg bond index about 0.2) and EDA analyses were recently reported [325].

4.3.2. Polar covalent M-M bonds
The concept of bond polarity used in main group chemistry, based on electronegativities, is not straightforward for

M-M bonds, because it is expected strongly influenced by the ligands involved in the coordination sphere rather than
by the intrinsic properties of the metal only. The polarity of Ti−Co bonds in dinuclear complexes, was investigated
on model complexes (Scheme 6), using joint QTAIM and ELF topological analyses. While the covalent M-M bond
order was found less than 0.5, the bonding analysis suggests that the titanium atom carries a large positive charge,
while the cobalt atom is nearly neutral. Partial charges greater than 0.5 e− were calculated for the complex fragments.
The latter results are consistent with the highly polar character of the Ti-Co bonds [326].

A Ti-Co donor-acceptor bond was ruled out from energy decomposition analyses (EDA). The covalent and elec-
trostatic contributions to the Ti-Co attraction have similar strength. The Ti-Co bond can therefore be classified as a
polar single bond, which has only little π contribution [333].

Recently, Ca-Fe and Yb-Fe bonds in heterobimetallic Fe complexes were shown to exhibit similar QTAIM sig-
natures to the ones of the above polar Ti-Co bond and were shown predominantly electrostatic in nature from EDA
analysis [334].
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Scheme 6: Model complexes used for the investigation of the nature and polarity of the Ti-Co bond.

4.3.3. Non-covalent M-M bonds
The term hemichelation was coined for supported bimetallic complexes exhibiting a noncovalent M-M′ interaction

[335]. For (CO)3Cr−MLX hemichelates (M = Pd, Pt), there is no BCP although the M-M interaction is revealed by
ETS-NOCV [335].

A 14-electron Rh(I) centre could be isolated in the L2Rh(I)···Cr(CO)3 (arene) hemichelate (L = norbornadiene
or CO). The Cr···Rh attractive non-covalent interactions was characterized using non-covalent interactions (NCI)
analysis. The positive value of the Laplacian ∆ρ and the low electron density value at the Cr-Rh bond critical point are
indicative of a non-covalent interaction [336]. Interaction energies calculated from ETS-NOCV analyses are ranging
from 6.0 up to 38.0 kcal/mol depending on the ligands. The Cr→Rh donor-acceptor character is slightly larger than
that of the Rh→Cr back-donation.

A dominant attractive electrostatic contribution to the stabilization of Pd(II) hemichelates, involving noncovalent
interactions between a Cr(CO)3 moiety and a Pd(II) centre, was evidenced using QTAIM, ETS-NOCV, EDA and NBO
analyses [337]. ELF and QTAIM topological analyses of indenyl-palladium complexes stabilized by fluxional non-
covalent interactions, show that the fluxionality is the direct consequence of the weakness of the polar intermetallic
interaction [335].

A weak noncovalent supported Fe-Pd interaction was characterized using NBO and QTAIM analyses, in a cationic
bimetallic complex involving the coordination of PdX (X = Cl, Br) to 1,1′-bis(diphenylphosphino)ferrocene [338]

Most of the topological studies of this section rely on QTAIM analysis; The discrimination between a dative and
a covalent M-M bond on the one hand and between weakly covalent or noncovalent M-M interaction at the other
hand is therefore not straightforward. In the absence of bond critical point, NCI analysis would be required for a
clearcut distinction between weakly covalent or noncovalent bonds. ELF topological analyses should help for the
discrimination between dative and (polar)-covalent MM bonds.

5. Multicentre bonding in polynuclear cluster complexes

In the previous sections, M-M bonds generally involving metal centres in high oxidation state were considered.
The present section will be rather devoted to M-M bonds formed in low-valent complexes such as the first row
carbonyls Mn2(CO)10 and Fe2(CO)9 and related polynuclear cluster complexes. The 17 e− count of each monometallic
carbonyl moiety requires the formation of a single M-M bond to satisfy the 18 e− rule. However, the existence of
this M-M bond is difficult to establish [3]. Theoretical analyses, especially topological analyses are expected helpful.
Indeed, many QTAIM analyses have been reported and reviewed [150, 299, 339–341].The ELF topological description
of polynuclear metal cluster complexes was also reviewed [342, 343]. From these reports, in contrast to the multiple
M-M bond in binuclear complexes, multicentric bonding, involving eventually the bridging ligands, and low electron
delocalization between the cores of the metal atoms are evidenced in polynuclear cluster complexes. The scope of
the present section will be therefore restricted to recent QTAIM studies and/or ELF topological analyses reported
subsequently to the above reviews. The topological analysis of ELF or ELI-D is the choice technique enabling the
unambiguous characterization of multicentre bonding thanks to the synaptic order concept.
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As it had been shown in section 3, multicentre bonding is frequently encountered in bulk alkali, alkaline-earth
bulk metals as well as in intermetallic phases. In this section, the discussion is focussed on small aggregates in which
the metallic centres are or not linked to ligands.

