S. Kudriavzevii, I. S. Liti, and G. , Population genomics of domestic and wild yeasts, Nature, vol.458, pp.337-341, 2009.

J. Cao, Whole-genome sequencing of multiple Arabidopsis thaliana populations, Nature Genetics, vol.155, issue.10, pp.956-963, 2011.
DOI : 10.1016/j.ajhg.2009.01.005

T. F. Mackay, The Drosophila melanogaster Genetic Reference Panel, Nature, vol.18, issue.7384, pp.173-178, 2012.
DOI : 10.1007/s00335-007-9040-6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683990

W. Huang, Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines, Genome Research, vol.24, issue.7, pp.1193-1208, 2014.
DOI : 10.1101/gr.171546.113

A. Bergström, A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes, Molecular Biology and Evolution, vol.31, issue.4, pp.872-888, 2014.
DOI : 10.1093/molbev/msu037

P. K. Strope, resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen, Genome Research, vol.25, issue.5, pp.762-774, 2015.
DOI : 10.1101/gr.185538.114

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417123

B. Gallone, Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts, Cell, vol.166, issue.6, pp.1397-1410, 2016.
DOI : 10.1016/j.cell.2016.08.020

URL : http://doi.org/10.1016/j.cell.2016.08.020

L. Feuk, A. R. Carson, and S. W. Scherer, Structural variation in the human genome, Nature Reviews Genetics, vol.37, issue.2, pp.85-97, 2006.
DOI : 10.1002/ajmg.a.30621

L. H. Rieseberg, Chromosomal rearrangements and speciation, Trends in Ecology & Evolution, vol.16, issue.7, pp.351-358, 2001.
DOI : 10.1016/S0169-5347(01)02187-5

J. Weischenfeldt, O. Symmons, F. Spitz, and J. Korbel, Phenotypic impact of genomic structural variation: insights from and for human disease, Nature Reviews Genetics, vol.410, issue.2, pp.125-138, 2013.
DOI : 10.1038/35065105

S. Goodwin, J. D. Mcpherson, and W. Mccombie, Coming of age: ten years of next-generation sequencing technologies, Nature Reviews Genetics, vol.4, issue.6, pp.333-351, 2016.
DOI : 10.1111/j.1755-0998.2011.03024.x

M. J. Chaisson, Resolving the complexity of the human genome using single-molecule sequencing, Nature, vol.21, issue.7536, pp.608-611, 2015.
DOI : 10.1093/bioinformatics/bti310

D. Gordon, Long-read sequence assembly of the gorilla genome, Science, vol.437, issue.7055, p.344, 2016.
DOI : 10.1038/nature04072

F. E. Pryde, H. C. Gorham, and E. J. Louis, Chromosome ends: all the same under their caps, Current Opinion in Genetics & Development, vol.7, issue.6, pp.822-828, 1997.
DOI : 10.1016/S0959-437X(97)80046-9

H. C. Mefford and B. J. Trask, THE COMPLEX STRUCTURE AND DYNAMIC EVOLUTION OF HUMAN SUBTELOMERES, Nature Reviews Genetics, vol.2, issue.2, pp.91-102, 2002.
DOI : 10.1101/gr.188901

E. E. Eichler and D. Sankoff, Structural Dynamics of Eukaryotic Chromosome Evolution, Science, vol.301, issue.5634, pp.793-797, 2003.
DOI : 10.1126/science.1086132

B. Dujon, Yeast evolutionary genomics, Nature Reviews Genetics, vol.104, issue.7, pp.512-524, 2010.
DOI : 10.1038/nrg2689

A. Goffeau, Life with 6000 Genes, Science, vol.274, issue.5287, pp.546-567, 1996.
DOI : 10.1126/science.274.5287.546

J. Warringer, Trait Variation in Yeast Is Defined by Population History, PLoS Genetics, vol.26, issue.6, p.1002111, 2011.
DOI : 10.1371/journal.pgen.1002111.s026

URL : http://doi.org/10.1371/journal.pgen.1002111

S. J. Wheelan, L. Z. Scheifele, F. Martínez-murillo, R. A. Irizarry, and J. D. Boeke, Transposon insertion site profiling chip (TIP-chip), Proc. Natl. Acad. Sci. USA 103, pp.17632-17637, 2006.
DOI : 10.1093/nar/gni105

