G. Abecasis, D. Altshuler, A. Auton, L. Brooks, and R. Durbin, 1000 Genomes Project Consortium, Nature, vol.467, pp.1061-1073, 2010.

A. Adewoye, S. Lindsay, Y. Dubrova, and M. Hurles, The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline, Nature Communications, vol.38, p.6684, 2015.
DOI : 10.1093/nar/gkq603

V. Aggarwala and B. Voight, An expanded sequence context model broadly explains variability in polymorphism levels across the human genome, Nature Genetics, vol.4, issue.4, pp.349-355, 2016.
DOI : 10.1093/molbev/msh039

S. Besenbacher, P. Sulem, A. Helgason, H. Helgason, H. Kristjansson et al., Multi-nucleotide de novo Mutations in Humans, PLOS Genetics, vol.107, issue.11, p.1006315, 2016.
DOI : 10.1371/journal.pgen.1006315.s005

URL : http://doi.org/10.1371/journal.pgen.1006315

R. Blanc-mathieu, B. Verhelst, E. Derelle, S. Rombauts, F. Bouget et al., An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies, BMC Genomics, vol.15, issue.1, p.1103, 2014.
DOI : 10.1038/nature12121

URL : https://hal.archives-ouvertes.fr/hal-01130514

X. Chen and J. Zhang, No Gene-Specific Optimization of Mutation Rate in Escherichia coli, Molecular Biology and Evolution, vol.30, issue.7, pp.1559-1562, 2013.
DOI : 10.1093/molbev/mst060

P. Cingolani, A. Platts, L. Wang, M. Coon, T. Nguyen et al., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff, Fly, vol.8, issue.2, pp.80-92, 2012.
DOI : 10.1101/gr.4086505

S. Collins, B. Rost, and T. Rynearson, Evolutionary potential of marine phytoplankton under ocean acidification, Evolutionary Applications, vol.51, issue.103, pp.140-155, 2014.
DOI : 10.1034/j.1600-0889.1999.00023.x

D. Conrad, J. Keebler, M. Depristo, S. Lindsay, Y. Zhang et al., Variation in genome-wide mutation rates within and between human families, Nature Genetics, vol.156, issue.7, pp.712-714, 2011.
DOI : 10.1101/gr.3577405

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322360

C. Coulondre, J. Miller, P. Farabaugh, and W. Gilbert, Molecular basis of base substitution hotspots in Escherichia coli, Nature, vol.35, issue.5673, pp.775-780, 1978.
DOI : 10.1021/bi00871a026

C. De-vargas, S. Audic, N. Henry, J. Decelle, F. Mahé et al., Eukaryotic plankton diversity in the sunlit ocean, Science, vol.48, issue.1, p.1261605, 2015.
DOI : 10.1016/j.femsec.2004.10.006

D. Denver, P. Dolan, L. Wilhelm, W. Sung, J. Lucas-lled-o et al., A genome-wide view of Caenorhabditis elegans base-substitution mutation processes, Proceedings of the National Academy of Sciences, vol.20, issue.5, pp.16310-16314, 2009.
DOI : 10.1093/molbev/msg072

D. Denver, K. Morris, M. Lynch, and W. Thomas, High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome, Nature, vol.8, issue.7000, pp.679-682, 2004.
DOI : 10.1007/s00239-004-2580-4

D. Denver, K. Morris, M. Lynch, L. Vassilieva, and W. Thomas, High Direct Estimate of the Mutation Rate in the Mitochondrial Genome of Caenorhabditis elegans, Science, vol.289, issue.5488, pp.2342-2344, 2000.
DOI : 10.1126/science.289.5488.2342

D. Denver, L. Wilhelm, D. Howe, K. Gafner, P. Dolan et al., Variation in Base-Substitution Mutation in Experimental and Natural Lineages of Caenorhabditis Nematodes, Genome Biology and Evolution, vol.4, issue.4, pp.513-522, 2012.
DOI : 10.1093/gbe/evs028

M. Depristo, E. Banks, R. Poplin, K. Garimella, J. Maguire et al., A framework for variation discovery and genotyping using next-generation DNA sequencing data, Nature Genetics, vol.8, issue.5, pp.491-498, 2011.
DOI : 10.1126/science.1177074

A. Dobin, C. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., STAR: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, issue.1, pp.15-21, 2013.
DOI : 10.1093/bioinformatics/bts635

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530905

J. Drake, A constant rate of spontaneous mutation in DNA-based microbes., Proceedings of the National Academy of Sciences, vol.88, issue.16, pp.7160-7164, 1991.
DOI : 10.1073/pnas.88.16.7160

J. Drake, B. Charlesworth, D. Charlesworth, and J. Crow, Rates of spontaneous mutation, Genetics, vol.148, pp.1667-1686, 1998.