5.1. Homometallic bonds

EHMO calculations performed on octahedral metal clusters, namely [Sn6H6]4+, [Sn6]2–, [Zr5Cl12(PMe3)5]2–,
[Zr5Cl12(PMe3)5H4] and Zr5 indicate the presence of polysynaptic basins and of bridging hydrogens [65].

As mentioned in the previous section, the Lin, n = 4, 5, 6 complexes in their ground state are bonded by partial
multicentre two-electron bonds and by multicentre one-electron bonds in the high spin state. The ground state of Li4
is calculated to have a planar rhomboidal D2h structure with edges of 3.05 Å, whereas the distance between the nearest
opposite vertices is shorter, i.e. 2.62 Å. Four valence attractors are located, outside of the rhombus, on the bisection
of each edge. There are in principle four disynaptic basins V(Li,Li), each with a population N̄[V(Li,Li)] = 0.98e−.
The value of the covariance matrix elements with the two neighbouring V(Li,Li) basins are -0.39 when the two basins
belong to the valence shell of a Li at an acute angle vertex and -0.5 when they are in an obtuse angle vertex. This
large absolute value suggests that disynaptic basins should be collected two by two in trisynaptic basins, all the more
so that the ELF value at the saddle point between two such disypnatic basins is 0.994 to be compared to 0.996, the
value at the attractors. It is interesting to note, that a calculation carried out with the same basis set and the B3LYP
hybrid functional [344, 345] instead of B3PW91 [344, 346] used by Alikhani and Shaik [282] yields two attractors
at positions close to the B3PW91 saddle point. The bonding picture is therefore that of two bonding electron pairs
each centred in an acute isosceles triangle as illustrated in Figure 13. The high spin state has a Td structure and the

Figure 13: ELF = 0.975 isosurface of the Li4 ground state. Color code: magenta=core, green=trisynaptic

four attractors are located in front of the faces of the tetrahedron. In both ground state and high spin state of Li5 the 5
electrons are distributed among four basins we temptatively assign as trisynaptic. The Li6 cluster has valence basins
clearly of synaptic order 4 whereas the 7B2 state of this system displays four trisynaptic basins, each with a population
of 1.10 e−, the remaining valence density being in two small basins of synatic order 4.

The iron tetramer Fe4 ground state is calculated to have fourteen unpaired electrons, it has a D2h structure which
determines a tetrahedron with two different edge lengths R1,2 = R3,4 = 2.55 Å and all other Ri, j = 2.26 Å. The electron
density has one non-nuclear attractor at the centre of the tetrahedron and bond critical points at the mid-points of the
edges. The ELF analysis reveals 21 valence attractors: one at the centre of the tetrahedron is tetrasynaptic, 4 at the top
of faces are trisynaptic, for each edge there is a pair of attractors which can be merged since ELF = 0.437, the value
at the saddle point between them is very close to that of one the attractors of the pair (ELF = 0.438) and therefore
theirs basins can be safely merged, the four last are monosynatic and far apart the nuclei. The population of the core
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basins, N̄[C(Fe)] = 23.78e−, has a contribution of 2.94 e− due to unpaired density and a large variance σ2 = 1.92
which corresponds to one unpaired electron less than in the free atom. Each summed disynaptic basin as well as
each trisynaptic basin contains almost 1 e− whereas the population of the tetrasynaptic and monosynaptic basins are
respectively 0.14 e− and 0.26 e− [347].

The main fragment resulting from mass spectral analysis of three anionic Mo(IV) dithiolene complexes is Mo2S4O–
2.