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693798

Y. Shibata, A. Malhotra, S. Bekiranov, and A. Dutta, Yeast genome analysis identifies chromosomal translocation, gene conversion events and several sites of Ty element insertion, Nucleic Acids Research, vol.37, issue.19, pp.6454-6465, 2009.
DOI : 10.1093/nar/gkp650

M. L. Hoang, Competitive Repair by Naturally Dispersed Repetitive DNA during Non-Allelic Homologous Recombination, PLoS Genetics, vol.12, issue.12, p.1001228, 2010.
DOI : 10.1371/journal.pgen.1001228.s015

URL : http://doi.org/10.1371/journal.pgen.1001228

G. Liti, A. Peruffo, S. A. James, I. N. Roberts, and E. J. Louis, Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in theSaccharomyces sensu stricto complex, Yeast, vol.92, issue.3, pp.177-192, 2005.
DOI : 10.1128/MCB.8.5.2257

H. Marie-nelly, High-quality genome (re)assembly using chromosomal contact data, Nature Communications, vol.5, p.5695, 2014.
DOI : 10.1080/01621459.2000.10473908

URL : https://hal.archives-ouvertes.fr/hal-01138788

F. Tajima, Simple methods for testing the molecular evolutionary clock hypothesis, Genetics, vol.135, pp.599-607, 1993.

E. A. Winzeler, Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis, Science, vol.285, issue.5429, pp.901-906, 1999.
DOI : 10.1126/science.285.5429.901

E. P. Rocha, DNA repeats lead to the accelerated loss of gene order in bacteria, Trends in Genetics, vol.19, issue.11, pp.600-603, 2003.
DOI : 10.1016/j.tig.2003.09.011

E. P. Rocha, Inference and Analysis of the Relative Stability of Bacterial Chromosomes, Molecular Biology and Evolution, vol.23, issue.3, pp.513-522, 2006.
DOI : 10.1093/molbev/msj052

G. Fischer, E. P. Rocha, F. Brunet, M. Vergassola, and B. Dujon, Highly variable rates of genome rearrangements between Hemiascomycetous yeast lineages, PLoS Genetics, vol.preprint, issue.2006, p.32, 2006.
DOI : 10.1371/journal.pgen.0020032.eor

P. J. Stephens, Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development, Cell, vol.144, issue.1, pp.27-40, 2011.
DOI : 10.1016/j.cell.2010.11.055

C. Zhang, M. L. Leibowitz, and D. Pellman, Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements, Genes & Development, vol.27, issue.23, pp.2513-2530, 2013.
DOI : 10.1101/gad.229559.113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861665

G. Liti, D. B. Barton, and E. J. Louis, Sequence Diversity, Reproductive Isolation and Species Concepts in Saccharomyces, Genetics, vol.174, issue.2, pp.839-850, 2006.
DOI : 10.1534/genetics.106.062166

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1602076

F. A. Cubillos, Assessing the complex architecture of polygenic traits in diverged yeast populations, Molecular Ecology, vol.272, issue.7, pp.1401-1413, 2011.
DOI : 10.1074/jbc.272.48.30061

G. Fischer, S. A. James, I. N. Roberts, S. G. Oliver, and E. J. Louis, Chromosomal evolution in Saccharomyces, Nature, vol.405, pp.451-454, 2000.

M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E. S. Lander, Sequencing and comparison of yeast species to identify genes and regulatory elements, Nature, vol.113, issue.6937, pp.241-254, 2003.
DOI : 10.1128/MCB.20.15.5766-5776.2000

N. Vakirlis, Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus, Genome Research, vol.26, issue.7, pp.918-932, 2016.
DOI : 10.1101/gr.204420.116

URL : https://hal.archives-ouvertes.fr/hal-01331620

S. Marsit, Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts, Molecular Biology and Evolution, vol.32, issue.7, pp.1695-1707, 2015.
DOI : 10.1093/molbev/msv057

E. V. Linardopoulou, Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication, Nature, vol.49, issue.7055, pp.94-100, 2005.
DOI : 10.1093/nar/gkg623

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1368961

C. Fairhead and B. Dujon, subtelomeres: duplications and gene content, FEMS Yeast Research, vol.6, issue.3, pp.428-441, 2006.
DOI : 10.1111/j.1567-1364.2006.00033.x

E. J. Louis, The chromosome ends ofSaccharomyces cerevisiae, Yeast, vol.92, issue.16, pp.1553-1573, 1995.
DOI : 10.1128/MCB.6.3.925

G. Liti, Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast, PLoS Genetics, vol.19, issue.9, p.1000659, 2009.
DOI : 10.1371/journal.pgen.1000659.s010

