Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells

Abstract : We investigate the electronic and transport properties of HgTe 2D colloidal quantum wells. We demonstrate that the material can be made p or n-type depending on the capping ligands. In addition to the control of majority carrier type, the surface chemistry also strongly affects the photoconductivity of the material,. These transport measurements are correlated with the electronic structure determined by high resolution X-ray photoemission. We attribute the change of majority carriers to the strong hybridization of an n-doped HgS layer resulting from capping of the HgTe nanoplatelets by S 2-ions. We further investigate the gate and temperature dependence of the photoresponse and its dynamics. We show that the photocurrent rise and fall times can be tuned from 100 µs to 1 ms using the gate bias. Finally, we use time-resolved photoemission spectroscopy as a probe of the transport relaxation to determine if the observed dynamics are limited by a fundamental process such as trapping. These pump probe surface photovoltage measurements show an even faster relaxation in the 100 ns to 500 ns range, which suggests that the current performances are rather limited by geometrical factors.
Type de document :
Article dans une revue
Nano Letters, American Chemical Society, 2017, 17 (7), pp.4067-4074. 〈10.1021/acs.nanolett.7b00683〉
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

http://hal.upmc.fr/hal-01541341
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : lundi 19 juin 2017 - 10:03:30
Dernière modification le : jeudi 11 janvier 2018 - 06:27:33
Document(s) archivé(s) le : vendredi 15 décembre 2017 - 16:57:20

Fichier

Livache_2017_Charge_dynamics_a...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Clément Livache, Eva Izquierdo, Bertille Martinez, Marion Dufour, Debora Pierucci, et al.. Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells. Nano Letters, American Chemical Society, 2017, 17 (7), pp.4067-4074. 〈10.1021/acs.nanolett.7b00683〉. 〈hal-01541341〉

Partager

Métriques

Consultations de la notice

306

Téléchargements de fichiers

9