The non-symmetrical experimental fragmentation into this dinuclear core is consistent with the least ELF topological
change principle [348]. The stability of the dinuclear Mo2S4O–

2 fragment is assigned: (i) a strong Mo−Mo bond char-
acterized by a disynaptic V(Mo,Mo) of low population (0.42) and a large covariance between the Mo cores and (ii) a
delocalization of core electrons of Mo on the bridge sulfido groups and terminal oxygen atoms.

QTAIM studies have been performed to investigate the M-M bond in three types of disulfido carbonyl clusters:
Fe2(µ−S2)(CO)6 (5), a model complex of [FeFe] hydrogenases, a co-crystallized trinuclear complex Fe3(µ3−S)2(CO)9
(6) and the related triphenyphosphine complex Fe2(µ−S2)(CO)5(PPh3) (7) [349]. As already emphasized in previous
QTAIM and ELI-D studies of Fe3(µ−H)(µ−COMe)(CO)10 [350], it is not possible to rely on the sign of the Laplacian
only to assign the nature of bonds involving heavy element such as transition elements. The presence of a BCP
is sensitive to the DFT calculation level and to the basis set, because the structure of 5 is close to a catastrophe
point. On the basis of the delocalization indexes, resp. 0.496 and 0.502 calculated at the B3LYP/def2-TZVP level,
a Fe−Fe bond with partial covalent character is assigned to complexes 5 and 7. A lower covalent character is found
for the parent disulfido carbonyl complex Mn2(µ−S2)(CO)6 (δ(ΩMn(1),ΩMn(2)) = 0.186). For complex 6, a delocalized
Fe(1)−Fe(3)−Fe(2) interaction (δ(ΩFe(1),ΩFe(3)) = 0.329), whereas no interaction is found between Fe(1) and Fe(2)
(δ(ΩFe(1),ΩFe(2)) = 0.074).

5.2. Multicentre bonds involving non-metal elements from the bridging ligands

A first example of bridging non-metal atom is provided by Al2H6 which has been observed by photo-detachment
spectroscopy [351]. The structure of Al2H6 is the analog of diborane with two bridging hydrogen atoms. We have
carried out the ELF analysis of Al2H6 and of the AlH–

6 anion and found trisynaptic protonated basins as displayed in
Figure 14. The populations of the V(Al,H,Al) basins are calculated 2.02 and 2.04 e− in Al2H6 and AlH–

6, respectively.

Figure 14: ELF = 0.85 isosurface of Al2H6 (left) and Al2H–
6. Color code: magenta=core, redbrick= monosynaptic,

light blue= protonated disynaptic V(Al,H) or trisynaptic V(Al,H,Al)

The trimethyl aluminium dimer is another example of multicentre M-M bond involving a non metal atom, here a
carbon. The bonding in Al2Me6 (Figure 15 is very similar to that of Al2H6, the V(Al,H) and V(Al,H,Al) being
replaced by V(Al,C) and V(Al,C,Al) basins whose populations are 2.05 and 2.13 e−. In both Al2H5 and Al2Me6 the
bridging bond have to be considered as dative because they result of the dimerization in which the monomeric species
play simultaneously the roles of Lewis acid and Lewis base.
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Figure 15: ELF = 0.85 isosurface of Al2Me6. Color code: magenta=core, light blue= protonated disynaptic V(C,H),
green= disynaptic V(Al,C) or trisynaptic V(Al,C,Al)

The M−M, bonding interactions in the group 7 transition element carbonyl complexes [M2(CO)10] and [M3(µ−H)3(CO)12]
(M = Mn, Tc, Re) have been studied using ELF and QTAIM topological analyses as well as the source function (SF).
The results confirm that the metal atoms in the homobinuclear [M2(CO)10] complexes are connected through a lo-
calized M−M bond that implicates little electron density (it increases from M = Mn to Tc and Re). On the other
hand, such a bonding has not been found in the trinuclear [M3(µ−H)3(CO)12] complexes, which, instead, contain a
6c − 6e bonding interaction delocalized over their six-membered M3(µ−H)3 ring, as revealed by the non-negligible
non-bonding delocalization indexes. The existence of significant CO to M π-back-donation, slightly higher in the trin-
uclear clusters than in the binuclear complexes, is indicated by the M···OCO delocalization indexes and SF calculations
[352].

In contrast to the ELF and QTAIM picture of dicentric multiple M-M bonds, characterized by a large electron
delocalization between metal cores, the one of M-M bonding in polymetallic clusters, is characterized by multicentre
bonding.

