J. N. Anastas and R. T. Moon, WNT signalling pathways as therapeutic targets in cancer, Nature Reviews Cancer, vol.284, issue.1, pp.11-26, 2013.
DOI : 10.1038/nrc3419

E. C. Avile?savile?s and E. T. Stoeckli, Canonical wnt signaling is required for commissural axon guidance, Developmental Neurobiology, vol.17, issue.2, pp.190-208, 2016.
DOI : 10.1002/dneu.22307

E. C. Avile?savile?s, C. Pinto, P. Hanna, J. Ojeda, V. Pe?rezpe?rez et al., Frizzled- 9 impairs acetylcholine receptor clustering in skeletal muscle cells, Front. Cell Neurosci, vol.8, p.110, 2014.

A. Barik, B. Zhang, G. S. Sohal, W. Xiong, and L. Mei, Crosstalk between Agrin and Wnt signaling pathways in development of vertebrate neuromuscular junction, Developmental Neurobiology, vol.26, issue.8, pp.828-838, 2014.
DOI : 10.1002/dneu.22190

A. Cartaud, L. Strochlic, M. Guerra, B. Blanchard, M. Lambergeon et al., MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction, The Journal of Cell Biology, vol.20, issue.4, pp.505-515, 2004.
DOI : 10.1073/pnas.080061997

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172359

G. Chai, L. Zhou, M. Manto, F. Helmbacher, F. Clotman et al., Celsr3 is required in motor neurons to steer their axons in the hindlimb, Nature Neuroscience, vol.17, issue.9, pp.1171-1179, 2014.
DOI : 10.1016/S0896-6273(00)80650-9

URL : https://hal.archives-ouvertes.fr/hal-01102580

G. Chai, A. M. Goffinet, and F. Tissir, Celsr3 and Fzd3 in axon guidance, The International Journal of Biochemistry & Cell Biology, vol.64, pp.11-14, 2015.
DOI : 10.1016/j.biocel.2015.03.013

H. Y. Choi, M. Dieckmann, J. Herz, and A. Niemeier, Lrp4, a Novel Receptor for Dickkopf 1 and Sclerostin, Is Expressed by Osteoblasts and Regulates Bone Growth and Turnover In Vivo, PLoS ONE, vol.4, issue.11, p.7930, 2009.
DOI : 10.1371/journal.pone.0007930.t001

H. Clevers and R. Nusse, Wnt/?-Catenin Signaling and Disease, Cell, vol.149, issue.6, pp.1192-1205, 2012.
DOI : 10.1016/j.cell.2012.05.012

E. D. Cohen, M. F. Miller, Z. Wang, R. T. Moon, and E. E. Morrisey, Wnt5a and Wnt11 are essential for second heart field progenitor development, Development, vol.139, issue.11, 1931.
DOI : 10.1242/dev.069377

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347685

C. Cruciat and C. Niehrs, Secreted and Transmembrane Wnt Inhibitors and Activators, Cold Spring Harbor Perspectives in Biology, vol.5, issue.3, p.15081, 2013.
DOI : 10.1101/cshperspect.a015081

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578365

T. M. Dechiara, D. C. Bowen, D. M. Valenzuela, M. V. Simmons, W. T. Poueymirou et al., The Receptor Tyrosine Kinase MuSK Is Required for Neuromuscular Junction Formation In Vivo, Cell, vol.85, issue.4, pp.501-512, 1996.
DOI : 10.1016/S0092-8674(00)81251-9

A. Ehrlund, N. Mejhert, S. Lorente-cebria?ncebria?n, G. Åstro?-m, I. Dahlman et al., Characterization of the Wnt Inhibitors Secreted Frizzled-Related Proteins (SFRPs) in Human Adipose Tissue, The Journal of Clinical Endocrinology & Metabolism, vol.98, issue.3, pp.503-508, 2013.
DOI : 10.1210/jc.2012-3416

J. Ezan and M. Montcouquiol, Revisiting planar cell polarity in the inner ear, Seminars in Cell & Developmental Biology, vol.24, issue.5, pp.499-506, 2013.
DOI : 10.1016/j.semcdb.2013.03.012

B. Gao, Wnt Regulation of Planar Cell Polarity (PCP), Curr. Top. Dev. Biol, vol.101, pp.263-295, 2012.
DOI : 10.1016/B978-0-12-394592-1.00008-9

