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Abstract

Tactile information has been largely exploited for object recognition with robotic hands but very few approaches have used propri-
oception alone. In those that do, raw values of joint angles or torques are exploited to train learning algorithms. However, these
approaches under-exploit the potential of proprioception, such as its usefulness to estimate the object pose and size. Furthermore,
they focus on recognizing individual objects, which increases the amount of data needed to train the algorithms. In this paper, we
present an approach based only on joint angles of a robotic hand to generate a shape proprioceptive signature that is invariant to the
size and position of the object. Instead of recognizing a specific object from a list, object characteristics useful for its manipulation
are extracted. This signature is exploited not only for shape recognition but also for pose estimation. To illustrate the scope of this
method, tests are performed on primitive shapes. Results show that the signatures are invariant within large ranges of sizes and
poses. Experiments on real hand were carried, and results depicted that the method works similarly in both simulated environment
and real applications. A comparison between this two results is made and discussed.
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1. INTRODUCTION

When identifying the shape of an object, human beings make
a combination of visual and tactile data mainly. All the infor-
mation coming from the related senses allows us to identify lots
of characteristics of the objects we manipulate with a remark-
able accuracy of about the 94% and a rapidity of less than 5
seconds [1]. In an intent to reproduce such a performance with
robotic manipulation systems, vision is the sense that has re-
ceived most attention and has been largely exploited for object
shape identification. In this sense, vision-based approaches for
object shape identification perform a geometric model recon-
struction (GMR). Wang et al [2] used a laser to scan the object
and obtain a cloud point for 3D shape reconstruction. Jang et al.
[3] used a stereo camera to get both an image that was analyzed
to recognize the object and a cloud point that will be replaced
with a prerecorded 3D model of the object once the object has
been recognized. Furthermore, Lippierllo et al. [4] introduced a
could point which adapted to the shape of the object as this was
explored with a camera from different angles. Regardless the
good results presented in cited works, they still present some
limitations: First, online application is questionable due to the
computational burn and time to complete a proper estimation
of the 3D model, second, occlusion can easy occur once the ob-
ject is grasped. Tactile data, on the other hand, is not subjected
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to occlusions and can provide data about both the shape and
location of the object when the object is grasped.

Works on tactile object identification have increased over the
years and the evolution of sensor technology has allowed to
make good progress in that area, but there is still a lot of re-
search to be done. In robotics, many types of sensors have been
embedded on hands of manipulators to reproduce the sense of
touch [5, 6, 7, 8] and most of literature in the domain mainly
focuses on identifying the geometrical properties of objects us-
ing these sensors [9, 10, 11, 12]. However, according to Le-
derman et al. [13] when tactile object identification is to be
performed, both tactile and proprioceptive information are in-
volved. Whereas there are many methods using tactile infor-
mation, proprioception is far from being exploited. Attempts
to take its advantages on robots for tactile object recognition
are seldom found in the literature. When found, propriocep-
tion is often combined with other sensing modes such as touch
[14, 15, 16, 17], vision [18] and hearing [19]. Although pro-
prioception is largely used by humans to perform shape iden-
tification, it has been little exploited as the only source of in-
formation by robotic systems. Furthermore, a great number of
robotic hands do not have enough embedded tactile sensors to
perform object recognition but they do have sensors to measure
and control the joint angles of its fingers [20, 21, 22]. Thus,
proprioception is their more reliable source of information for
haptic shape identification.

Few studies have used proprioceptive information alone to
perform object recognition and most of them use raw values
as inputs to their identification algorithm. For instance, Faria
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et al. [23] correlated hand configurations during in-hand ob-
ject exploration to generate hypotheses on a potential candidate
from a set of objects. Johnsson [24] and Ratnasingam [25] im-
plemented Self-Organizing Maps (SOM) based on joint angle
measurements of a robotic hand recorded when grasping an ob-
ject. Bergquist et al. [26] also implemented SOM, but instead
of joint angles, used joint torques recorded during interactions
with the objects like lifting, shaking, dropping, crushing and
pushing. Okamura et al. [11] used both tactile and proprio-
ceptive data to identify a group of shape patterns during tactile
exploration and concluded that tactile information is not needed
to recreate object shape.

Most of these methods achieve good results with accuracy
rates higher than 85%. However, inasmuch as they use raw val-
ues of the joint angles/torques, they all require training sets to
be large for the recognition algorithms to attain such results.
Furthermore, even if these approaches are tested on a large
number of objects, most of these objects have the same global
shape. This demands several samples of each individual object
in the training set which enlarges its corpus, thereby the time to
record its data. This also has a detrimental effect on the perfor-
mance of the recognition algorithm when new objects are added
to the set. Finally, most of the existing methods do not provide
with a methodology to estimate any information about the pose
of the object within the hand.