L. Duret and P. Arndt, The Impact of Recombination on Nucleotide Substitutions in the Human Genome, PLoS Genetics, vol.101, issue.5, p.1000071, 2008.
DOI : 10.1371/journal.pgen.1000071.s007

URL : https://hal.archives-ouvertes.fr/hal-00428172

L. Duret and N. Galtier, Biased Gene Conversion and the Evolution of Mammalian Genomic Landscapes, Annual Review of Genomics and Human Genetics, vol.10, issue.1, pp.285-311, 2009.
DOI : 10.1146/annurev-genom-082908-150001

URL : https://hal.archives-ouvertes.fr/hal-00428399

I. Ebersberger, D. Metzler, C. Schwarz, and S. , Genomewide Comparison of DNA Sequences between Humans and Chimpanzees, The American Journal of Human Genetics, vol.70, issue.6, pp.1490-1497, 2002.
DOI : 10.1086/340787

URL : http://doi.org/10.1086/340787

P. Foster, H. Lee, E. Popodi, J. Townes, and H. Tang, as revealed by whole-genome sequencing, Proceedings of the National Academy of Sciences, vol.57, issue.1, pp.5990-5999, 2015.
DOI : 10.1111/mmi.12061

K. Fryxell and E. Zuckerkandl, Cytosine Deamination Plays a Primary Role in the Evolution of Mammalian Isochores, Molecular Biology and Evolution, vol.17, issue.9, pp.1371-1383, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026420

N. Grimsley, B. Péquin, C. Bachy, H. Moreau, and G. Piganeau, Cryptic Sex in the Smallest Eukaryotic Marine Green Alga, Molecular Biology and Evolution, vol.27, issue.1, pp.47-54, 2010.
DOI : 10.1093/molbev/msp203

C. Haag-liautard, N. Coffey, D. Houle, M. Lynch, B. Charlesworth et al., Direct Estimation of the Mitochondrial DNA Mutation Rate in Drosophila melanogaster, PLoS Biology, vol.7, issue.103, p.204, 2008.
DOI : 10.1371/journal.pbio.0060204.sd001

C. Haag-liautard, M. Dorris, X. Maside, S. Macaskill, D. Halligan et al., Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila, Nature, vol.19, issue.7123, pp.82-85, 2007.
DOI : 10.1093/oxfordjournals.molbev.a025563

D. Halligan and P. Keightley, Spontaneous Mutation Accumulation Studies in Evolutionary Genetics, Annual Review of Ecology, Evolution, and Systematics, vol.40, issue.1, pp.151-172, 2009.
DOI : 10.1146/annurev.ecolsys.39.110707.173437

P. Hanawalt and G. Spivak, Transcription-coupled DNA repair: two decades of progress and surprises, Nature Reviews Molecular Cell Biology, vol.22, issue.12, pp.958-970, 2008.
DOI : 10.1016/j.molcel.2007.06.014

R. Harrison and B. Charlesworth, Biased Gene Conversion Affects Patterns of Codon Usage and Amino Acid Usage in the Saccharomyces sensu stricto Group of Yeasts, Molecular Biology and Evolution, vol.28, issue.1, pp.117-129, 2011.
DOI : 10.1093/molbev/msq191

L. Henry, T. Schwander, and B. Crespi, Deleterious Mutation Accumulation in Asexual Timema Stick Insects, Molecular Biology and Evolution, vol.29, issue.1, pp.401-408, 2012.
DOI : 10.1093/molbev/msr237

A. Hodgkinson and A. Eyre-walker, Variation in the mutation rate across mammalian genomes, Nature Reviews Genetics, vol.73, issue.11, pp.756-766, 2011.
DOI : 10.1038/10290

T. Ikemura, Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes, Journal of Molecular Biology, vol.146, issue.1, pp.389-409, 1981.
DOI : 10.1016/0022-2836(81)90363-6

S. Jancek, S. Gourbière, H. Moreau, and G. Piganeau, Clues about the Genetic Basis of Adaptation Emerge from Comparing the Proteomes of Two Ostreococcus Ecotypes (Chlorophyta, Prasinophyceae), Molecular Biology and Evolution, vol.25, issue.11, pp.2293-2300, 2008.
DOI : 10.1093/molbev/msn168

