M. P. Rayman, Selenium and human health, The Lancet, vol.379, issue.9822, pp.1256-1268, 2012.
DOI : 10.1016/S0140-6736(11)61452-9

G. V. Kryukov, S. Castellano, S. V. Novoselov, A. V. Lobanov, O. Zehtab et al., Characterization of Mammalian Selenoproteomes, Science, vol.300, issue.5624, pp.1439-1443, 2003.
DOI : 10.1126/science.1083516

V. M. Labunskyy, D. L. Hatfield, and V. N. Gladyshev, Selenoproteins: Molecular Pathways and Physiological Roles, Physiological Reviews, vol.94, issue.3, pp.739-777, 2014.
DOI : 10.1152/physrev.00039.2013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101630

L. V. Papp, J. Lu, A. Holmgren, and K. K. Khanna, From Selenium to Selenoproteins: Synthesis, Identity, and Their Role in Human Health, Antioxidants & Redox Signaling, vol.9, issue.7, pp.775-806, 2007.
DOI : 10.1089/ars.2007.1528

C. Allmang, L. Wurth, and A. Krol, The selenium to selenoprotein pathway in eukaryotes: More molecular partners than anticipated, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.11, pp.1790-1415, 2009.
DOI : 10.1016/j.bbagen.2009.03.003

URL : https://hal.archives-ouvertes.fr/hal-00391768

M. J. Berry, R. M. Tujebajeva, P. R. Copeland, X. M. Xu, B. A. Carlson et al., Selenocysteine incorporation directed from the 3?UTR: Characterization of eukaryotic EFsec and mechanistic implications, BioFactors, vol.274, issue.1-4, pp.17-24, 2001.
DOI : 10.1016/0304-4165(88)90123-7

S. Boulon, N. Marmier-gourrier, B. Pradet-balade, L. Wurth, C. Verheggen et al., The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery, The Journal of Cell Biology, vol.6, issue.3, pp.579-595, 2008.
DOI : 10.1016/j.cell.2004.12.024

URL : https://hal.archives-ouvertes.fr/hal-00280860

L. Wurth, A. Gribling-burrer, C. Verheggen, M. Leichter, A. Takeuchi et al., Hypermethylated-capped selenoprotein mRNAs in mammals, Nucleic Acids Research, vol.42, issue.13, pp.8663-8677, 2014.
DOI : 10.1093/nar/gku580

URL : http://doi.org/10.1093/nar/gku580

P. R. Copeland, J. E. Fletcher, B. A. Carlson, D. L. Hatfield, and D. M. Driscoll, A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs, The EMBO Journal, vol.87, issue.2, 2000.
DOI : 10.1128/MCB.17.4.1977

C. Allmang and A. Krol, Selenoprotein synthesis: UGA does not end the??story, Biochimie, vol.88, issue.11, pp.1561-1571, 2006.
DOI : 10.1016/j.biochi.2006.04.015

URL : https://hal.archives-ouvertes.fr/hal-00120088

L. Latreche, O. Jean-jean, D. M. Driscoll, and L. Chavatte, Novel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine, Nucleic Acids Research, vol.37, issue.17, pp.5868-5880, 2009.
DOI : 10.1093/nar/gkp635

P. R. Copeland and D. M. Driscoll, Purification, Redox Sensitivity, and RNA Binding Properties of SECIS-binding Protein 2, a Protein Involved in Selenoprotein Biosynthesis, Journal of Biological Chemistry, vol.274, issue.36, pp.25447-25454, 1999.
DOI : 10.1074/jbc.274.36.25447

S. A. Kinzy, K. Caban, and P. R. Copeland, Characterization of the SECIS binding protein 2 complex required for the co-translational insertion of selenocysteine in mammals, Nucleic Acids Research, vol.33, issue.16, pp.5172-5180, 2005.
DOI : 10.1093/nar/gki826