A. P. Giese, J. Ezan, L. Wang, L. Lasvaux, F. Lembo et al., Gipc1 has a dual role in Vangl2 trafficking and hair bundle integrity in the inner ear, Development, vol.139, issue.20, pp.3775-3785, 2012.
DOI : 10.1242/dev.074229

L. K. Goh and A. Sorkin, Endocytosis of Receptor Tyrosine Kinases, Cold Spring Harbor Perspectives in Biology, vol.5, issue.5, 2013.
DOI : 10.1101/cshperspect.a017459

L. R. Gordon, K. D. Gribble, C. M. Syrett, and M. Granato, Initiation of synapse formation by Wnt-induced MuSK endocytosis, Development, vol.139, issue.5, pp.1023-1033, 2012.
DOI : 10.1242/dev.071555

M. Guerra, A. Cartaud, J. Cartaud, and C. Legay, Acetylcholinesterase and molecular interactions at the neuromuscular junction, Chemico-Biological Interactions, vol.157, issue.158, pp.157-158, 2005.
DOI : 10.1016/j.cbi.2005.10.110

URL : https://hal.archives-ouvertes.fr/hal-00015947

B. He, A. Y. Lee, S. Dadfarmay, L. You, Z. Xu et al., Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenindeficient human mesothelioma cells, Cancer Res, vol.65, pp.743-748, 2005.
DOI : 10.1016/s0169-5002(05)80345-9

K. M. Heinonen, J. R. Vanegas, D. Lew, J. Krosl, and C. Perreault, Wnt4 Enhances Murine Hematopoietic Progenitor Cell Expansion Through a Planar Cell Polarity-Like Pathway, PLoS ONE, vol.4, issue.4, 2011.
DOI : 10.1371/journal.pone.0019279.s002

URL : http://doi.org/10.1371/journal.pone.0019279

J. P. Henriquez, A. Webb, M. Bence, H. Bildsoe, M. Sahores et al., Wnt signaling promotes AChR aggregation at the neuromuscular synapse in collaboration with agrin, Proc. Natl. Acad. Sci. USA 105, pp.18812-18817, 2008.
DOI : 10.1016/j.neuron.2005.04.002

K. Jeays-ward, M. Dandonneau, and A. Swain, Wnt4 is required for proper male as well as female sexual development, Developmental Biology, vol.276, issue.2, pp.431-440, 2004.
DOI : 10.1016/j.ydbio.2004.08.049

URL : http://doi.org/10.1016/j.ydbio.2004.08.049

L. Jing, J. L. Lefebvre, L. R. Gordon, and M. Granato, Wnt Signals Organize Synaptic Prepattern and Axon Guidance through the Zebrafish unplugged/MuSK Receptor, Neuron, vol.61, issue.5, pp.721-733, 2009.
DOI : 10.1016/j.neuron.2008.12.025

URL : http://doi.org/10.1016/j.neuron.2008.12.025

N. Kim and S. J. Burden, MuSK controls where motor axons grow and form synapses, Nature Neuroscience, vol.290, issue.1, pp.19-27, 2008.
DOI : 10.1523/JNEUROSCI.4506-05.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923649

N. Kim, A. L. Stiegler, T. O. Cameron, P. T. Hallock, A. M. Gomez et al., Lrp4 Is a Receptor for Agrin and Forms a Complex with MuSK, Cell, vol.135, issue.2, pp.334-342, 2008.
DOI : 10.1016/j.cell.2008.10.002

URL : http://doi.org/10.1016/j.cell.2008.10.002

E. Lacazette, L. Calvez, S. Gajendran, N. Brenner, and H. R. , A novel pathway for MuSK to induce key genes in neuromuscular synapse formation, The Journal of Cell Biology, vol.120, issue.4, 2003.
DOI : 10.1016/S0896-6273(01)00287-2

Y. Liu, Y. Sugiura, F. Wu, W. Mi, M. M. Taketo et al., ??-Catenin stabilization in skeletal muscles, but not in motor neurons, leads to aberrant motor innervation of the muscle during neuromuscular development in mice, Developmental Biology, vol.366, issue.2, pp.255-267, 2012.
DOI : 10.1016/j.ydbio.2012.04.003