URL : http://doi.org/10.1371/journal.pgen.1000659

M. E. Marvin, The Association of yKu With Subtelomeric Core X Sequences Prevents Recombination Involving Telomeric Sequences, Genetics, vol.183, issue.2, pp.453-467, 2009.
DOI : 10.1534/genetics.109.106682

M. E. Marvin, C. D. Griffin, D. E. Eyre, D. B. Barton, and E. J. Louis, In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway, Genetics, vol.183, issue.2, pp.441-451, 2009.
DOI : 10.1534/genetics.109.106674

B. Wu and W. Hao, A Dynamic Mobile DNA Family in the Yeast Mitochondrial Genome, G3: Genes|Genomes|Genetics, vol.5, issue.6, pp.1273-1282, 2015.
DOI : 10.1534/g3.115.017822

B. Wu, A. Buljic, and W. Hao, Extensive Horizontal Transfer and Homologous Recombination Generate Highly Chimeric Mitochondrial Genomes in Yeast, Molecular Biology and Evolution, vol.32, issue.10, pp.2559-2570, 2015.
DOI : 10.1093/molbev/msv127

F. R. Blattner, The Complete Genome Sequence of Escherichia coli K-12, Science, vol.277, issue.5331, pp.1453-1462, 1997.
DOI : 10.1126/science.277.5331.1453

S. T. Cole, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.25, issue.6685, pp.537-544, 1998.
DOI : 10.1093/nar/25.5.0955

Y. Zhao, Tandem Arrays in Yeast Indicate That These Arrays Are Generated by Unequal Nonhomologous Recombination, G3: Genes|Genomes|Genetics, vol.4, issue.11, pp.2259-2269, 2014.
DOI : 10.1534/g3.114.012922

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232551

J. Hallin, Powerful decomposition of complex traits in a diploid model, Nature Communications, vol.40, p.13311, 2016.
DOI : 10.1038/ncomms13311

J. A. Anderson, Y. S. Song, and C. H. Langley, Molecular Population Genetics of Drosophila Subtelomeric DNA, Genetics, vol.178, issue.1, pp.477-487, 2008.
DOI : 10.1534/genetics.107.083196

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206096

H. Kuo, K. M. Olsen, and E. J. Richards, Natural Variation in a Subtelomeric Region of Arabidopsis: Implications for the Genomic Dynamics of a Chromosome End, Genetics, vol.173, issue.1, pp.401-417, 2006.
DOI : 10.1534/genetics.105.055202

C. A. Brown, A. W. Murray, and K. J. Verstrepen, Rapid Expansion and Functional Divergence of Subtelomeric Gene Families in Yeasts, Current Biology, vol.20, issue.10, pp.895-903, 2010.
DOI : 10.1016/j.cub.2010.04.027

E. J. Louis and J. Haber, Mitotic recombination among subtelomeric Y? repeats in Saccharomyces cerevisiae, Genetics, vol.124, pp.547-559, 1990.

R. M. Ames, Gene Duplication and Environmental Adaptation within Yeast Populations, Genome Biology and Evolution, vol.2, issue.0, pp.591-601, 2010.
DOI : 10.1093/gbe/evq043

URL : http://doi.org/10.1093/gbe/evq043

G. Liti, genome relationships and population structure., eLife, vol.105, pp.1-9, 2015.
DOI : 10.7554/eLife.05835.005

K. E. Hyma and J. C. Fay, in North American vineyards, Molecular Ecology, vol.7, issue.11, pp.2917-2930, 2013.
DOI : 10.1111/j.1567-1364.2010.00681.x

A. R. Borneman and I. S. Pretorius, Complex, Genetics, vol.199, issue.2, pp.281-291, 2015.
DOI : 10.1534/genetics.114.173633

P. D. Sniegowski, P. G. Dombrowski, and E. Fingerman, Saccharomyces cerevisiae and Saccharomycesparadoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics, FEMS Yeast Res, vol.1, pp.299-306, 2002.