In this paper, we present a new approach to extract infor-
mation about the global shape of the object solely based on
proprioceptive data coming from the robotic hand. The main
contributions made in this work can be listed as follows:

• Instead of using the raw values of the joint angles, we pro-
pose to represent them as proprioceptive signatures. These
signatures correspond to the descriptor that we propose in
this article to represent the shape of the object using the
hand configuration.

• Thus, shape information contained in the joint angles be-
come invariant to the pose and the size of the object within
the hand. These signatures are generated from a repre-
sentation of the joint angles of the hand based its kine-
matic topology to endow the hand with proprioception.
This mimics, to some extent, the human proprioception
which combines joint angle information with a represen-
tation/kinematic model of their body in their mind [27].

• We focus on the global shape identification instead of spe-
cific object recognition, in contrast to the cited methods
exploiting proprioception. To do so, we exploit the pro-
prioceptive signatures generated in this method. This is
advantageous since, in non-structured environments, many
objects might share the same geometrical properties which
makes it more difficult for the learning algorithm to dis-
criminate them.

• The amount of data needed to train the learning algorithm
is reduced with respect to the proposed methods using pro-
prioceptive information. This is a good asset because data
gathering for tactile object recognition could be tedious.
Furthermore, a possibility of using synthetic data to this
purpose is presented, which is beneficial when the simula-

tion model of the robotic hand is available.
• Shape can be identified after performing a single grasp.

This offers an advantage over the tactile-based or vision-
based methods which, most of the times, need several sam-
ples before being able to recognized an object. Runtime
measurements will be presented in the experimental part
of this article.

• Estimation of the pose of the object is possible using the
signatures, which has not being done by proprioception-
based methods.

This paper begins with defining the proprioceptive represen-
tation of a robotic hand used in this approach. Next, the condi-
tions are defined for this representation to contain information
about the shape of the object. This information is described
as a signature that depends on the geometry of the object only.
Then, the analysis of the finger configurations is presented as
a tool for shape recognition. Finally, simulated results are pre-
sented using a Shadow Hand and the iCub Hand along with
experimental results obtained with a Shadow Hand.

2. METHOD

This section is dedicated to explaining the methodology of
the presented approach. First, the procedure followed to cre-
ate the representation of the joint angles of a robotic hand is
explained to provide the hand with proprioception and make it
able to perform object shape identification. Then, it is shown
how the shapes generate patterns, called signatures, from this
representation. This is exemplified on a set of primitive shapes.
Finally, it is illustrated how the information about the fingers'
configurations during the grasp closure is also exploited to ob-
tain more information about the shape of the object. Features
from the set of test objects are finally extracted to identify the
different test shapes.

2.1. Proprioception for Object Shape Information
When an object is grasped, both tactile and proprioceptive

modes can provide information about its shape. The relevance
of the information provided by each of the modes is variable
and depends on the geometrical properties of the object and the
hand as well as the exploration procedure followed. One of the
properties of the object that most in�uences how relevant these
modes are is its size. When the size of the object requires the
whole hand to be manipulated, proprioception becomes an im-
portant input for shape identification [28]. This finding is the ra-
tionale behind the design of this new method because it intends
to exploit proprioception as a useful source of information on
the shape of the object.

The other factor contributing to how the shape information
provided by proprioception is useful is the exploration proce-
dure. According to Lederman et al. [13], the enclosure grasp-
ing is the exploration procedure employed by most individuals
for global shape identification. In this kind of grasp, the hand
takes the object within its fingers adapting each finger to its
shape. Thus, the configuration of the fingers and their relative
positions contain information on the shape of the object. In this
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Algorithm 1 Pseudo Code for grasp strategy for one finger

Input:
C, vector of bool indicating if contact is reached.
θ, vector of int containing the joint angles to be sent to the
hand. All elements are initialized at 0.
∆α Increment of the angles θi.

begin
C = [false, flase, false]
θ = [0, 0, 0]
i 1;
f lag = true

while f lag = true do
if 9n 2 [i; 3] : C(n) = false then

i n;
if i = 3 then

f lag false;
end if

else
θi  θi + ∆α
if θi = θmax

i then
f lag false;

end if
end if
SendAngleCommand(θi)

end while
end

scenario, proprioception carries significant information about
the shape of the object in the joint angles as their configuration
describe, to some extend, the shape of the grasped object.

2.1.1. Grasping Strategy
To reproduce the enclosure grasping with a robotic hand, the

proposed method uses the grasping strategy described in [15].
In this grasp, θi starts increasing until a contact Ci is detected
on any phalanx n upstream in the chain ((Fig. 1 shows these
parameters and what upstream refers to). If no contact is de-
tected, the angle θi will continue to increase until reaching its
maximum value θmax

i (this angle depends on the robotic hand
used). Once θi stops, the same procedure is followed with θi+1
and so on to θI , where I is the number of phalanges of the used
hand. Naturally, I = 3 for anthropomorphic robotic hands. Al-
gorithm 1 shows this procedure otherwise. For this grasping
strategy, it is necessary that at least the proximal phalanx is not
coupled with the rest of the phalanges. Otherwise, a different
grasp strategy might be needed.