Z. G. Luo, Q. Wang, J. Z. Zhou, J. Wang, Z. Luo et al., Regulation of AChR Clustering by Dishevelled Interacting with MuSK and PAK1, Neuron, vol.35, issue.3, pp.489-505, 2002.
DOI : 10.1016/S0896-6273(02)00783-3

J. P. Lyons, U. W. Mueller, H. Ji, C. Everett, X. Fang et al., Wnt-4 activates the canonical ?-catenin-mediated Wnt pathway and binds Frizzled-6 CRD: functional implications of Wnt/?-catenin activity in kidney epithelial cells, Experimental Cell Research, vol.298, issue.2, pp.369-387, 2004.
DOI : 10.1016/j.yexcr.2004.04.036

B. T. Macdonald, K. Tamai, and X. He, Wnt/?-Catenin Signaling: Components, Mechanisms, and Diseases, Developmental Cell, vol.17, issue.1, pp.9-26, 2009.
DOI : 10.1016/j.devcel.2009.06.016

A. Majumdar, S. Vainio, A. Kispert, J. Mcmahon, and A. P. Mcmahon, Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development, Development, vol.130, issue.>14, pp.3175-3185, 2003.
DOI : 10.1242/dev.00520

J. Messeánt, A. Dobbertin, E. Girard, P. Delers, M. Manuel et al., MuSK Frizzled-Like Domain Is Critical for Mammalian Neuromuscular Junction Formation and Maintenance, Journal of Neuroscience, vol.35, issue.12, pp.4926-4941, 2015.
DOI : 10.1523/JNEUROSCI.3381-14.2015

M. Montcouquiol, R. A. Rachel, P. J. Lanford, N. G. Copeland, N. A. Jenkins et al., Identification of Vangl2 and Scrb1 as planar polarity genes in mammals, Nature, vol.16, issue.6936, pp.173-177, 2003.
DOI : 10.1038/6804

T. Nagaoka, R. Ohashi, A. Inutsuka, S. Sakai, N. Fujisawa et al., The Wnt/Planar Cell Polarity Pathway Component Vangl2 Induces Synapse Formation through Direct Control of N-Cadherin, Cell Reports, vol.6, issue.5, pp.916-927, 2014.
DOI : 10.1016/j.celrep.2014.01.044

T. Nagaoka, K. Tabuchi, and M. Kishi, PDZ interaction of Vangl2 links PSD-95 and Prickle2 but plays only a limited role in the synaptic localisation of Vangl2, Scientific Reports, vol.142, issue.1, p.12916, 2015.
DOI : 10.1016/j.jneumeth.2004.08.012

C. Niehrs, Function and biological roles of the Dickkopf family of Wnt modulators, Oncogene, vol.83, issue.57, pp.7469-7481, 2006.
DOI : 10.1038/nature04185

B. J. Nieman and D. H. Turnbull, Ultrasound and Magnetic Resonance Microimaging of Mouse Development, Methods Enzymol, vol.476, pp.379-400, 2010.
DOI : 10.1016/S0076-6879(10)76021-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160173

R. Nusse, Wnt Signaling, Cold Spring Harbor Perspectives in Biology, vol.4, issue.5, p.11163, 2012.
DOI : 10.1101/cshperspect.a011163

K. Onishi, E. Hollis, and Y. Zou, Axon guidance and injury?lessons from Wnts and Wnt signaling, Current Opinion in Neurobiology, vol.27, pp.232-240, 2014.
DOI : 10.1016/j.conb.2014.05.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337865

P. Oteiza, ?. Ko, M. Ppen, M. Krieg, E. Pulgar et al., Planar cell polarity signalling regulates cell adhesion properties in progenitors of the zebrafish laterality organ, Development, vol.137, issue.20, pp.3459-3468, 2010.
DOI : 10.1242/dev.049981

M. Packard, E. S. Koo, M. Gorczyca, J. Sharpe, S. Cumberledge et al., The Drosophila Wnt, Wingless, Provides an Essential Signal for Pre- and Postsynaptic Differentiation, Cell, vol.111, issue.3, pp.319-330, 2002.
DOI : 10.1016/S0092-8674(02)01047-4