6. Conclusion

This review presents a rather large panorama of chemical situations illustrating the capability of topological ap-
proaches for the description and the characterization of the M-M bonding. The aim of such studies is, in our opinion,
to inspire and support chemical explanations of the structure and of the properties of molecules and materials. By
chemical explanations, we mean explanations in terms of the group and period of the elemental atom constituting the
system of interest and assuming the hypothesis that the electrons tend to form stable groups more or less localized the
organization of which can be anticipated. In contrast, the molecular orbital and valence-bond approaches belong to
Quantum Chemical explanations because they rely upon the calculus of the approximate solutions of the Schrödinger
equation. Keeping this goal in mind we realize that a lot of work remain to be done.

From the literature it appears clearly that most published works concern group 1-13 elements although group
14-15 atoms are involved in M-M bonds [14, 353]. The metals of these groups offer a large variety of M-M bonding
situations since they can form rings and cages with bonds of the various multiplicities allowed by the number of their
valence electrons.

In the M-M bond the core-valence separation is preserved including for transition-metals for which the effective
number of valence electrons hardly exceeds two. Therefore, the density outside of the core basins contributes to
essentially covalent or dative bonds including the metallic bond. Therefore, the valence shells of transition element
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atoms in molecules and bulk metals present many analogies with those of alkali and alkaline-earth elements. The main
distinctive feature of transition elements, together with lanthanides and actinides, is the delocalization of the density of
the subvalence shell which is testified by the variance of the core population which reaches values as large as 2.5 in the
case of Mo. This large variance not only implies delocalization of the valence density but also the subvalence shells
of the nearest neighbour transition elements contributing to a charge shift type contribution to the bonding explained
in terms of δ bond by the Quantum Chemical explanations. The delocalization of the subvalence shell density has its
origin in the local spin multiplicity which is often different of that in the ground state free atom. The evaluation of
the variance of the core populations has to be extended to bulk metals, as it has been already done for Cu by Baranov
and Kohout [258]. The core charge-shift hypothesis may explain the differences and the similarities of the properties
of metals of different groups, for example the boiling point of most transition elements of period 4 is of the order of
3000 K, except Zn which has a complete d10 subshell, for which it is 1180 K a value close to that of K (1032 K).

For an accurate description of heavy metals, relativistic corrections are required and therfore use of programs
designed for two component wave functions [199, 200] are called to increase in the next years.

Appendix A: Mathematical glossary

Dynamical system:. a dynamical system is a vector field of class C1 bound on a manifold M. Such a vector field has
no discontinuities. To any point m belonging to the M manifold corresponds one vector X(m) and only one which is at
least one-time differentiable. The solutions of the system of equations dm/dt = X(m) are locally unique and therefore
there is only one trajectory passing through m. The trajectories are determined by integrating dm/dt = X(m) with
respect to the fictitious time variable t. The limit sets of M of m(t) fort ↔ ±∞ are called the α and ω limit set.

Gradient dynamical system:. the vector field of a gradient dynamical system is the gradient of a function called
potential function, i.e.: X(m) = ∇V(m).

Critical points:. the critical points (or limit points of a dynamical system are the points of M for which X(mc) = 0.
A critical point is either a α or an ω limit of a trajectory. The set of points of M by which are built trajectories having
mc as ω limit is called the stable manifold of mc, the unstable manifold of mc is the set for which mc is an α limit.
The dimension of the unstable manifold is given by the index of the critical point which is the number of direction
in which M increases in the neighbourhood of mc. The set of the critical points of a dynamical system satisfies the
Poincaré-Hopf formula: ∑

P

(−1)IP = χ(M)

where IP is the index of the critical point P and χ(M) the Euler characteristic of the manifold. A critical point of index
zero is an attractor of the dynamical system. The stable manifold of an attractor is called the basin of the attractor.
The stable manifold of a critical point of index greater than zero is a separatrix, it is the border of two or more basins.
The index of a critical point mc of a gradient dynamical system is the number of positive eigenvalues of the matrix
of the second derivatives of the potential function at mc. In this case, a critical point is said hyperbolic if none of the
eigenvalues is zero.

Domain:. if any two points a and b of a set MA can be connected by a path belonging to MA, the set MA is a domain.
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