A. Lescure, C. Allmang, K. Yamada, P. Carbon, and A. Krol, cDNA cloning, expression pattern and RNA binding analysis of human selenocysteine insertion sequence (SECIS) binding protein 2, Gene, vol.291, issue.1-2, 2002.
DOI : 10.1016/S0378-1119(02)00629-7

D. Fagegaltier, N. Hubert, K. Yamada, T. Mizutani, P. Carbon et al., Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation, The EMBO Journal, vol.19, issue.17, pp.4796-4805, 2000.
DOI : 10.1093/emboj/19.17.4796

R. M. Tujebajeva, P. R. Copeland, X. M. Xu, B. A. Carlson, J. W. Harney et al., Decoding apparatus for eukaryotic selenocysteine insertion, EMBO reports, vol.275, issue.2, pp.158-163, 2000.
DOI : 10.1074/jbc.275.9.6288

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1084265

A. Small-howard, N. Morozova, Z. Stoytcheva, E. P. Forry, J. B. Mansell et al., Supramolecular Complexes Mediate Selenocysteine Incorporation In Vivo, Molecular and Cellular Biology, vol.26, issue.6, pp.2337-2346, 2006.
DOI : 10.1128/MCB.26.6.2337-2346.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1430297

J. N. Gonzalez-flores, N. Gupta, L. W. Demong, and P. R. Copeland, The Selenocysteine-specific Elongation Factor Contains a Novel and Multi-functional Domain, Journal of Biological Chemistry, vol.287, issue.46, pp.38936-38945, 2012.
DOI : 10.1074/jbc.M112.415463

L. Chavatte, B. A. Brown, and D. M. Driscoll, Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes, Nature Structural & Molecular Biology, vol.268, issue.5, pp.408-416, 2005.
DOI : 10.1093/emboj/cdg368

M. E. Budiman, J. L. Bubenik, A. C. Miniard, L. M. Middleton, C. A. Gerber et al., Eukaryotic Initiation Factor 4a3 Is a Selenium-Regulated RNA-Binding Protein that Selectively Inhibits Selenocysteine Incorporation, Molecular Cell, vol.35, issue.4, pp.479-489, 2009.
DOI : 10.1016/j.molcel.2009.06.026

URL : http://doi.org/10.1016/j.molcel.2009.06.026

R. Wu, Q. Shen, and P. E. Newburger, Recognition and binding of the human selenocysteine insertion sequence by nucleolin, Journal of Cellular Biochemistry, vol.87, issue.3, pp.507-516, 2000.
DOI : 10.1128/MCB.17.4.1977

A. Cléry, V. Bourguignon-igel, C. Allmang, A. Krol, C. Branlant et al., An improved definition of the RNA-binding specificity of SECIS-binding protein 2, an essential component of the selenocysteine incorporation machinery, Nucleic Acids Research, vol.35, issue.6, pp.1868-1884, 2007.
DOI : 10.1093/nar/gkm066

K. Caban, S. A. Kinzy, and P. R. Copeland, The L7Ae RNA Binding Motif Is a Multifunctional Domain Required for the Ribosome-Dependent Sec Incorporation Activity of Sec Insertion Sequence Binding Protein 2, Molecular and Cellular Biology, vol.27, issue.18, pp.6350-6360, 2007.
DOI : 10.1128/MCB.00632-07

J. Donovan, K. Caban, R. Ranaweera, J. N. Gonzalez-flores, and P. R. Copeland, A Novel Protein Domain Induces High Affinity Selenocysteine Insertion Sequence Binding and Elongation Factor Recruitment, Journal of Biological Chemistry, vol.283, issue.50, pp.35129-35139, 2008.
DOI : 10.1074/jbc.M806008200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073842

J. Mouaikel, C. Verheggen, E. Bertrand, J. Tazi, and R. Bordonne, Hypermethylation of the Cap Structure of Both Yeast snRNAs and snoRNAs Requires a Conserved Methyltransferase that Is Localized to the Nucleolus, Molecular Cell, vol.9, issue.4, pp.891-901, 2002.
DOI : 10.1016/S1097-2765(02)00484-7

C. Girard, C. Verheggen, H. Neel, A. Cammas, S. Vagner et al., Characterization of a short isoform of human Tgs1 hypermethylase associating with small 5412, Nucleic Acids Research, vol.45, issue.9, 2008.