2.1.2. Shape Proprioceptive Signature
In human beings, proprioceptive information comes from

several sensory receptors located in the muscles, tendons and
joints. In a robotic hand, the joint angles can be used to repro-
duce the information coming from these sensory receptors and
provide the hand with proprioception.

When each finger conforms to the shape, the proprioceptive
data coming from the hand is then exploited to extract infor-
mation on the shape. Features like corners and edges are not

identifiable without tactile information. As a result, any polyg-
onal shape which cross-section provokes the joint angles to be-
have similarly generating the same information, and therefore,
prorpioception alone cannot discriminate them. Thus, for the
sake of simplicity without losing the generality, this method as-
sumes that when the enclosure grasp is performed around an
object, each finger adapts to a circular shape. As illustrated in
Fig. 2, the central angle subtended by the arc formed by the
finger on the circle is then equal to the angle between the pha-
langes forming that arc (See Appendix).

The underlying relationship between the joint angle θ and
the arc length s sets a link between the hand configuration and
a geometric parameter of the object, namely the radius r of the
enclosed circle, as follows:

s = rθ (1)

Since the length of the finger is constant, it can be stated that
the arc length s is also constant. Thus, the angle θ and the radius
r become inversely proportional variables.

Consider two fingers adapting to two different circles but
forming same arcs on each. Fig. 3a shows that the angle
(^AOB) subtended by the arc on the larger circle is smaller than
the one (^COD) on the smaller circle. Given that the joint an-
gle can be known, the radius r of a circle can be inferred by (3).
When this is applied to each finger, the radius of the different
parts of the object shape can be obtained.

Each finger in contact to the object will generate a chain of
arcs on the object surface. The set of chains created by every
finger forms a discrete representation of the contact surface and
the contact surface can be reconstructed through interpolation
between the different chains. To obtain a smooth surface, a cu-
bic interpolation is adopted, which confirms that small details
on discontinuities on the surface of the object will not be repre-
sented there. Fig. 3b) illustrates the result of the interpolation
between four circles of different radius. The blue manifold rep-
resents the contact region between the object and the fingers.
This manifold is then exploited to generate the proprioceptive
signature of the shape.

2.2. Proprioceptive Data Representation

To generate the proprioceptive signature of an object in the
hand, a representation of the proprioceptive data of the robotic
hand is first created. Based on the fact that human beings use

𝜃1
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𝜃3

𝐶1

𝐶2
𝐶3

Figure 1: Lateral view of a finger. Read lines show the areas of contacts Ci onto
which the contacts are detected. θi are the joint angles.
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mental images of the joint angles to detect features of the ob-
jects [29], this method uses an image to represent the joint an-
gles of the hand, therefore, the finger configurations. In this
sense, we call it Finger Configuration Image (FCI).

Because FCI represents the proprioception of the hand, it is
important that it respects the definition of proprioception itself
which implies the knowledge of the position of the neighboring
parts of the body relative to each other. In the case of the robotic
hand, it should provide, to some extent, the relative positions
of the segments (phalanges) of the fingers with respect to each
other. To fulfill this requirement, FCI is created so that each
one of its pixels corresponds to a joint, as illustrated in Fig.4.

The thumb is discarded from this representation because it is
generally in an opposed position with respect to the rest of the
fingers when an object is grasped [30]. Thus, the information
integrated across the other fingers yields a better representa-
tion of the surface of the object than the information gathered
from the thumb [31]. This makes the proprioceptive informa-
tion coming from the thumb unreliable for shape identification.

2.2.1. Finger Configuration Image
The FCI is then filled with information based on the kine-

matic topology of the fingers, which refers to the description of
the configuration of the links and joints. For this approach, each
finger is considered as a serial manipulator. Hence, each joint
angle is the sum of all joint angles downstream in the chain, the
proximal phalanx being the first link in that chain. Based on
this, the following equation is derived to fill the FCI using the
joint angles θ.

FCI(y, f ) = k
y∑

i=1

θi, f (2)

where FCI(y, f ) pixel on the row y and column f of the im-
age FCI and it corresponds to the representation of the joint
angle shown in Fig. 4. θi, f is the angle of the joint i (row) on
the finger f (column). Fig. 1 illustrates these angles on one
finger. k is a transformation constant from angle to gray scale
value. The value of k depends on the bit depth of the pixels of
the FCI. We define, generally this value using the following
expression:

Figure 2: Lateral view of a finger conformed to a circle. The red points rep-
resent the contact points of the phalanges. These points form an arc shown in
black that subtends the angle θ0. θ is the angle between the phalanges forming
the arc on the circle.
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Figure 3: (a) Concentric circles showing the central angles of their correspond-

ing intercepted arcs (
_
AB and

_
CD). Both arcs have the same length. (b) Contin-

uous case of Fig. 3a. Infinite sequence of circles of different radius forming a
shape (gray) and the manifold containing the arcs of the same length formed on
each circle (blue). (c) Central angles subtended by their arcs contained in the
manifold along the central segment OO0.

