. Fluoro-jade and . Staining, Brain sections were incubated sequentially in each of the following solutions for the times indicated: 100% alcohol, 3 min; 70% alcohol, 1 min; distilled water, 1 min; 0.06% potassium permanganate, 15 min; distilled water, 1 min; 0.001% Fluoro-Jade in 0

L. Liu, S. Oza, D. Hogan, J. Perin, I. Rudan et al., Global, regional, and national causes of child mortality in 2000?13, with projections to inform post-2015 priorities: an updated systematic analysis, The Lancet, vol.385, issue.9966, pp.430-440, 2015.
DOI : 10.1016/S0140-6736(14)61698-6

C. Zhu, W. Kang, F. Xu, X. Cheng, Z. Zhang et al., Erythropoietin Improved Neurologic Outcomes in Newborns With Hypoxic-Ischemic Encephalopathy, PEDIATRICS, vol.124, issue.2, pp.218-226, 2009.
DOI : 10.1542/peds.2008-3553

D. Azzopardi, B. Strohm, N. Marlow, P. Brocklehurst, A. Deierl et al., Effects of Hypothermia for Perinatal Asphyxia on Childhood Outcomes, New England Journal of Medicine, vol.371, issue.2, pp.140-149, 2014.
DOI : 10.1056/NEJMoa1315788

J. Song, H. Sun, F. Xu, W. Kang, L. Gao et al., Recombinant human erythropoietin improves neurological outcomes in very preterm infants, Annals of Neurology, vol.38, issue.pt 2, pp.24-34, 2016.
DOI : 10.1002/ana.24677

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5084793

G. Natalucci, B. Latal, B. Koller, C. Ruegger, B. Sick et al., Effect of Early Prophylactic High-Dose Recombinant Human Erythropoietin in Very Preterm Infants on Neurodevelopmental Outcome at 2 Years, JAMA, vol.315, issue.19, pp.2079-2085, 2016.
DOI : 10.1001/jama.2016.5504

N. Robertson, S. Tan, F. Groenendaal, F. Van-bel, S. Juul et al., Which Neuroprotective Agents are Ready for Bench to Bedside Translation in the Newborn Infant?, The Journal of Pediatrics, vol.160, issue.4, pp.544-52, 2012.
DOI : 10.1016/j.jpeds.2011.12.052

H. Hagberg, C. Mallard, C. Rousset, and C. Thornton, Mitochondria: hub of injury responses in the developing brain, The Lancet Neurology, vol.13, issue.2, pp.217-232, 2014.
DOI : 10.1016/S1474-4422(13)70261-8

H. Hagberg, C. Mallard, C. Rousset, and W. Xiaoyang, Apoptotic Mechanisms in the Immature Brain: Involvement of Mitochondria, Journal of Child Neurology, vol.39, issue.7, pp.1141-1146, 2009.
DOI : 10.1161/STROKEAHA.107.504175

L. Galluzzi, O. Kepp, C. Trojel-hansen, and G. Kroemer, Mitochondrial Control of Cellular Life, Stress, and Death, Circulation Research, vol.111, issue.9, pp.1198-1207, 2012.
DOI : 10.1161/CIRCRESAHA.112.268946

L. Galluzzi, K. Blomgren, and G. Kroemer, Mitochondrial membrane permeabilization in neuronal injury, Nature Reviews Neuroscience, vol.26, issue.7, pp.481-494, 2009.
DOI : 10.1038/bjc.1972.33

C. Zhu, X. Wang, F. Xu, B. Bahr, M. Shibata et al., The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia?ischemia, Cell Death and Differentiation, vol.12, issue.2, pp.162-176, 2005.
DOI : 10.1038/sj.cdd.4401545

Y. Sun, T. Li, C. Xie, Y. Zhang, K. Zhou et al., Dichloroacetate treatment improves mitochondrial metabolism and reduces brain injury in neonatal mice, Oncotarget, vol.7, pp.31708-31722, 2016.
DOI : 10.18632/oncotarget.9150

