T. Kikumori, T. Kobayashi, M. Sawaki, and T. Imai, Anti-cancer effect of hyperthermia on 405 breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes, Breast Cancer Res, p.406, 2009.

M. Johannsen, U. Gnevekow, L. Eckelt, A. Feussner, N. Waldöfner et al., Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique, International Journal of Hyperthermia, vol.59, issue.7, pp.637-647, 2005.
DOI : 10.1080/02656730150502323

N. Kawai, M. Futakuchi, T. Yoshida, A. Ito, S. Sato et al., Effect of Heat Therapy Using Magnetic Nanoparticles Conjugated With Cationic Liposomes 420 on Prostate Tumor in Bone. The Prostate, pp.784-792, 2008.

A. Jordan, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide 423, 2011.

R. Hergt, . S. Dutz, R. Müller, and M. Zeisberger, Magnetic hyperthermia: nanoparticle 429 magnetism and material development for cancer therapy, J. Phys.: Condens. Matter, vol.430, pp.2919-2934, 2006.

R. Hergt and S. Dutz, Magnetic particle hyperthermia???biophysical limitations of a visionary tumour therapy, Journal of Magnetism and Magnetic Materials, vol.311, issue.1, pp.187-192, 2007.
DOI : 10.1016/j.jmmm.2006.10.1156

R. Hergt, S. Dutz, M. D. Röder, C. Cornefo, and C. Grüttner, Effects of size distribution on hysteresis losses of magnetic 433 nanoparticles for hyperthermia, J. Phys.: Condens. Matter, vol.385214, p.435, 2008.

R. Denardo, S. J. Daum, W. Foreman, A. R. Goldstein, and R. C. , Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized 436 with wide ranging and high amplitude alternative magnetic fields Application of High Amplitude Alternating Magnetic Fields for Heat Induction, J. Appl. Phys, vol.109, p.439, 2005.

E. Alphandéry, S. Faure, and I. Chebbi, Treatment of cancer or tumor induced by the release 448 of heat generated by various chains of magnetosomes extracted from magnetotactic bacteria and 449 submitted to an alternative magnetic field, p.17, 2011.

T. Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival: Application to 457, 1938.

L. Han, S. Y. Li, Y. Yang, F. M. Zhao, J. Huang et al., Research on the Structure and Performance of Bacterial Magnetic Nanoparticles, Stenotrophomas sp. to the removal of Au(III) from contaminated wastewater with a 467 magnetic separator, pp.433-448, 2008.
DOI : 10.1016/S0378-5173(02)00623-3

A. Scheffel, M. Gruska, D. Faivre, A. Linaroudis, J. Plitzko et al., An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria, Nature, vol.63, issue.7080, pp.110-114, 2006.
DOI : 10.1007/s00253-002-1219-x

P. Morales, M. Miranda, and R. , The influence of surface functionalization on the enhanced 480 internalization of magnetic nanoparticles in cancer cells, Nanotechnology, vol.20, pp.115103-481, 2009.

N. Gestates-by-magnetotactic-bacteria-sunderland, C. J. Steiert, M. Talmadge, J. E. Derfus, A. M. Barry et al., Targeted 484 nanoparticles for detecting and treating cancer, Nano. Res. Drug Dev. Res, vol.2, issue.485, pp.261-278, 2006.

C. Wilhelm, C. Billotey, J. Roger, J. N. Pons, J. C. Bacri et al., Intracellular 486 uptake of anionic superparamagnetic nanoparticles as a function of their surface coating, p.487, 2003.