J. Leducq, Speciation driven by hybridization and chromosomal plasticity in a wild yeast, Nature Microbiology, vol.164, issue.1, p.15003, 2016.
DOI : 10.1186/1471-2148-7-214

C. Chin, Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nature Methods, vol.472, issue.6, pp.563-569, 2013.
DOI : 10.1016/S0076-6879(10)72001-2

S. Kurtz, Versatile and open software for comparing large genomes, Genome Biology, vol.5, issue.2, p.12, 2004.
DOI : 10.1186/gb-2004-5-2-r12

M. Hunt, Circlator: automated circularization of genome assemblies using long sequencing reads, Genome Biology, vol.19, issue.9, p.294, 2015.
DOI : 10.1186/s13059-015-0849-0

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, issue.15, pp.2114-2120, 2014.
DOI : 10.1093/bioinformatics/btu170

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103590

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, pp.1754-1760, 2009.
DOI : 10.1093/bioinformatics/btp324

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705234

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2079, 2009.
DOI : 10.1093/bioinformatics/btp352

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002

A. Mckenna, The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data, Genome Research, vol.20, issue.9, pp.1297-1303, 2010.
DOI : 10.1101/gr.107524.110

B. J. Walker, Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement, PLoS ONE, vol.24, issue.11, p.112963, 2014.
DOI : 10.1371/journal.pone.0112963.s012

URL : http://doi.org/10.1371/journal.pone.0112963

E. Garrison and G. Marth, Haplotype-based variant detection from short-read sequencing. https://arxiv.org/abs, p.3907, 1207.

K. E. Kim, Long-read, whole-genome shotgun sequence data for five model organisms, Scientific Data, vol.408, p.140045, 2014.
DOI : 10.1038/sdata.2014.45

URL : http://doi.org/10.1038/sdata.2014.45

S. Goodwin, Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome, Genome Research, vol.25, issue.11, pp.1750-1756, 2015.
DOI : 10.1101/gr.191395.115

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, issue.6, pp.841-842, 2010.
DOI : 10.1093/bioinformatics/btq033

T. D. Otto, G. P. Dillon, W. S. Degrave, and M. Berriman, RATT: Rapid Annotation Transfer Tool, Nucleic Acids Research, vol.39, issue.9, p.57, 2011.
DOI : 10.1093/nar/gkq1268

URL : http://doi.org/10.1093/nar/gkq1268

E. Proux-wéra, D. Armisén, K. P. Byrne, and K. H. Wolfe, A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach, BMC Bioinformatics, vol.13, issue.1, p.237, 2012.
DOI : 10.1093/bioinformatics/bth352

C. Holt and M. Yandell, MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects, BMC Bioinformatics, vol.12, issue.1, p.491, 2011.
DOI : 10.1101/gr.403602

URL : http://doi.org/10.1186/1471-2105-12-491

T. M. Lowe and S. R. Eddy, tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence, Nucleic Acids Research, vol.25, issue.5, pp.955-964, 1997.
DOI : 10.1093/nar/25.5.0955

B. J. Haas, Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments, Genome Biology, vol.9, issue.1, p.7, 2008.
DOI : 10.1186/gb-2008-9-1-r7

URL : http://doi.org/10.1186/gb-2008-9-1-r7

K. A. Frazer, L. Pachter, A. Poliakov, E. M. Rubin, and I. Dubchak, VISTA: computational tools for comparative genomics, Nucleic Acids Research, vol.32, issue.Web Server, pp.273-279, 2004.
DOI : 10.1093/nar/gkh458

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC441596

M. Lechner, Proteinortho: Detection of (Co-)orthologs in large-scale analysis, BMC Bioinformatics, vol.12, issue.1, p.124, 2011.
DOI : 10.1073/pnas.0708855104

M. Lechner, Orthology Detection Combining Clustering and Synteny for Very Large Datasets, PLoS ONE, vol.32, issue.18, p.105015, 2014.
DOI : 10.1371/journal.pone.0105015.s001

URL : http://doi.org/10.1371/journal.pone.0105015

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC390337

M. Suyama, D. Torrents, and P. Bork, PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments, Nucleic Acids Research, vol.34, issue.Web Server, pp.609-612, 2006.
DOI : 10.1093/nar/gkl315

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, vol.30, issue.9, pp.1312-1313, 2014.
DOI : 10.1093/bioinformatics/btu033

S. Mirarab, ASTRAL: genome-scale coalescent-based species tree estimation, Bioinformatics, vol.30, issue.17, pp.541-548, 2014.
DOI : 10.1093/bioinformatics/btu462

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147915

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Molecular Biology and Evolution, vol.33, issue.7, pp.1870-1874, 2016.
DOI : 10.1093/molbev/msw054

T. H. To, M. Jung, S. Lycett, and O. Gascuel, Fast Dating Using Least-Squares Criteria and Algorithms, Systematic Biology, vol.65, issue.1, pp.82-97, 2016.
DOI : 10.1093/sysbio/syv068