URL : https://hal.archives-ouvertes.fr/halsde-00459220

P. Keightley, R. Ness, D. Halligan, and P. Haddrill, Full-Sib Family, Genetics, vol.196, issue.1, pp.313-320, 2014.
DOI : 10.1534/genetics.113.158758

P. Keightley, A. Pinharanda, R. Ness, F. Simpson, K. Dasmahapatra et al., Estimation of the Spontaneous Mutation Rate in Heliconius melpomene, Molecular Biology and Evolution, vol.32, issue.1, pp.239-243, 2014.
DOI : 10.1093/molbev/msu302

P. Keightley, U. Trivedi, M. Thomson, F. Oliver, S. Kumar et al., Analysis of the genome sequences of three Drosophila melanogaster spontaneous mutation accumulation lines, Genome Research, vol.19, issue.7, pp.1195-1201, 2009.
DOI : 10.1101/gr.091231.109

N. Kim and S. Jinks-robertson, Transcription as a source of genome instability, Nature Reviews Genetics, vol.147, pp.204-214, 2012.
DOI : 10.1016/j.cell.2011.07.049

M. Krasovec, A. Eyre-walker, N. Grimsley, C. Salmeron, D. Pecqueur et al., Fitness Effects of Spontaneous Mutations in Picoeukaryotic Marine Green Algae, G3: Genes|Genomes|Genetics, vol.6, issue.7, pp.2063-2071, 2016.
DOI : 10.1534/g3.116.029769

T. Kunkel and D. Erie, Eukaryotic Mismatch Repair in Relation to DNA Replication, Annual Review of Genetics, vol.49, issue.1, pp.291-313, 2015.
DOI : 10.1146/annurev-genet-112414-054722

E. Lander, L. Linton, B. Birren, C. Nusbaum, M. Zody et al., Initial sequencing and analysis of the human genome, Nature, vol.6, issue.6822, pp.860-921, 2001.
DOI : 10.1089/cmb.1999.6.91

F. Lassalle, S. Périan, T. Bataillon, X. Nesme, L. Duret et al., GC-Content Evolution in Bacterial Genomes: The Biased Gene Conversion Hypothesis Expands, PLOS Genetics, vol.6, issue.2, p.1004941, 2015.
DOI : 10.1371/journal.pgen.1004941.s008

URL : https://hal.archives-ouvertes.fr/hal-01198362

H. Lee, E. Popodi, H. Tang, and P. Foster, Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing, Proceedings of the National Academy of Sciences, vol.26, issue.8, pp.2774-2783, 2012.
DOI : 10.1016/j.tig.2010.05.003

E. Leigh, The evolution of mutation rates, Genetics, vol.73, pp.1-18, 1973.

Y. Lesecque, D. Mouchiroud, and L. Duret, GC-Biased Gene Conversion in Yeast Is Specifically Associated with Crossovers: Molecular Mechanisms and Evolutionary Significance, Molecular Biology and Evolution, vol.30, issue.6, pp.1409-1419, 2013.
DOI : 10.1093/molbev/mst056

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649680

H. Li and R. Durbin, Fast and accurate long-read alignment with Burrows?Wheeler transform, Bioinformatics, vol.26, issue.5, pp.589-595, 2010.
DOI : 10.1093/bioinformatics/btp698

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828108

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2079, 1000.
DOI : 10.1093/bioinformatics/btp352

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002

P. Lind and D. Andersson, Whole-genome mutational biases in bacteria, Proceedings of the National Academy of Sciences, vol.20, issue.1, pp.17878-17883, 2008.
DOI : 10.1006/meth.1999.0901

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584707

H. Long, D. Winter, A. Chang, W. Sung, S. Wu et al., Low base-substitution mutation rate in the germline genome of the ciliate Tetrahymena thermophila, Genome Biol Evol, 2016.
DOI : 10.1101/025536

M. Lynch, Evolution of the mutation rate, Trends in Genetics, vol.26, issue.8, pp.345-352, 2010.
DOI : 10.1016/j.tig.2010.05.003

M. Lynch, M. Ackerman, J. Gout, H. Long, W. Sung et al., Genetic drift, selection and the evolution of the mutation rate, Nature Reviews Genetics, vol.52, issue.11, pp.704-714, 2016.
DOI : 10.1093/gbe/evr066

M. Lynch and J. Conery, The Origins of Genome Complexity, Science, vol.302, issue.5649, pp.1401-1404, 2003.
DOI : 10.1126/science.1089370

M. Lynch, W. Sung, K. Morris, N. Coffey, C. Landry et al., A genome-wide view of the spectrum of spontaneous mutations in yeast, Proceedings of the National Academy of Sciences, vol.95, issue.1, pp.9272-9277, 2008.
DOI : 10.1073/pnas.95.1.253

