Polynomial approximation of non-Gaussian unitaries by counting one photon at a time

Abstract : In quantum computation with continous-variable systems, quantum advantage can only be achieved if some non-Gaussian resource is available. Yet, non-Gaussian unitary evolutions and measurements suited for computation are challenging to realize in the lab. We propose and analyze two methods to apply a polynomial approximation of any unitary operator diagonal in the amplitude quadrature representation, including non-Gaussian operators, to an unknown input state. Our protocols use as a primary non-Gaussian resource a single-photon counter. We use the fidelity of the transformation with the target one on Fock and coherent states to assess the quality of the approximate gate.
Type de document :
Article dans une revue
Physical Review A, American Physical Society, 2017, 95 (5), pp.052352. 〈10.1103/PhysRevA.95.052352〉
Liste complète des métadonnées

http://hal.upmc.fr/hal-01546054
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : vendredi 23 juin 2017 - 12:49:43
Dernière modification le : jeudi 11 janvier 2018 - 06:12:32

Lien texte intégral

Identifiants

Collections

Citation

Francesco Arzani, Nicolas Treps, Giulia Ferrini. Polynomial approximation of non-Gaussian unitaries by counting one photon at a time. Physical Review A, American Physical Society, 2017, 95 (5), pp.052352. 〈10.1103/PhysRevA.95.052352〉. 〈hal-01546054〉

Partager

Métriques

Consultations de la notice

54