URL : http://doi.org/10.1016/s0092-8674(02)01047-4

J. Park, J. Jung, Y. Lee, and K. Kang, The roles of Wnt antagonists Dkk1 and sFRP4 during adipogenesis of human adipose tissue-derived mesenchymal stem cells, Cell Proliferation, vol.11, issue.Suppl, pp.859-874, 2008.
DOI : 10.1111/j.1601-6343.2005.00324.x

L. Reme?dioreme?dio, K. D. Gribble, J. K. Lee, N. Kim, P. T. Hallock et al., Diverging roles for Lrp4 and Wnt signaling in neuromuscular synapse development during evolution, Genes & Development, vol.126, issue.9, pp.1058-1069, 2016.
DOI : 10.1186/1756-6606-5-7

B. Shafer, K. Onishi, C. Lo, G. Colakoglu, and Y. Zou, Vangl2 Promotes Wnt/Planar Cell Polarity-like Signaling by Antagonizing Dvl1-Mediated Feedback Inhibition in Growth Cone Guidance, Developmental Cell, vol.20, issue.2, pp.177-191, 2011.
DOI : 10.1016/j.devcel.2011.01.002

URL : http://doi.org/10.1016/j.devcel.2011.03.008

S. M. Sigoillot, F. Bourgeois, M. Lambergeon, L. Strochlic, and C. Legay, ColQ Controls Postsynaptic Differentiation at the Neuromuscular Junction, Journal of Neuroscience, vol.30, issue.1, pp.13-23, 2010.
DOI : 10.1523/JNEUROSCI.4374-09.2010

S. M. Sigoillot, F. Bourgeois, J. Karmouch, . Molgo?, J. Molgo? et al., Neuromuscular junction immaturity and muscle atrophy are hallmarks of the ColQ-deficient mouse, a model of congenital myasthenic syndrome with acetylcholinesterase deficiency, The FASEB Journal, vol.30, issue.6, pp.2382-2399, 2016.
DOI : 10.1096/fj.201500162

L. J. Sittig, P. Carbonetto, K. A. Engel, K. S. Krauss, C. M. Barrios-camacho et al., Genetic Background Limits Generalizability of Genotype-Phenotype Relationships, Neuron, vol.91, issue.6, pp.1253-1259, 2016.
DOI : 10.1016/j.neuron.2016.08.013

J. C. Slevin, L. Byers, M. Gertsenstein, D. Qu, J. Mu et al., High resolution ultrasoundguided microinjection for interventional studies of early embryonic and placental development in vivo in mice, BMC Developmental Biology, vol.6, issue.1, p.10, 2006.
DOI : 10.1186/1471-213X-6-10

T. So?-llner, S. W. Whiteheart, M. Brunner, H. Erdjument-bromage, S. Geromanos et al., SNAP receptors implicated in vesicle targeting and fusion, Nature, vol.362, issue.6418, pp.318-324, 1993.
DOI : 10.1038/362318a0

L. Strochlic, J. Falk, E. Goillot, S. Sigoillot, F. Bourgeois et al., Wnt4 Participates in the Formation of Vertebrate Neuromuscular Junction, PLoS ONE, vol.224, issue.1, 2012.
DOI : 10.1371/journal.pone.0029976.g006

URL : https://hal.archives-ouvertes.fr/hal-00720087

K. Surendran, S. Schiavi, and K. A. Hruska, Wnt-Dependent ??-Catenin Signaling Is Activated after Unilateral Ureteral Obstruction, and Recombinant Secreted Frizzled-Related Protein 4 Alters the Progression of Renal Fibrosis, Journal of the American Society of Nephrology, vol.16, issue.8, pp.2373-2384, 2005.
DOI : 10.1681/ASN.2004110949

Q. Tao, C. Yokota, H. Puck, M. Kofron, B. Birsoy et al., Maternal Wnt11 Activates the Canonical Wnt Signaling Pathway Required for Axis Formation in Xenopus Embryos, Cell, vol.120, issue.6, pp.857-871, 2005.
DOI : 10.1016/j.cell.2005.01.013

L. A. Tintignac, H. Brenner, ?. Ru, and M. A. Egg, Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting, Physiological Reviews, vol.95, issue.3, pp.809-852, 2015.
DOI : 10.1152/physrev.00033.2014