J. Ma and X. Li, Organellar genome copy number variation and integrity during moderate maturation of roots and leaves of maize seedlings, Current Genetics, vol.160, issue.4, pp.591-600, 2015.
DOI : 10.1104/pp.112.204198

B. Marin and M. Melkonian, Molecular Phylogeny and Classification of the Mamiellophyceae class. nov. (Chlorophyta) based on Sequence Comparisons of the Nuclear- and Plastid-encoded rRNA Operons, Protist, vol.161, issue.2, pp.304-336, 2010.
DOI : 10.1016/j.protis.2009.10.002

I. Martincorena, A. Seshasayee, and N. Luscombe, Evidence of non-random mutation rates suggests an evolutionary risk management strategy, Nature, vol.465, issue.7396, pp.95-98, 2012.
DOI : 10.1038/nature09004

R. Ness, S. Kraemer, N. Colegrave, and P. Keightley, Plastid Genome, Molecular Biology and Evolution, vol.33, issue.3, pp.800-808, 2015.
DOI : 10.1093/molbev/msv272

R. Ness, A. Morgan, N. Colegrave, P. Keightley, R. Ness et al., Estimate of the Spontaneous Mutation Rate in Chlamydomonas reinhardtii, Genetics, vol.192, issue.4, pp.1447-1454, 2012.
DOI : 10.1534/genetics.112.145078

J. Ninio, Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates, Genetics, vol.129, pp.957-962, 1991.

S. Ossowski, K. Schneeberger, J. Lucas-lled-o, N. Warthmann, R. Clark et al., The Rate and Molecular Spectrum of Spontaneous Mutations in Arabidopsis thaliana, Science, vol.179, issue.2, pp.92-94, 2010.
DOI : 10.1534/genetics.107.085282

S. Paland and M. Lynch, Transitions to Asexuality Result in Excess Amino Acid Substitutions, Science, vol.311, issue.5763, pp.990-992, 2006.
DOI : 10.1126/science.1118152

C. Park, W. Qian, and J. Zhang, Genomic evidence for elevated mutation rates in highly expressed genes, EMBO reports, vol.16, issue.12, pp.1123-1129, 2012.
DOI : 10.1007/BF01731581

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3512408

G. Piganeau, N. Grimsley, and H. Moreau, Genome diversity in the smallest marine photosynthetic eukaryotes, Research in Microbiology, vol.162, issue.6, pp.570-577, 2011.
DOI : 10.1016/j.resmic.2011.04.005

P. Polak and P. Arndt, Transcription induces strand-specific mutations at the 5' end of human genes, Genome Research, vol.18, issue.8, pp.1216-1223, 2008.
DOI : 10.1101/gr.076570.108

R. Team, R: A language and environment for statistical computing . R Foundation for Statistical Computing, 2014.

B. Rebolledo-jaramillo, M. Su, N. Stoler, J. Mcelhoe, B. Dickins et al., Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA, Proceedings of the National Academy of Sciences, vol.13, issue.1, pp.15474-15479, 2014.
DOI : 10.1186/1471-2164-13-666

D. Schrider, J. Hourmozdi, and M. Hahn, Pervasive Multinucleotide Mutational Events in Eukaryotes, Current Biology, vol.21, issue.12, pp.1051-1054, 2011.
DOI : 10.1016/j.cub.2011.05.013

URL : http://doi.org/10.1016/j.cub.2011.05.013

L. Ségurel, M. Wyman, and M. Przeworski, Determinants of Mutation Rate Variation in the Human Germline, Annual Review of Genomics and Human Genetics, vol.15, issue.1, pp.47-70, 2014.
DOI : 10.1146/annurev-genom-031714-125740

J. Slapeta, P. Garc-ia, and D. Moreira, Global Dispersal and Ancient Cryptic Species in the Smallest Marine Eukaryotes, Molecular Biology and Evolution, vol.23, issue.1, pp.23-29, 2006.
DOI : 10.1093/molbev/msj001

D. Smith, Mutation Rates in Plastid Genomes: They Are Lower than You Might Think, Genome Biology and Evolution, vol.7, issue.5, pp.1227-1234, 2015.
DOI : 10.1093/gbe/evv069

URL : http://doi.org/10.1093/gbe/evv069

N. Smith, M. Webster, and H. Ellegren, Deterministic Mutation Rate Variation in the Human Genome, Genome Research, vol.12, issue.9, pp.1350-1356, 2002.
DOI : 10.1101/gr.220502