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5077971

X. Wang, W. Han, X. Du, C. Zhu, Y. Carlsson et al., Neuroprotective Effect of Bax-Inhibiting Peptide on Neonatal Brain Injury, Stroke, vol.41, issue.9, pp.2050-2055, 2010.
DOI : 10.1161/STROKEAHA.110.589051

Y. Sun, Y. Zhang, X. Wang, K. Blomgren, and C. Zhu, Apoptosis-inducing factor downregulation increased neuronal progenitor, but not stem cell, survival in the neonatal hippocampus after cerebral hypoxia-ischemia, Molecular Neurodegeneration, vol.7, issue.1, p.17, 2012.
DOI : 10.1046/j.1460-9568.2002.02202.x

S. Susin, H. Lorenzo, N. Zamzami, I. Marzo, B. Snow et al., Molecular characterization of mitochondrial apoptosis-inducing factor, Nature, vol.397, pp.441-446, 1999.

N. Vahsen, C. Cande, J. Briere, P. Benit, N. Joza et al., AIF deficiency compromises oxidative phosphorylation, The EMBO Journal, vol.18, issue.23, pp.4679-4689, 2004.
DOI : 10.1074/jbc.M308143200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC533047

E. Hangen, K. Blomgren, P. Benit, G. Kroemer, and N. Modjtahedi, Life with or without AIF, Trends in Biochemical Sciences, vol.35, issue.5, pp.278-287, 2010.
DOI : 10.1016/j.tibs.2009.12.008

J. Klein, C. Longo-guess, M. Rossmann, K. Seburn, R. Hurd et al., The harlequin mouse mutation downregulates apoptosis-inducing factor, Nature, vol.58, issue.6905, pp.367-374, 2002.
DOI : 10.1038/39601

R. Ishimura, G. Martin, and S. Ackerman, Loss of Apoptosis-Inducing Factor Results in Cell-Type-Specific Neurogenesis Defects, Journal of Neuroscience, vol.28, issue.19, pp.4938-4948, 2008.
DOI : 10.1523/JNEUROSCI.0229-08.2008

K. Osato, Y. Sato, T. Ochiishi, A. Osato, C. Zhu et al., Apoptosis-inducing factor deficiency decreases the proliferation rate and protects the subventricular zone against ionizing radiation, Cell Death and Disease, vol.83, issue.10, p.84, 2010.
DOI : 10.1038/cddis.2010.63

URL : http://doi.org/10.1038/cddis.2010.63

E. Hangen, O. Feraud, S. Lachkar, H. Mou, N. Doti et al., Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis, Molecular Cell, vol.58, issue.6, pp.1001-1014, 2015.
DOI : 10.1016/j.molcel.2015.04.020

C. Zhu, L. Qiu, X. Wang, U. Hallin, C. Cande et al., Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain, Journal of Neurochemistry, vol.75, issue.2, pp.306-317, 2003.
DOI : 10.1093/oxfordjournals.jbchem.a003067

C. Zhu, X. Wang, Z. Huang, L. Qiu, F. Xu et al., Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia, Cell Death and Differentiation, vol.15, issue.4, pp.775-784, 2007.
DOI : 10.1016/0003-2697(80)90024-X

J. Slemmer, C. Zhu, S. Landshamer, R. Trabold, J. Grohm et al., Causal Role of Apoptosis-Inducing Factor for Neuronal Cell Death Following Traumatic Brain Injury, The American Journal of Pathology, vol.173, issue.6, pp.1795-1805, 2008.
DOI : 10.2353/ajpath.2008.080168

C. Zhu, X. Wang, J. Deinum, Z. Huang, J. Gao et al., Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia, The Journal of Experimental Medicine, vol.269, issue.8, pp.1741-1748, 2007.
DOI : 10.1038/17135

N. Doti, C. Reuther, P. Scognamiglio, A. Dolga, N. Plesnila et al., Inhibition of the AIF/CypA complex protects against intrinsic death pathways induced by oxidative stress, Cell Death and Disease, vol.5, issue.1, p.993, 2014.
DOI : 10.1007/s10495-012-0748-8