J. Mouaikel, U. Narayanan, C. Verheggen, A. G. Matera, E. Bertrand et al., Interaction between the small-nuclear-RNA cap hypermethylase and the spinal muscular atrophy protein, survival of motor neuron, EMBO reports, vol.13, issue.6, pp.616-622, 2003.
DOI : 10.1016/S0955-0674(00)00211-8

B. Pradet-balade, C. Girard, S. Boulon, C. Paul, K. Azzag et al., CRM1 controls the composition of nucleoplasmic pre-snoRNA complexes to licence them for nucleolar transport, The EMBO Journal, vol.8, issue.11, pp.2205-2218, 2011.
DOI : 10.1038/emboj.2011.128

S. Lefebvre, L. B-¨-urglen, S. Reboullet, O. Clermont, P. Burlet et al., Identification and characterization of a spinal muscular atrophy-determining gene, Cell, vol.80, issue.1, pp.155-165, 1995.
DOI : 10.1016/0092-8674(95)90460-3

S. Otter, M. Grimmler, N. Neuenkirchen, A. Chari, A. Sickmann et al., A Comprehensive Interaction Map of the Human Survival of Motor Neuron (SMN) Complex, Journal of Biological Chemistry, vol.282, issue.8, pp.5825-5833, 2007.
DOI : 10.1074/jbc.M608528200

L. Pellizzoni, Chaperoning ribonucleoprotein biogenesis in health and disease, EMBO reports, vol.19, issue.4, pp.340-345, 2007.
DOI : 10.1523/JNEUROSCI.3967-05.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1852756

S. Paushkin, A. K. Gubitz, S. Massenet, and G. Dreyfuss, The SMN complex, an assemblyosome of ribonucleoproteins, Current Opinion in Cell Biology, vol.14, issue.3, pp.305-312, 2002.
DOI : 10.1016/S0955-0674(02)00332-0

N. Neuenkirchen, A. Chari, and U. Fischer, Deciphering the assembly pathway of Sm-class U snRNPs, FEBS Letters, vol.11, issue.14, 1997.
DOI : 10.1016/S0960-9822(01)00316-5

G. Meister, C. Eggert, and U. Fischer, SMN-mediated assembly of RNPs: a complex story, Trends in Cell Biology, vol.12, issue.10, pp.472-478, 2002.
DOI : 10.1016/S0962-8924(02)02371-1

C. Kambach, S. Walke, R. Young, J. M. Avis, E. De-la-fortelle et al., Crystal Structures of Two Sm Protein Complexes and Their Implications for the Assembly of the Spliceosomal snRNPs, Cell, vol.96, issue.3, pp.375-387, 1999.
DOI : 10.1016/S0092-8674(00)80550-4

C. Grimm, A. Chari, J. Pelz, J. Kuper, C. Kisker et al., Structural Basis of Assembly Chaperone- Mediated snRNP Formation, Molecular Cell, vol.49, issue.4, pp.692-703, 2013.
DOI : 10.1016/j.molcel.2012.12.009

URL : http://doi.org/10.1016/j.molcel.2012.12.009

R. Zhang, B. R. So, P. Li, J. Yong, T. Glisovic et al., Structure of a Key Intermediate of the SMN Complex Reveals Gemin2's Crucial Function in snRNP Assembly, Cell, vol.146, issue.3, pp.384-395, 2011.
DOI : 10.1016/j.cell.2011.06.043

A. Chari, M. M. Golas, M. Klingenhager, N. Neuenkirchen, B. Sander et al., An Assembly Chaperone Collaborates with the SMN Complex to Generate Spliceosomal SnRNPs, Cell, vol.135, issue.3, pp.497-509, 2008.
DOI : 10.1016/j.cell.2008.09.020