J. Stamatoyannopoulos, I. Adzhubei, R. Thurman, G. Kryukov, S. Mirkin et al., Human mutation rate associated with DNA replication timing, Nature Genetics, vol.41, issue.4, pp.393-395, 2009.
DOI : 10.1371/journal.pbio.0020029

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2914101

L. Sterck, K. Billiau, T. Abeel, P. Rouzé, and Y. Van-de-peer, ORCAE: online resource for community annotation of eukaryotes, Nature Methods, vol.9, issue.11, p.1041, 2012.
DOI : 10.1186/gb-2006-7-7-r58

L. Subirana, B. Péquin, S. Michely, M. Escande, J. Meilland et al., Morphology, Genome Plasticity, and Phylogeny in the Genus Ostreococcus Reveal a Cryptic Species, O. mediterraneus sp. nov. (Mamiellales, Mamiellophyceae), Protist, vol.164, issue.5, pp.643-659, 2013.
DOI : 10.1016/j.protis.2013.06.002

URL : https://hal.archives-ouvertes.fr/hal-01004323

N. Sueoka, ON THE GENETIC BASIS OF VARIATION AND HETEROGENEITY OF DNA BASE COMPOSITION, Proceedings of the National Academy of Sciences, vol.48, issue.4, pp.582-592, 1962.
DOI : 10.1073/pnas.48.4.582

W. Sung, M. Ackerman, J. Gout, S. Miller, E. Williams et al., Asymmetric Context-Dependent Mutation Patterns Revealed through Mutation???Accumulation Experiments, Molecular Biology and Evolution, vol.32, issue.7, pp.1672-1683, 2015.
DOI : 10.1093/molbev/msv055

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476155

W. Sung, M. Ackerman, S. Miller, T. Doak, and M. Lynch, Drift-barrier hypothesis and mutation-rate evolution, Proceedings of the National Academy of Sciences, vol.430, issue.7000, pp.18488-18492
DOI : 10.1038/nature02697

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494944

W. Sung, A. Tucker, T. Doak, E. Choi, W. Thomas et al., Extraordinary genome stability in the ciliate Paramecium tetraurelia, Proceedings of the National Academy of Sciences, vol.255, issue.9, pp.19339-19344, 2012.
DOI : 10.1016/S0074-7696(06)55002-8

D. Tian, Q. Wang, P. Zhang, H. Araki, S. Yang et al., Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes, Nature, vol.38, issue.7209, pp.105-108, 2008.
DOI : 10.1038/nature07175

A. Uchimura, M. Higuchi, Y. Minakuchi, M. Ohno, A. Toyoda et al., Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice, Genome Research, vol.25, issue.8, pp.1125-1134, 2015.
DOI : 10.1101/gr.186148.114

K. Vandepoele, V. Bel, M. Richard, G. Van-landeghem, S. Verhelst et al., pico-PLAZA, a genome database of microbial photosynthetic eukaryotes, Environmental Microbiology, vol.324, issue.8, pp.2147-2153
DOI : 10.1126/science.1167222

T. Vannier, J. Leconte, Y. Seeleuthner, S. Mondy, E. Pelletier et al., Survey of the green picoalga Bathycoccus genomes in the global ocean, Scientific Reports, vol.19, issue.1, p.37900, 2016.
DOI : 10.1101/gr.092759.109

URL : https://hal.archives-ouvertes.fr/hal-01410203

B. Winnepenninckx, T. Backeljau, D. Wachter, and R. , Extraction of high molecular weight DNA from molluscs, Trends Genet, vol.9, p.407, 1993.

D. Wloch, K. Szafraniec, R. Borts, and R. Korona, Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae, Genetics, vol.159, pp.441-452, 2001.

K. Wolfe, W. Li, and P. Sharp, Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs., Proceedings of the National Academy of Sciences, vol.84, issue.24, pp.9054-9058, 1987.
DOI : 10.1073/pnas.84.24.9054

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC299690/pdf

A. Worden, J. Lee, T. Mock, P. Rouzé, M. Simmons et al., Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas, Science, vol.178, issue.4, pp.268-272, 2009.
DOI : 10.1534/genetics.108.087205

URL : https://hal.archives-ouvertes.fr/hal-00693449

Y. Zhu, M. Siegal, D. Hall, and D. Petrov, Precise estimates of mutation rate and spectrum in yeast, Proceedings of the National Academy of Sciences, vol.20, issue.9, pp.2310-2318, 2014.
DOI : 10.1101/gr.107524.110