K. Meyer, S. Buettner, D. Ghezzi, M. Zeviani, D. Bano et al., Loss of apoptosis-inducing factor critically affects MIA40 function, Cell Death and Disease, vol.6, issue.7, p.1814, 2015.
DOI : 10.1074/jbc.M709147200

A. Chatzi, P. Manganas, and K. Tokatlidis, Oxidative folding in the mitochondrial intermembrane space: A regulated process important for cell physiology and disease, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1863, issue.6, pp.1298-1306, 2016.
DOI : 10.1016/j.bbamcr.2016.03.023

N. Modjtahedi, K. Tokatlidis, P. Dessen, and G. Kroemer, Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease, Trends in Biochemical Sciences, vol.41, issue.3, pp.245-260, 2016.
DOI : 10.1016/j.tibs.2015.12.004

M. Fischer, S. Horn, A. Belkacemi, K. Kojer, C. Petrungaro et al., Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells, Molecular Biology of the Cell, vol.24, issue.14, pp.2160-2170, 2013.
DOI : 10.1091/mbc.E12-12-0862

A. Murari, V. Thiriveedi, F. Mohammad, V. Vengaldas, M. Gorla et al., Human mitochondrial MIA40 (CHCHD4) is a component of the Fe-S cluster export machinery, Biochemical Journal, vol.471, issue.2, pp.231-241, 2015.
DOI : 10.1042/BJ20150012

C. Petrungaro, K. Zimmermann, V. Kuttner, M. Fischer, J. Dengjel et al., The Ca2+-Dependent Release of the Mia40-Induced MICU1-MICU2 Dimer from MCU Regulates Mitochondrial Ca2+ Uptake, Cell Metabolism, vol.22, issue.4, pp.721-733, 2015.
DOI : 10.1016/j.cmet.2015.08.019

J. Yang, O. Staples, L. Thomas, T. Briston, M. Robson et al., Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression, Journal of Clinical Investigation, vol.122, issue.2, pp.600-611, 2012.
DOI : 10.1172/JCI58780DS1

K. Blomgren, C. Zhu, X. Wang, J. Karlsson, A. Leverin et al., Synergistic Activation of Caspase-3 by m-Calpain after Neonatal Hypoxia-Ischemia, Journal of Biological Chemistry, vol.276, issue.13, pp.10191-10198, 2001.
DOI : 10.1074/jbc.M007807200

J. Zhuang, P. Wang, X. Huang, X. Chen, J. Kang et al., Mitochondrial disulfide relay mediates translocation of p53 and partitions its subcellular activity, Proceedings of the National Academy of Sciences, vol.102, issue.9, pp.17356-17361, 2013.
DOI : 10.1073/pnas.0408032102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808663

C. Nijboer, C. Heijnen, M. Van-der-kooij, J. Zijlstra, C. Van-velthoven et al., Targeting the p53 pathway to protect the neonatal ischemic brain, Annals of Neurology, vol.21, issue.2, pp.255-264, 2011.
DOI : 10.1002/ana.22413

C. Xie, V. Ginet, Y. Sun, M. Koike, K. Zhou et al., in neonatal brain injury, Autophagy, vol.12, issue.2, pp.410-423, 2016.
DOI : 10.1159/000047087

URL : https://hal.archives-ouvertes.fr/hal-01541596

F. Northington, R. Chavez-valdez, and L. Martin, Neuronal cell death in neonatal hypoxia-ischemia, Annals of Neurology, vol.27, issue.Pt 2, pp.743-758, 2011.
DOI : 10.1002/ana.22419

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000313

C. Culmsee, C. Zhu, S. Landshamer, B. Becattini, E. Wagner et al., Apoptosis-Inducing Factor Triggered by Poly(ADP-Ribose) Polymerase and Bid Mediates Neuronal Cell Death after Oxygen-Glucose Deprivation and Focal Cerebral Ischemia, Journal of Neuroscience, vol.25, issue.44, pp.10262-10272, 2005.
DOI : 10.1523/JNEUROSCI.2818-05.2005