k =
C
3

(3)

where C is the maximum output level defined by the color
precision in which the FCI was defined (e.i., 256 levels for a
8-bit image). It is divided by three so that there is an equal dis-
tribution of the color among the three phalanges (under the as-
sumption that the three joints share the same maximum value).
The result is an image which pixels' values are updated when
the joint angles of the concerned fingers change. Fig. 5 presents
two examples of how finger configuration is represented in the
image FCI. The image on the left shows that when the pha-
langes of a finger are aligned, the pixels corresponding to that
finger share the same gray scale value. On the other hand, the
image on the right shows that aligned fingers are represented as
rows with the same gray scale value.

2.2.2. Proprioceptive Signatures from the FCI
The FCI is used to generate the proprioceptive signature of

the object once the grasp is achieved and the fingers conform to
the shape. For this, a two-step procedure is followed. First, the
FCI is increased in size using cubic interpolation which soften
the transition between the different radius to which each finger
adapts. Second, the signature S (x) is then built based in this
interpolated FCI (FCI0) using the following expression.

Figure 4: Image superposed to the hand so each pixel corresponds to one joint.
Consequently, each column represents one finger and its pixels represent the
joints of the finger. The thumb is not included in this representation.
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(a) (b)
Figure 5: Finger configurations (Upper images) and their corresponding Finger
Configuration Images (lower images). (a) Example of aligned phalanges and
misaligned fingers. (b) Example of misaligned phalanges and aligned fingers.

S (x) =



−min FCI0x

max FCI0x
(4)

which allows plotting two lines based on the minimum and
maximum gray scale values in the corresponding column x of
the FCI0. Because most robotic hands have coupled joints
on the fingers, this representation integrates the information of
those joints intrinsically. Thus, the lower line of the signature
represents the angle of the proximal phalanx and the upper line
represents the addition of the rest of angles.

2.3. Temporal Finger Configuration Analysis

As the hand is molded onto the shape of the object when it
closes around it, the finger closing movements for each shape
re�ects differently on the FCI. The grasp strategy also enables
to predict the fingers that might not be in contact with the object.
This section shows how the FCI is exploited to this end.

2.3.1. FCI temporal analysis
The grasp strategy used in this approach establishes a sequen-

tial change of the joint angles for each finger starting from the
closest to the palm. This sequence is re�ected in the FCI. As
expressed in (2), the gray scale values of the pixels of the FCI
depend on the angles of the joints downstream in the chain.
Thus, all pixels of each column will share the same gray scale
value as long as the finger has not entered in contact with the
object. Once the contact is made by a phalanx, the upstream
joint will start changing its angle sequentially which makes the
pixels of the same column have different gray scale values.

These variations in the grasp closure at finger level can be de-
tected in the FCI by computing the difference between the max-
imum and minimum gray scale values of each column. These
differences are periodically computed during the grasp execu-
tion. The vectors of gray scale values resulting from these com-
putations are stored in the rows of a matrix G as follows:

G(yt, x) = maxx(FCIt) − minx(FCIt) (5)

Algorithm 2 Pseudo Code for FCI temporal analysis

Input:
FCI, instantaneous FCI.
thresholdG, threshold expressed in equation (6).

Output:
G, FCI temporal evolution binary image.

begin
f lag = f lase
n 1;
while f lag = f alse do

j 1
for each column j of FCI do

G(n, j) = max FCI j −min FCI j

end for
n n + 1
G = Update(FCI, Flag)

end while
Gdi f f = S obel(G)
Gbin = binarize(Gdi f f , thres)

end

where the right term is the difference between the maximum
and minimum gray-scale values in each column x of the FCI
at the instant t during the grasp execution. Each time this dif-
ference is computed for each column x over time, the obtained
vector is stored in the row yt of G. In yt, the subscript t indicates
its value increases as the time passes.

When one of the fingers has already finished adapting to the
object, the computation of (5) is stopped. Because the increase
of the angles of each finger are re�ected on the image G as
changes of the gray scale value on the corresponding rows, a
Sobel filter is applied to this image in order to compute deriva-
tives on the vertical direction. Then, the image is binarized with
a threshold ThresholdG computed using (6) (Algorithm 2).

ThresholdG = 0.75 × 8 × ∆Iθ (6)

where the constant 8 comes from the Sobel operator and ∆Iθ
corresponds to the changes of the gray scale values of the FCI
or joint angles θ at the frequency the image G is sampled. The
threshold is defined to be 75% (which explains the constant
0.75), to compensate for the inexactitudes of sampling synchro-
nization.

2.3.2. Non-Contact Fingers Drop-out
To this point, it has been assumed that all fingers were in

contact with the object. This poses a problem when the object
is too small for all fingers to be in contact with it. In general,
it poses a problem whenever one of the fingers does not make
contact with the object.