G. Meister, C. Eggert, D. Uhler, H. Brahms, C. Kambach et al., Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln, Current Biology, vol.11, issue.24, 1990.
DOI : 10.1016/S0960-9822(01)00592-9

W. J. Friesen, S. Paushkin, A. Wyce, S. Massenet, G. S. Pesiridis et al., The Methylosome, a 20S Complex Containing JBP1 and pICln, Produces Dimethylarginine-Modified Sm Proteins, Molecular and Cellular Biology, vol.21, issue.24, pp.8289-8300, 2001.
DOI : 10.1128/MCB.21.24.8289-8300.2001

W. J. Friesen and G. Dreyfuss, Specific Sequences of the Sm and Sm-like (Lsm) Proteins Mediate Their Interaction with the Spinal Muscular Atrophy Disease Gene Product (SMN), Journal of Biological Chemistry, vol.275, issue.34, pp.26370-26375, 2000.
DOI : 10.1074/jbc.M003299200

W. J. Friesen, A. Wyce, S. Paushkin, L. Abel, J. Rappsilber et al., A Novel WD Repeat Protein Component of the Methylosome Binds Sm Proteins, Journal of Biological Chemistry, vol.277, issue.10, pp.8243-8247, 2002.
DOI : 10.1074/jbc.M109984200

W. J. Friesen, S. Massenet, S. Paushkin, A. Wyce, and G. Dreyfuss, SMN, the Product of the Spinal Muscular Atrophy Gene, Binds Preferentially to Dimethylarginine-Containing Protein Targets, Molecular Cell, vol.7, issue.5, pp.1111-1117, 2001.
DOI : 10.1016/S1097-2765(01)00244-1

H. Brahms, L. Meheus, V. De-brabandere, U. Fischer, and R. Lührmann, Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B? and the Sm-like protein LSm4, and their interaction with the SMN protein, RNA, vol.7, issue.11, pp.1531-1542, 2000.
DOI : 10.1017/S135583820101442X

N. Stopa, J. E. Krebs, and D. Shechter, The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond, Cellular and Molecular Life Sciences, vol.31, issue.1, pp.2041-2059, 2015.
DOI : 10.1007/s00018-015-1847-9

G. Guderian, C. Peter, J. Wiesner, A. Sickmann, K. Schulze-osthoff et al., RioK1, a New Interactor of Protein Arginine Methyltransferase 5 (PRMT5), Competes with pICln for Binding and Modulates PRMT5 Complex Composition and Substrate Specificity, Journal of Biological Chemistry, vol.286, issue.3, pp.1976-1986, 2011.
DOI : 10.1074/jbc.M110.148486

L. Pellizzoni, J. Yong, and G. Dreyfuss, Essential Role for the SMN Complex in the Specificity of snRNP Assembly, Science, vol.298, issue.5599, pp.1775-1779, 2002.
DOI : 10.1126/science.1074962

Z. Zhang, F. Lotti, K. Dittmar, I. Younis, L. Wan et al., SMN Deficiency Causes Tissue-Specific Perturbations in the Repertoire of snRNAs and Widespread Defects in Splicing, Cell, vol.133, issue.4, pp.585-600, 2008.
DOI : 10.1016/j.cell.2008.03.031

F. Gabanella, M. E. Butchbach, L. Saieva, C. Carissimi, A. H. Burghes et al., Ribonucleoprotein Assembly Defects Correlate with Spinal Muscular Atrophy Severity and Preferentially Affect a Subset of Spliceosomal snRNPs, PLoS ONE, vol.20, issue.9, p.921, 2007.
DOI : 10.1371/journal.pone.0000921.s002

N. Piazzon, F. Schlotter, S. Lefebvre, M. Dodré, A. Méreau et al., Implication of the SMN complex in the biogenesis and steady state level of the Signal Recognition Particle, Nucleic Acids Research, vol.41, issue.2, pp.1255-1272, 2013.
DOI : 10.1093/nar/gks1224

