Distributed synaptic weights in a LIF neural network and learning rules

Abstract : Leaky integrate-and-fire (LIF) models are mean-field limits, with a large number of neurons, used to describe neural networks. We consider inhomogeneous networks structured by a connec-tivity parameter (strengths of the synaptic weights) with the effect of processing the input current with different intensities. We first study the properties of the network activity depending on the distribution of synaptic weights and in particular its discrimination capacity. Then, we consider simple learning rules and determine the synaptic weight distribution it generates. We outline the role of noise as a selection principle and the capacity to memorized a learned signal.
Type de document :
Article dans une revue
Physica D: Nonlinear Phenomena, Elsevier, 2017, 353-354, pp.20-30. 〈10.1016/j.physd.2017.05.005〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

http://hal.upmc.fr/hal-01541093
Contributeur : Benoît Perthame <>
Soumis le : samedi 17 juin 2017 - 12:23:13
Dernière modification le : jeudi 26 avril 2018 - 10:29:07
Document(s) archivé(s) le : vendredi 15 décembre 2017 - 15:48:32

Fichiers

distrib_connec_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Benoît Perthame, Delphine Salort, Gilles Wainrib. Distributed synaptic weights in a LIF neural network and learning rules. Physica D: Nonlinear Phenomena, Elsevier, 2017, 353-354, pp.20-30. 〈10.1016/j.physd.2017.05.005〉. 〈hal-01541093〉

Partager

Métriques

Consultations de la notice

357

Téléchargements de fichiers

109