If the prior situation occurs, the signatures would not corre-
spond to any of the patterns expected for a given shape. Hence,
the information about the fingers that are not in contact should
be ignored before generating the signature.

This method makes use of the FCI temporal analysis to detect
the fingers that are not in contact with the object. For those fin-
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Figure 6: (a)Generation of the image G overtime. As the hand adapts to the
object, the rows of G are been filled with the difference between the minimum
and maximum gray scale value of the columns of the FCI. (b) Once it has been
detected that the little finger did not adapt to the object, the generated signa-
ture (left) is corrected by droping out the information coming from that finger
(right).

gers, the joint angles do not change until the downstream ones
reach their maximum values. This is re�ected in the binarized
image G by the white areas which are used to detect the fingers
that do not adapt to the object shape. In this sense, the posi-
tion and the length of this white areas are computed for each
column. To determine if a finger did not adapt to the shape, a
threshold of these two parameters are set.

To estimate the values of these thresholds, the grasp strategy
is executed with no object within the hand. Once algorithm 2
has been executed, the length and position of the white areas
are computed for each finger and the threshold for each param-
eter is chosen to be 85% of the computed value. In case the
middle or ring finger are detected as not-in-contact fingers, it
is assumed that an error has occurred in the process of grasp
execution. Algorithm 3 shows the pseudo code to dropout the
information of the finger. Furthermore, Fig. 6 shows how im-
ages of this procedure along with a corrected signature.

The process of dropping out the information from non-
contact fingers contributes to generating proprioceptive signa-
tures that are not affected by the fact that one finger might not
be in contact with it. However, to achieve this goal, further
treatment is needed. The next section presents how signatures
are processed so that they become invariant to size and pose of
the object.

2.4. Signature Enhancement

Signatures can be subjected to changes depending on the size
and pose of the object with respect to the hand. To make the sig-
natures invariant to these parameters, the signatures are further
modified so that the effect of each parameter is canceled.

First, the length of the signatures varies according to the tem-
poral configuration analysis during the grasp execution. When
some information is dropped out from the FCI, the length of

Algorithm 3 Pseudo Code to drop out information from non
contact fingers before signature generation

Input:
G, FCI temporal evolution binary image.
threspos, Threshold for position of the white area.
threslength, Threshold for length of the white area.

Output:
S , proprioceptive signature.

begin
for each column j of G do

xinit = �nd �rst(Gbin(i, j) 2 [1, rows] Gbin(i, j) = 1)
xend = �nd last(Gbin(i, j) 2 [1, rows] Gbin(i, j) = 1)
if xinit > threspos and (xinit− xend) > threslength then

if j = 2 or j = 3 then
Error in Grasping

else
Dropout finger j

end if
end if

end for
GenerateSignature

end

the generated signature is reduced (Fig. 7a). To later compare
the obtained signatures with generic shape signatures, all signa-
tures must have the same length. Thus, they are re-interpolated
to a fixed length m (Fig. 7b).

Second, the effect of the object size on the signatures is
corrected. Because this parameter causes the signature to be
shifted vertically, a further processing phase will center it with
respect to the horizontal axis. To this end, each line of the signa-
ture is treated separately. The mean of all points corresponding
to each line is subtracted to each point of the line (Fig. 7c).

Rotation of the object also affects the signature by inclination
of it. This might lead to some resemblance between signatures
of different objects. To correct this, the re-interpolated and cen-
tered signature is rotated (Fig. 7d) and its integral is computed
for each angle α. When a local minimum is found, the process
stops and the signature is rotated this angle (Fig. 7e).

Finally, the signature is normalized between the range [-1 1]
(Fig. 7f). After this 3-step process, the effects of both the size
and pose of the object have been discarded.

3. EXPERIMENTS

3.1. Simulation

This method was tested using the Gazebo simulator. The
Gazebo model of the Shadow Hand was implemented. To out-
line its performance, the proposed approach was tested on a set
of five primitive shapes (cone, torus, sphere, one-sheeted hy-
perboloid and cylinder). These shapes were chosen considering
their frequent presence in household objects and some of them
because they were not considered in previous related works.
Some of these shapes were also chosen based on their geomet-
rical properties, such as convexity. Fig. 8 shows these shapes
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Figure 7: (a) Signature corrected by dropping out the information coming from
the first finger. Therefore, its horizontal length is shorter. (b) Signature interpo-
lated so that its length is equal to a non-corrected signature m. For the following
steps, lines are treated separately. The upper line is used as example in this fig-
ure. (c) In order to correct the vertical shift due to the size of the object, the
mean value of the signature is computed and then subtracted from every point
to center the signature on the x-axis. (d) In order to correct the rotation, the sig-
nature S is rotated on the coordinate system. (e) For each angle α of rotation,
the integral I of rotated signature S α is computed (striped area). This process is
repeated until the minimum integral is found. (f) Once the rotation is corrected,
the signature is normalized between [−1; 1].

with their corresponding generated signatures below. These
shapes were simulated as static which means that the physics
of the simulated world do not apply to them and their position
is thereby not changed by the interaction forces with the hand.