URL : https://hal.archives-ouvertes.fr/hal-01064047

M. P. Terns and R. M. Terns, Macromolecular complexes: SMN ? the master assembler, Current Biology, vol.11, issue.21, pp.862-864, 2001.
DOI : 10.1016/S0960-9822(01)00517-6

URL : http://doi.org/10.1016/s0960-9822(01)00517-6

C. Fallini, P. G. Donlin-asp, J. P. Rouanet, G. J. Bassell, and W. Rossoll, Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons, The Journal of Neuroscience, vol.36, issue.13, pp.3811-3820, 2016.
DOI : 10.1523/JNEUROSCI.2396-15.2016

T. T. Le, L. T. Pham, M. E. Butchbach, H. L. Zhang, U. R. Monani et al., SMN?7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN, Human Molecular Genetics, vol.14, issue.6, pp.845-857, 2005.
DOI : 10.1093/hmg/ddi078

V. Olieric, P. Wolff, A. Takeuchi, G. Bec, C. Birck et al., SECIS-binding protein 2, a key player in selenoprotein synthesis, is an intrinsically disordered protein, Biochimie, vol.91, issue.8, pp.1003-1009, 2009.
DOI : 10.1016/j.biochi.2009.05.004

URL : https://hal.archives-ouvertes.fr/inserm-00420164

L. Trinkle-mulcahy, S. Boulon, Y. W. Lam, R. Urcia, F. M. Boisvert et al., Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes, The Journal of Cell Biology, vol.15, issue.2, pp.223-239, 2008.
DOI : 10.1093/emboj/21.5.1188

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2568020

W. Van-criekinge and R. Beyaert, Yeast two-hybrid: State of the art, Biological Procedures Online, vol.12, issue.1, pp.1-38, 1999.
DOI : 10.1128/MCB.16.7.3923

M. C. Ho, C. Wilczek, J. B. Bonanno, L. Xing, J. Seznec et al., Structure of the Arginine Methyltransferase PRMT5-MEP50 Reveals a Mechanism for Substrate Specificity, PLoS ONE, vol.2, issue.3, p.57008, 2013.
DOI : 10.1371/journal.pone.0057008.s008

Q. Shen, L. Fan, and P. E. Newburger, Nuclease sensitive element binding protein 1 associates with the selenocysteine insertion sequence and functions in mammalian selenoprotein translation, Journal of Cellular Physiology, vol.87, issue.3, pp.775-783, 2006.
DOI : 10.1128/MCB.17.4.1977

A. L. Jackson, J. Burchard, D. Leake, A. Reynolds, J. Schelter et al., Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing, RNA, vol.12, issue.7, pp.1197-1205, 2006.
DOI : 10.1261/rna.30706

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1484422

W. Feng, A. K. Gubitz, L. Wan, D. J. Battle, J. Dostie et al., Gemins modulate the expression and activity of the SMN complex, Human Molecular Genetics, vol.14, issue.12, pp.1605-1611, 2005.
DOI : 10.1093/hmg/ddi168

D. J. Battle, C. K. Lau, L. Wan, H. Deng, F. Lotti et al., The Gemin5 Protein of the SMN Complex Identifies snRNAs, Molecular Cell, vol.23, issue.2, pp.273-279, 2006.
DOI : 10.1016/j.molcel.2006.05.036

A. C. Miniard, L. M. Middleton, M. E. Budiman, C. A. Gerber, and D. M. Driscoll, Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression, Nucleic Acids Research, vol.38, issue.14, pp.4807-4820, 2010.
DOI : 10.1093/nar/gkq247

M. Hayashi, R. Miyata, and N. Tanuma, Oxidative Stress in Developmental Brain Disorders, Adv. Exp. Med. Biol, vol.724, pp.278-290, 2012.
DOI : 10.1007/978-1-4614-0653-2_21

S. Lefebvre, P. Burlet, Q. Liu, S. Bertrandy, O. Clermont et al., Correlation between severity and Nucleic Acids Research, p.5413, 1997.

