N. R. Casewell, W. Wuster, F. J. Vonk, R. A. Harrison, and B. G. Fry, Complex cocktails: the evolutionary novelty of venoms, Trends in Ecology & Evolution, vol.28, issue.4, pp.219-229, 2013.
DOI : 10.1016/j.tree.2012.10.020

B. G. Fry, The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms, Annual Review of Genomics and Human Genetics, vol.10, issue.1, pp.483-511, 2009.
DOI : 10.1146/annurev.genom.9.081307.164356

G. F. King, Venoms to Drugs -Venom as a source for the development of human therapeutics, pp.1-306, 2015.

G. King, Venoms as a platform for human drugs: translating toxins into therapeutics, Expert Opinion on Biological Therapy, vol.123, issue.11, pp.1469-1484, 2011.
DOI : 10.1161/STROKEAHA.109.565119

R. J. Mccleary and R. M. Kini, Non-enzymatic proteins from snake venoms: A gold mine of pharmacological tools and drug leads, Toxicon, vol.62, pp.56-74, 2013.
DOI : 10.1016/j.toxicon.2012.09.008

A. Maïga, G protein-coupled receptors, an unexploited animal toxin targets: Exploration of green mamba venom for novel drug candidates active against adrenoceptors, Toxicon, vol.59, issue.4, pp.487-496, 2012.
DOI : 10.1016/j.toxicon.2011.03.009

S. Dutertre, Reveals an Antagonist Switch in Vasopressin-like Peptides, Journal of Biological Chemistry, vol.8, issue.11, pp.7100-7108, 2008.
DOI : 10.3317/jraas.2006.041

A. G. Craig, -Glycosylated Invertebrate Neurotensin, Journal of Biological Chemistry, vol.260, issue.20, pp.13752-13759, 1999.
DOI : 10.1074/jbc.273.25.15667

URL : https://hal.archives-ouvertes.fr/hal-00671885

I. A. Sharpe, Two new classes of conopeptides inhibit the ?1-adrenoceptor and noradrenaline transporter, Nature Neuroscience, vol.33, issue.9, pp.902-907, 2001.
DOI : 10.1021/bi00198a018

C. Petrel, Identification, structural and pharmacological characterization of ?-CnVA, a conopeptide that selectively interacts with somatostatin sst3 receptor, Biochemical Pharmacology, vol.85, issue.11, pp.1663-1671, 2013.
DOI : 10.1016/j.bcp.2013.03.019

T. C. Sudhof, ??-Latrotoxin and Its Receptors: Neurexins and CIRL/Latrophilins, Annual Review of Neuroscience, vol.24, issue.1, pp.933-962, 2001.
DOI : 10.1146/annurev.neuro.24.1.933

B. L. Furman, The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent, Toxicon, vol.59, issue.4, pp.464-471, 2012.
DOI : 10.1016/j.toxicon.2010.12.016

N. Rajagopalan, ?-Cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity, The FASEB Journal, vol.21, issue.13, pp.3685-3695, 2007.
DOI : 10.1096/fj.07-8658com

D. Servent, Muscarinic toxins, Toxicon, vol.58, issue.6-7, pp.455-463, 2011.
DOI : 10.1016/j.toxicon.2011.08.004

D. Servent and C. Fruchart-gaillard, Muscarinic toxins: tools for the study of the pharmacological and functional properties of muscarinic receptors, Journal of Neurochemistry, vol.1085, issue.5, pp.1193-1202, 2009.
DOI : 10.1111/j.1476-5381.1996.tb15400.x

L. Quinton, Isolation and pharmacological characterization of AdTx1, a natural peptide displaying specific insurmountable antagonism of the ?1A-adrenoceptor, British Journal of Pharmacology, vol.281, issue.2, pp.316-325, 2010.
DOI : 10.1074/jbc.M513035200

URL : https://hal.archives-ouvertes.fr/hal-00426559

C. Rouget, Identification of a novel snake peptide toxin displaying high affinity and antagonist behaviour for the ?2-adrenoceptors, British Journal of Pharmacology, vol.281, issue.1, pp.1361-1374, 2010.
DOI : 10.1111/j.2042-7158.1986.tb03088.x

URL : https://hal.archives-ouvertes.fr/hal-00528529

K. Koivula, S. Rondinelli, and J. Nasman, The three-finger toxin MT?? is a selective ??2B-adrenoceptor antagonist, Toxicon, vol.56, issue.3, pp.440-447, 2010.
DOI : 10.1016/j.toxicon.2010.05.001

G. Blanchet, Polypharmacology profiles and phylogenetic analysis of three-finger toxins from mamba venom: Case of aminergic toxins, Biochimie, vol.103, pp.109-117, 2014.
DOI : 10.1016/j.biochi.2014.04.009

P. Kessler, P. Marchot, M. Silva, and D. Servent, The three-finger toxin fold: a multifunctional structural scaffold able to modulate cholinergic functions, Journal of Neurochemistry, vol.21, p.13975, 2017.
DOI : 10.1038/nsmb.2900

M. Naimuddin, Directed evolution of a three-finger neurotoxin by using cDNA display yields antagonists as well as agonists of interleukin-6 receptor signaling, Molecular Brain, vol.4, issue.1, pp.2-16, 2011.
DOI : 10.1186/1756-6606-4-2

W. Cai, Directed evolution of three-finger toxin to produce serine protease inhibitors, Journal of Receptors and Signal Transduction, vol.239, issue.1, pp.154-161, 2014.
DOI : 10.1006/jmbi.1994.1357