3.2. Data Collection

To evaluate this method, the signatures of the shapes of dif-
ferent sizes and located in different parts along the work space
of the hand were recorded. These sizes and locations are shown
in table I. The range of each parameter was chosen to be ex-
treme, so that proper boundaries were defined according to the
resemblance between signatures. These ranges are given in Ta-
ble I. A simulation included 10241 signatures combining all
sizes and locations for each shape and to the ten rotation an-
gles tested on the torus, hyperboloid and cylinder (The rotation
angle tested can be visualized in Fig 10).

3.3. Real-hand experiments

The Shadow Hand was used to test this method in a real ap-
plication. Real objects with the same primitive shapes of the
simulated ones in section 3.1 were used (Fig. 9).

In the data collection process, between 4 and 7 signatures
were collected for each object. Objects were handled to the

(a) (b) (c)

(d)

O
′

O

O O
′

(e)
Figure 8: Set of test shapes. The blue manifold on top of them is the result of
equivalent arcs formed on the circles contained in the shape. Below each shape,
the corresponding signature obtained by extracting the central angles from the
manifold with respect to the central axis OO0. The procedure shown in Fig. 3.

hand and they were free to move with the interaction forces with
the hand during the grasp execution. A picture was taken after
the grasp was executed, and this image was used to estimate the
rotation angle of the object. This was done by computing the
angle between axis of the hand and the object (See Fig. 10).

3.4. Signatures Comparison

Once the signatures were recorded, they were corrected as
explained in Section 2.4 and compared to the theoretical ones.
This was done using the Dynamic Time Warping (DTW) algo-
rithm [32] which allows to perform shape analysis on the signa-
tures and determine how similar the measured signatures were
to the theoretical ones.

As a measure of similarity, DTW gives a distance-like mea-
sure between two sequences. This measure can be used to dis-
tinguish a signature from another. For this, a distance threshold
was defined by comparing all the collected signatures with the
expected patterns of the shape. The threshold value corresponds
to the situation when all signatures match with their shape pat-
tern. This threshold was later used to define the proper ranges.

3.5. Defining Ranges for Size and Position

The ranges within which the presented method works best
were defined based on the results obtained from comparing the
signatures to the expected ones. Given a shape, the probabil-
ity of generating the correct signature was computed for each
tested size and pose. These probabilities were computed from
a set of simulations.

These probabilities were put into a matrix which dimensions
depended on the number of variables changing during the tests.
For instance, in the case of the Cone, only the radius and the
vertical position changed, the matrix is therefore two dimen-
sional. Once this was done, the mean of the probabilities of ev-
ery continuous interval for each dimension of the matrix were
computed and only those in which the mean was higher than
80% were kept. Then, the largest intervals from the chosen
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Figure 9: Objects used for real experiences. Some of the objects were grasped
on different sites to get a different shape.This is indicated by rectangles on those
objects. Yellow is used for hyperboloid, red for cylinder and blue for cone.

Figure 10: Object angle estimation. Yellow lines correspond to the hand axis.
Red line to the object axis. The angle of rotation is measured between the
horizontal axis of the hand and the axis of the object.

ones were considered to re�ect the best possible performance
of this method.

4. RESULTS

4.1. Signatures from the FCI

Fig. 11 shows the proprioceptive signatures obtained in sim-
ulation and with real objects prior to enhancement. It can be
observed that they do not exhibit significant changes when the
size or position of the shapes changed. As expected, a vertical
and horizontal shifts are shown depending on the size and posi-
tion, respectively. The bigger the object, the larger the distance
between the lines conforming the signatures. Rotated objects
are not shown in this figure.

Regardless their resemblance to the theoretical signatures,
some differences are also observable. For instance, the signa-
tures obtained for the cylinder have a certain similarity with the
ones obtained for the hyperboloid (Fig. 12e). This is due to the
kinematics of the hand and how the fingers are positioned with

Table 1: Tested dimensions and positions for each object. The column Shape
Dimension shows the dimensions varying for each shape. In the column Size,
the intervals of dimensions that were tested and the change rates. Images in the
column Position correspond to the positions where the shapes were located. All
dimensions are shown in cm.

Shape Dimensions Size Position

r = [1, 8]
∆r = 0.25

0.5

r = [1, 8]
∆r = 0.25
R increased pro-
portionally with r
as (R = 4 ∗ r)

0.5

r = [1, 8]
∆r = 1

0.5

0.5

d = [1, 8]
∆d = 0.25

0.5

r = [1, 10]
∆r = 0.5

0.5

respect to each other, which was not considered in the FCI. Fig.
12 illustrates the signatures obtained for each shape after the
signature enhancement procedure has been performed on the
measured signatures. Signatures of the same shape show sig-
nificant similarities regardless the changes of sizes of the object
and the locations were put in the hand. This depicts, to some
extend, their little variance with respect to these two parame-
ters.