B. Elsheikh, T. Prior, X. Zhang, R. Miller, S. J. Kolb et al., An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy, Muscle & Nerve, vol.7, issue.4, pp.652-656, 2009.
DOI : 10.1001/archneur.1996.00550020045014

L. V. Papp, J. Wang, D. Kennedy, D. Boucher, Y. Zhang et al., Functional characterization of alternatively spliced human SECISBP2 transcript variants, Nucleic Acids Research, vol.36, issue.22, pp.7192-7206, 2008.
DOI : 10.1093/nar/gkn829

URL : http://doi.org/10.1093/nar/gkn829

J. E. Squires, I. Stoytchev, E. P. Forry, and M. J. Berry, SBP2 Binding Affinity Is a Major Determinant in Differential Selenoprotein mRNA Translation and Sensitivity to Nonsense-Mediated Decay, Molecular and Cellular Biology, vol.27, issue.22, pp.7848-7855, 2007.
DOI : 10.1128/MCB.00793-07

L. Latreche, S. Duhieu, Z. Touat-hamici, O. Jean-jean, and L. Chavatte, The differential expression of glutathione peroxidase 1 and 4 depends on the nature of the SECIS element, RNA Biology, vol.268, issue.5, pp.681-690, 2012.
DOI : 10.1093/nar/22.18.3753

S. Lefebvre, P. Burlet, L. Viollet, S. Bertrandy, C. Huber et al., A novel association of the SMN protein with two major non-ribosomal nucleolar proteins and its implication in spinal muscular atrophy, Human Molecular Genetics, vol.11, issue.9, pp.1017-1027, 2002.
DOI : 10.1093/hmg/11.9.1017

J. Agar and H. Durham, Relevance of oxidative injury in the pathogenesis of motor neuron diseases, Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol.38, issue.4, pp.232-242, 2003.
DOI : 10.1021/bi9909445

L. Wan, E. Ottinger, S. Cho, and G. Dreyfuss, Inactivation of the SMN Complex by Oxidative Stress, Molecular Cell, vol.31, issue.2, pp.31-244, 2008.
DOI : 10.1016/j.molcel.2008.06.004

Z. Wang, X. Zhang, and X. Li, Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy, Cell Research, vol.331, issue.3, pp.378-393, 2013.
DOI : 10.1016/j.stem.2010.04.017

B. C. Lee, A. Dikiy, H. Y. Kim, and V. N. Gladyshev, Functions and evolution of selenoprotein methionine sulfoxide reductases, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.11, pp.1790-1471, 2009.
DOI : 10.1016/j.bbagen.2009.04.014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062201

R. Pillai, J. H. Uyehara-lock, and F. P. Bellinger, Selenium and selenoprotein function in brain disorders, IUBMB Life, vol.285, issue.4, pp.229-239, 2014.
DOI : 10.1002/iub.1262

P. G. Donlin-asp, G. J. Bassell, and W. Rossoll, A role for the survival of motor neuron protein in mRNP assembly and transport, Current Opinion in Neurobiology, vol.39, pp.53-61, 2016.
DOI : 10.1016/j.conb.2016.04.004

J. Seo, N. N. Singh, E. W. Ottesen, S. Sivanesan, M. Shishimorova et al., Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene, PLOS ONE, vol.7, issue.12, 2016.
DOI : 10.1371/journal.pone.0154390.s010

M. Shababi, C. L. Lorson, and S. S. Rudnik-schönebornsch¨schöneborn, Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease?, Journal of Anatomy, vol.16, issue.1, pp.15-28, 2014.
DOI : 10.1111/joa.12083

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867883

E. W. Ottesen, M. D. Howell, N. N. Singh, J. Seo, E. M. Whitley et al., Severe impairment of male reproductive organ development in a low SMN expressing mouse model of spinal muscular atrophy, Scientific Reports, vol.40, issue.1, 2016.
DOI : 10.1093/nar/gkr713