URL : https://hal.archives-ouvertes.fr/lirmm-01348367

G. Drillon, A. Carbone, and G. Fischer, Combinatorics of chromosomal rearrangements based on synteny blocks and synteny packs, Journal of Logic and Computation, vol.23, issue.4, pp.815-838, 2013.
DOI : 10.1093/logcom/exr047

URL : https://hal.archives-ouvertes.fr/hal-01528430

G. Drillon, A. Carbone, and G. Fischer, SynChro: A Fast and Easy Tool to Reconstruct and Visualize Synteny Blocks along Eukaryotic Chromosomes, PLoS ONE, vol.334, issue.3, p.92621, 2014.
DOI : 10.1371/journal.pone.0092621.t002

URL : https://hal.archives-ouvertes.fr/hal-01358096

M. Nattestad and M. C. Schatz, Assemblytics: a web analytics tool for the detection of variants from an assembly, Bioinformatics, vol.32, issue.19, pp.3021-3023, 2016.
DOI : 10.1093/bioinformatics/btw369

J. Krumsiek, R. Arnold, and T. Rattei, Gepard: a rapid and sensitive tool for creating dotplots on genome scale, Bioinformatics, vol.23, issue.8, pp.1026-1028, 2007.
DOI : 10.1093/bioinformatics/btm039

A. Conesa, Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics, vol.21, issue.18, pp.3674-3676, 2005.
DOI : 10.1093/bioinformatics/bti610

S. Götz, High-throughput functional annotation and data mining with the Blast2GO suite, Nucleic Acids Research, vol.36, issue.10, pp.3420-3435, 2008.
DOI : 10.1093/nar/gkn176

R. Fisher, On the Interpretation of ? 2 from Contingency Tables, and the Calculation of P, Journal of the Royal Statistical Society, vol.85, issue.1, pp.87-94, 1922.
DOI : 10.2307/2340521

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. B, vol.57, pp.289-300, 1995.

Z. Yang, PAML 4: Phylogenetic Analysis by Maximum Likelihood, Molecular Biology and Evolution, vol.24, issue.8, pp.1586-1591, 2007.
DOI : 10.1093/molbev/msm088

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.322.1650

Z. Yang and R. Nielsen, Estimating Synonymous and Nonsynonymous Substitution Rates Under Realistic Evolutionary Models, Molecular Biology and Evolution, vol.17, issue.1, pp.32-43, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026236

W. J. Kent, BLAT---The BLAST-Like Alignment Tool, Genome Research, vol.12, issue.4, pp.656-664, 2002.
DOI : 10.1101/gr.229202

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC187518

R. Developement and C. Team, R: A Language and Environment for Statistical Computing ( R Foundation for Statistical Computing, 2015.

J. Warringer and A. Blomberg, Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles inSaccharomyces cerevisiae, Yeast, vol.15, issue.1, pp.53-67, 2003.
DOI : 10.1091/mbc.11.12.4241

L. Fernandez-ricaud, O. Kourtchenko, M. Zackrisson, J. Warringer, and A. Blomberg, PRECOG: a tool for automated extraction and visualization of fitness components in microbial growth phenomics, BMC Bioinformatics, vol.35, issue.SUPPL. 1, p.249, 2016.
DOI : 10.1186/s12859-016-1134-2

L. Parts, Revealing the genetic structure of a trait by sequencing a population under selection, Genome Research, vol.21, issue.7, pp.1131-1138, 2011.
DOI : 10.1101/gr.116731.110

C. J. Illingworth, L. Parts, A. Bergström, G. Liti, and V. Mustonen, Inferring Genome-Wide Recombination Landscapes from Advanced Intercross Lines: Application to Yeast Crosses, PLoS ONE, vol.17, issue.5, p.62266, 2013.
DOI : 10.1371/journal.pone.0062266.s001

URL : http://doi.org/10.1371/journal.pone.0062266

M. Zackrisson, Scan-o-matic: High-Resolution Microbial Phenomics at a Massive Scale, G3: Genes|Genomes|Genetics, vol.6, issue.9, pp.3003-3014, 2016.
DOI : 10.1534/g3.116.032342

K. W. Broman, H. Wu, S. Sen, and G. A. Churchill, R/qtl: QTL mapping in experimental crosses, Bioinformatics, vol.19, issue.7, pp.889-890, 2003.
DOI : 10.1093/bioinformatics/btg112