C. Fruchart-gaillard, Engineering of Three-Finger Fold Toxins Creates Ligands with Original Pharmacological Profiles for Muscarinic and Adrenergic Receptors, PLoS ONE, vol.33, issue.6, p.39166, 2012.
DOI : 10.1371/journal.pone.0039166.s004

M. J. Harms and J. W. Thornton, Analyzing protein structure and function using ancestral gene reconstruction, Current Opinion in Structural Biology, vol.20, issue.3, pp.360-366, 2010.
DOI : 10.1016/j.sbi.2010.03.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2916957

A. Ingles-prieto, Conservation of Protein Structure over Four Billion Years, Structure, vol.21, issue.9, pp.1690-1697, 2013.
DOI : 10.1016/j.str.2013.06.020

D. Gonzalez, Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein, FEBS Open Bio, vol.425, issue.1, pp.121-127, 2014.
DOI : 10.1038/nature01977

M. J. Harms and J. W. Thornton, Evolutionary biochemistry: revealing the historical and physical causes of protein properties, Nature Reviews Genetics, vol.33, issue.8, pp.559-571, 2013.
DOI : 10.1074/jbc.M110.215970

S. G. Peisajovich and D. S. Tawfik, Protein engineers turned evolutionists, Nature Methods, vol.103, issue.12, pp.991-994, 2007.
DOI : 10.1099/00221287-57-2-273

S. Lutz, Beyond directed evolution?semi-rational protein engineering and design, Current Opinion in Biotechnology, vol.21, issue.6, pp.734-743, 2010.
DOI : 10.1016/j.copbio.2010.08.011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2982887

M. F. Cole and E. A. Gaucher, Exploiting Models of Molecular Evolution to Efficiently Direct Protein Engineering, Journal of Molecular Evolution, vol.4, issue.2, pp.193-203, 2011.
DOI : 10.1038/nmeth1207-995

F. Chen, Reconstructed evolutionary adaptive paths give polymerases accepting reversible terminators for sequencing and SNP detection, Proc. Natl. Acad. Sci. USA, pp.1948-1953, 2010.
DOI : 10.1126/science.8211158

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804741

G. Mourier, S. Dutertre, C. Fruchart-gaillard, A. Ménez, and D. Servent, Chemical Synthesis of MT1 and MT7 Muscarinic Toxins: Critical Role of Arg-34 in Their Interaction with M1 Muscarinic Receptor, Molecular Pharmacology, vol.63, issue.1, pp.26-35, 2003.
DOI : 10.1124/mol.63.1.26

C. Fruchart-gaillard, Different Interactions between MT7 Toxin and the Human Muscarinic M1 Receptor in Its Free and N-Methylscopolamine-Occupied States, Molecular Pharmacology, vol.74, issue.6, pp.1554-1563, 2008.
DOI : 10.1124/mol.108.050773

A. Maïga, Crystallization of recombinant green mamba ?-Da1a toxin during a lyophilization procedure and its structure determination, Acta Crystallographica Section F Structural Biology and Crystallization Communications, vol.12, issue.6, pp.704-709, 2013.
DOI : 10.1107/S0909049505003316

A. Maïga, Orthosteric Binding of ??-Da1a, a Natural Peptide of Snake Venom Interacting Selectively with the ??1A-Adrenoceptor, PLoS ONE, vol.56, issue.7, p.68841, 2013.
DOI : 10.1371/journal.pone.0068841.s001

G. Blanchet, New ??-adrenergic property for synthetic MT?? and CM-3 three-finger fold toxins from black mamba, Toxicon, vol.75, pp.160-167, 2013.
DOI : 10.1016/j.toxicon.2013.04.017

D. A. Bonsor and E. J. Sundberg, Dissecting Protein?Protein Interactions Using Directed Evolution, Biochemistry, vol.50, issue.13, pp.2394-2402, 2011.
DOI : 10.1021/bi102019c

M. W. Bowler, MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules, Journal of Synchrotron Radiation, vol.5, issue.6, pp.1540-1547, 2015.
DOI : 10.1107/S1600577515016604/ie5144sup1.wmv

W. Kabsch, Xds Acta Crystallogr, pp.125-132, 2010.

A. J. Mccoy, crystallographic software, Journal of Applied Crystallography, vol.40, issue.4, pp.658-674, 2007.
DOI : 10.1107/S0021889807021206

G. N. Murshudov, 5 for the refinement of macromolecular crystal structures, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.4, pp.355-367, 2011.
DOI : 10.1107/S0907444900014736

P. D. Adams, : a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.64, issue.2, pp.213-221, 2010.
DOI : 10.1107/S0907444909052925

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2815670/pdf

Y. Cheng and W. H. Prusoff, Relationship between the inhibition constant (Ki) and the concentration of ihnibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction, Biochem. Pharmacol, vol.22, pp.3099-3108, 1973.

K. Tamura, MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods, Molecular Biology and Evolution, vol.28, issue.10, pp.2731-2739, 2011.
DOI : 10.1093/molbev/msr121

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203626

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview Version 2--a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, issue.9, pp.1189-1191, 2009.
DOI : 10.1093/bioinformatics/btp033

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2672624

J. Felsenstein, Evolutionary trees from DNA sequences: A maximum likelihood approach, Journal of Molecular Evolution, vol.24, issue.6, pp.368-376, 1981.
DOI : 10.1016/B978-0-12-307550-5.50005-8