4.2. Accumulated Distance Threshold

The results of the procedure defining the threshold for the
DTW algorithm (Section 3.4) are shown in Fig. 13a. These
results were obtained in simulation. As can be observed, most
of the shapes showed lower mean distance when compared to
their corresponding theoretical signature but the cylinder did
not show the same behavior. The reason for this is that the
normalization made in the signature enhancement procedure
makes its signature similar to the one of an hyperboloid. The
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Figure 11: Signatures obtained on both simulated (upper) and real objects (lower). from left to right: cone, torus, sphere, hyperboloid, cylinder.

(a) (b) (c) (d) (e)
Figure 12: Measured signatures of the (a) cone, (b) torus, (c) sphere, (d) hyperboloid ,(e) cylinder after been enhanced. The signatures in blue are the ones that
fulfill the critiria stablished in Section 4.2 to be consired as a match of the theoretical signature. The ones in gray are the ones that do not.

measured signatures of the cylinder are therefore closer to the
theoretical signature of the hyperboloid than to its correspond-
ing one. When data obtained with real objects on a Shadow
hand, we found the same behavior (Fig. 13b).

It is also observable that for most of the signatures, the mean
distances between the signatures and the corresponding patterns
fall below a threshold of 50, except for the sphere, which mean
goes up to around 80. The threshold was fixed here to 55. In fur-
ther experiments, the measured signatures of the cylinder were
compared to the theoretical signature of the hyperboloid. To
differentiate the signatures of both shapes, the integral obtained
from the signature enhancement procedure was used. Because
the cylinder has a straight shape, the integral would be lower for
this shape than for the hyperboloid (Fig. 14). To differentiate a
signature from another, a threshold was defined as the average
of both means. This is confirmed in the experiments with the
real hand. A slight difference in the threshold is found. This
difference can be attributed to the amount of data gathered with
real objects and the differences between the simulated model of
the shadow hand and real hand.

4.3. Ranges Definition

Table 2 shows for each shape the range of the radius obtained
when using the threshold defined in the previous section. It also
shows the interval of positions in the hand considered for each
shape. As can be observed, the measured signatures of the torus
correspond to upper locations. This is due to the fact that given
a horizontal pose of the torus in the hand, the contact zone is
not located on the top of the shape as shown Fig. 8 but rather

Con Tor Sph Dia Cyl
0

50

100

150

200

Corresponding Signature
Non-Corresponding Signature
Threshold

(a)

Con Tor Sph Dia Cyl
0

50

100

150

200

Corresponding Signature
Non-Comparison Signature
Threshold

(b)
Figure 13: DTW results when the measured signatures are compared to the the-
oretical ones. For each shape, the signatures are compared with all patterns of
the five shapes. The blue bars refer to the results obtained when the signatures
are compared to their pattern corresponding and the gray bars, when they are
compared to the patterns of other shapes. The dash line is the defined threshold.
(a) Simulation. (b) with real hand.

in the inner part as the one shown in Fig. 15. Thus, because the
shape of the torus in this location is similar to the hyperboloid,
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Figure 14: Integrates of the hyperboloid and cylinder resulting from the signa-
ture enhancement procedure. The dashed line is the threshold defined to distin-
guish the signatures of these two shapes. This threshold was computed using
the mean of the mean values of the integrates of each shape. (a) Simulation. (b)
with real hand.

so is the measured signature.

Figure 15: Illustration of the location of the manifold formed by the fingers
adapting to a torus located near the palm and the its corresponding generated
signature. The shape is cross-sectioned to facilitate the view.

In the experiences with real objects, their sizes and locations
were chosen to fall within these ranges, which explains why
results depicted in Fig. 13a show that all shapes felt below the
threshold established in section 4.2.

4.4. Rotated Objects

In realistic situations, objects might also be rotated with re-
spect to the hand. Experiments were done with the torus, hy-
perboloid and cylinder. The inclination of the objects was in-
creased by 2.5 degrees from 5 to 25 degrees. The size and the
position were changed like in the previous experiments within
their ranges. Fig. 16 shows the percentage of measured signa-
tures that correspond to the theoretical signatures as a function
of the inclination angle. Furthermore, in Fig. 17, the measured
angle of the signature is plotted against the actual inclination
angle of the object for both (a) simulation and (b) real objects.