F. Tissir and A. M. Goffinet, Shaping the nervous system: role of the core planar cell polarity genes, Nature Reviews Neuroscience, vol.312, issue.8, pp.525-535, 2013.
DOI : 10.1038/nrn3525

T. Toyama, H. C. Lee, H. Koga, J. R. Wands, and M. Kim, Noncanonical Wnt11 Inhibits Hepatocellular Carcinoma Cell Proliferation and Migration, Molecular Cancer Research, vol.8, issue.2, pp.254-265, 2010.
DOI : 10.1158/1541-7786.MCR-09-0238

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824771

J. Wang and Z. Luo, The role of Wnt/?-catenin signaling in postsynaptic differentiation, Communicative & Integrative Biology, vol.281, issue.2, pp.158-160, 2008.
DOI : 10.1074/jbc.M511920200

J. Wang, S. Mark, X. Zhang, D. Qian, S. Yoo et al., Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway, Nature Genetics, vol.15, issue.9, pp.980-985, 2005.
DOI : 10.1002/cne.20257

J. Wang, N. Ruan, L. Qian, W. Lei, F. Chen et al., Wnt/??-Catenin Signaling Suppresses Rapsyn Expression and Inhibits Acetylcholine Receptor Clustering at the Neuromuscular Junction, Journal of Biological Chemistry, vol.283, issue.31, pp.21668-21675, 2008.
DOI : 10.1074/jbc.M709939200

J. Wang, F. Chen, X. Fu, C. Ding, L. Zhou et al., Caspase-3 Cleavage of Dishevelled Induces Elimination of Postsynaptic Structures, Developmental Cell, vol.28, issue.6, pp.670-684, 2014.
DOI : 10.1016/j.devcel.2014.02.009

P. Washbourne, P. M. Thompson, M. Carta, E. T. Costa, J. R. Mathews et al., Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis, Nat. Neurosci, vol.5, pp.19-26, 2002.

S. D. Weatherbee, K. V. Anderson, and L. A. Niswander, LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction, Development, vol.133, issue.24, pp.4993-5000, 2006.
DOI : 10.1242/dev.02696

H. Wu, Y. Lu, A. Barik, A. Joseph, M. M. Taketo et al., ?-Catenin gain of function in muscles impairs neuromuscular junction formation, Development, vol.139, issue.13, pp.2392-2404, 2012.
DOI : 10.1242/dev.080705

H. Wu, Y. Lu, C. Shen, N. Patel, L. Gan et al., Distinct Roles of Muscle and Motoneuron LRP4 in Neuromuscular Junction Formation, Neuron, vol.75, issue.1, pp.94-107, 2012.
DOI : 10.1016/j.neuron.2012.04.033

S. Yamamoto, O. Nishimura, K. Misaki, M. Nishita, Y. Minami et al., Cthrc1 Selectively Activates the Planar Cell Polarity Pathway of Wnt Signaling by Stabilizing the Wnt-Receptor Complex, Developmental Cell, vol.15, issue.1, pp.23-36, 2008.
DOI : 10.1016/j.devcel.2008.05.007

B. Zhang, S. Luo, Q. Wang, T. Suzuki, W. C. Xiong et al., LRP4 Serves as a Coreceptor of Agrin, Neuron, vol.60, issue.2, pp.285-297, 2008.
DOI : 10.1016/j.neuron.2008.10.006

W. Zhang, A. Coldefy, S. R. Hubbard, and S. J. Burden, Agrin Binds to the N-terminal Region of Lrp4 Protein and Stimulates Association between Lrp4 and the First Immunoglobulin-like Domain in Muscle-specific Kinase (MuSK), Journal of Biological Chemistry, vol.286, issue.47, pp.40624-40630, 2011.
DOI : 10.1074/jbc.M111.279307

B. Zhang, C. Liang, R. Bates, Y. Yin, W. Xiong et al., Wnt proteins regulate acetylcholine receptor clustering in muscle cells, Molecular Brain, vol.5, issue.1, 2012.
DOI : 10.1523/JNEUROSCI.5317-10.2011

URL : http://doi.org/10.1186/1756-6606-5-7

Y. Zong, B. Zhang, S. Gu, K. Lee, J. Zhou et al., Structural basis of agrin-LRP4-MuSK signaling, Genes & Development, vol.26, issue.3, pp.247-258, 2012.
DOI : 10.1101/gad.180885.111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278892