J. Jung, G. Kim, P. Narasimhan, Y. Song, and P. Chan, Regulation of Mn-Superoxide Dismutase Activity and Neuroprotection by STAT3 in Mice after Cerebral Ischemia, Journal of Neuroscience, vol.29, issue.21, pp.7003-7014, 2009.
DOI : 10.1523/JNEUROSCI.1110-09.2009

N. Noshita, T. Sugawara, M. Fujimura, Y. Morita-fujimura, and P. Chan, Manganese Superoxide Dismutase Affects Cytochrome c Release and Caspase-9 Activation After Transient Focal Cerebral Ischemia in Mice, Journal of Cerebral Blood Flow & Metabolism, vol.274, pp.557-567, 2001.
DOI : 10.1161/01.STR.25.1.165

C. Sheridan and S. Martin, Mitochondrial fission/fusion dynamics and apoptosis, Mitochondrion, vol.10, issue.6, pp.640-648, 2010.
DOI : 10.1016/j.mito.2010.08.005

URL : http://www.tara.tcd.ie/bitstream/2262/41151/1/Mitochondrial%20fission-fusion%20dynamics%20and%20apoptosis.pdf

J. Balog, S. Mehta, and R. Vemuganti, Mitochondrial fission and fusion in secondary brain damage after CNS insults, Journal of Cerebral Blood Flow & Metabolism, vol.20, issue.12, pp.2022-2033, 2016.
DOI : 10.1016/j.brainres.2012.03.038

H. Chen, M. Vermulst, Y. Wang, A. Chomyn, T. Prolla et al., Mitochondrial Fusion Is Required for mtDNA Stability in Skeletal Muscle and Tolerance of mtDNA Mutations, Cell, vol.141, issue.2, pp.280-289, 2010.
DOI : 10.1016/j.cell.2010.02.026

F. Kruiswijk, C. Labuschagne, and K. Vousden, p53 in survival, death and metabolic health: a lifeguard with a licence to kill, Nature Reviews Molecular Cell Biology, vol.520, issue.7, pp.393-405, 2015.
DOI : 10.1038/nrm4007

E. Tasdemir, M. Maiuri, L. Galluzzi, I. Vitale, M. Djavaheri-mergny et al., Regulation of autophagy by cytoplasmic p53, Nature Cell Biology, vol.13, issue.6, pp.676-687, 2008.
DOI : 10.1093/emboj/19.21.5720

C. Nijboer, C. Heijnen, F. Groenendaal, M. May, F. Van-bel et al., Strong Neuroprotection by Inhibition of NF-?B After Neonatal Hypoxia-Ischemia Involves Apoptotic Mechanisms but Is Independent of Cytokines, Stroke, vol.39, issue.7, pp.2129-2137, 2008.
DOI : 10.1161/STROKEAHA.107.504175

H. Endo, H. Kamada, C. Nito, T. Nishi, and P. Chan, Mitochondrial Translocation of p53 Mediates Release of Cytochrome c and Hippocampal CA1 Neuronal Death after Transient Global Cerebral Ischemia in Rats, Journal of Neuroscience, vol.26, issue.30, pp.7974-7983, 2006.
DOI : 10.1523/JNEUROSCI.0897-06.2006

Q. Li, H. Li, K. Roughton, X. Wang, G. Kroemer et al., Lithium reduces apoptosis and autophagy after neonatal hypoxia?ischemia, Cell Death and Disease, vol.109, issue.7, p.56, 2010.
DOI : 10.1038/cddis.2010.33

URL : http://doi.org/10.1038/cddis.2010.33

C. Zhu, F. Xu, X. Wang, M. Shibata, Y. Uchiyama et al., Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia, Journal of Neurochemistry, vol.78, issue.4
DOI : 10.1038/sj.cdd.4401545

C. Gubern, O. Hurtado, R. Rodriguez, J. Morales, V. Romera et al., Validation of housekeeping genes for quantitative real-time PCR in in-vivo and in-vitro models of cerebral ischaemia, BMC Molecular Biology, vol.10, issue.1, p.57, 2009.
DOI : 10.1186/1471-2199-10-57