As shown in these results, which were obtained in simula-
tion, the presented method succeeds in correcting the effects of
the object rotation on their signatures up to an angle of 25◦ for
all shapes. Concerning real objects, results are shown in Fig.
17b. As it can be observed, a linear regression can be used to
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Figure 16: Identification rate of rotated objects with respect to the angle of
rotation.
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Figure 17: Measured angle of the signatures versus the actual angle of rotation
of the object. (a) Simulation. (b) with real hand. The blue lines in this images
were computed using linear regression.

model the behavior of the angle measurements based on the sig-
natures for each shape. Therefore, this method offers a means
to estimate the inclination of the object. This is an interesting
feature because it adds another advantage to the signature, such
as the capability of estimating the pose of the object within the
hand.
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Table 2: Ranges of size and positions in the hand attained for each one of the shapes.

Cone Torus Sphere Hyperboloid Cylinder

14cm

7cm

5cm

2.5cm

7cm

2cm

5.5cm

2cm

14cm

6cm

4.5. Modified Shapes

It was desired to study the performance of the presented
method for shapes similar to the ones used in previous sections.
For this, an ovoid and an pyramid with an hectagon base were
chosen as modifications to the sphere and cone, respectively.
Results are shown in Fig. 18. As it can be observed, for the
pyramid, its signature corresponded to the one of a cone, con-
firming what was said in section 2.1.2 about proprioception not
being able to detect edges and generating the same signatures
for smooth of polygonal shapes. As for the ovoid, it generated
signatures similar to that of a sphere or a torus. When data was
analyzed in more detail, we realized that it depended on the po-
sition of the ovoid within the hand. Thus, for lower positions, a
signature similar to that of a sphere would be generated, and as
the location went upwards in the hand, the signature becomes
similar to that of a torus.

Pyramid Ovoid
0

50

100

150

200

Corresponding Signature
Non-Corresponding Signature
Threshold

Figure 18: DTW distances computed for an ovoid and a hectagon pyramid. The
theoretical signatures of a cone, torus, sphere, hyperboloid and cylinder were
used.

5. Conclusions

In this paper, proprioceptive data was used to identify the
shape of a grasped object in a robotic hand. For this task, a
representation of the joint angles of the fingers was created in

which the finger configurations were sketched. This represen-
tation allowed to find patterns related to the grasped shapes,
thus to generate the so-called proprioceptive shape signatures.
It was shown that these signatures have the potential of being
profitable for both object recognition and manipulation tasks
because they contain information on the global shape and pose
of the object within the hand.

Experiments were carried on simulation and a comparison
on results obtained on both cases were compared and showed
to behave similarly. An analysis on the signatures using DTW
showed that measured signatures have a significant correspon-
dence to the theoretical one of the same shape, and a very low
correspondence to those of different shapes. When shapes look
similar to each other, such as cylinder and hyperboloid, and
cannot be distinguished by its normalized signatures only, other
parameters can be used for this. The cylinder is a �at shape and
the integral of its signature is lower than the integral of the sig-
nature of the hyperboloid. Thus, using both the signature and
its integral, it can be concluded that they correspond exclusively
to a specific shape which is beneficial for shape identification
tasks.

Signatures showed little variance within large ranges of size
and pose (position and orientation) for each shape since the ef-
fects of both parameters on the signatures were discarded by
the procedure explained in section 2.4. This brings several key
features to the presented method. First, instead of focusing on
specific object recognition, signatures allow shape identifica-
tion for any object within the ranges defined in Table 2. Sec-
ond, the angle of inclination of the object in the hand can be
estimated through the integral of the signature. Third, the sig-
natures are generated and enhanced in about 20±2 seconds. So,
all together those object characteristics can be used in real-time
for manipulation tasks where physical knowledge on the object
is more important than its identification.

The shape of objects with high elasticity and �exibility could
not be identified with this method. However, results with real
objects confirm that objects can slightly deform (like the plastic
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bottles used in experiments) and the method would still work.
In future work, the signatures will be combined with tactile

information to identify fine details of the object shape, also im-
portant for manipulation tasks. An exploration algorithm based
on those proprioceptive signatures will also be developed by
exploiting the information about the pose of the object within
the hand to control the direction of the movements of the hand.

6. Appendix

6.1. Equivalence between the joint angles and central angles
of grasped circle

In the Fig. 19, points O,A,B and C define a quadrilateral.
The sum of its internal angles is equal to 360◦.

∠O + ∠A + ∠B + ∠C = 360◦ (1)

Let l1 and l2 be tangents to the circle O at the points A and
C. Hence, the cords OA and OC are orthogonal to l1 and l2,
respectively and

∠O + ∠B = 180◦ (2)

Because ∠B0 and ∠B are supplementary angles,

∠B0 + ∠B = 180◦ (3)

Substituting (2) in (3) demonstrates that

∠O = ∠B0 (3)

Figure 19: Tangents l1 and l2 and the cords OA and OC forming a quadrilateral.
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 A descriptor based in proprioception is developed for shape identification 

 Descriptor allows estimating rotation and shape of the object 

 Temporal analysis of proprioceptive allows determining fingers in contact 

 Objects are identified regardless its size and position within the hand 

 The proprioceptive descriptors could be used in real‐time applications 


