S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow et al., The global distribution and burden of dengue, Nature, vol.62, issue.7446, pp.504-507, 2013.
DOI : 10.1016/S0065-308X(05)62004-0

Y. Zhang, P. Bi, and J. E. Hiller, Climate Change and the Transmission of Vector-Borne Diseases: A Review, Asia Pacific Journal of Public Health, vol.289, issue.1, pp.64-76, 2008.
DOI : 10.1001/jama.289.2.176-d

. Gibbons, The impact of the demographic transition on dengue in thailand: insights from a statistical analysis and mathematical modeling, PLoS Med, vol.6, issue.9, p.1000139, 2009.

F. R. Barreto, M. G. Teixeira, M. C. Costa, M. S. Carvalho, and M. L. Barreto, Spread pattern of the first dengue epidemic in the city of Salvador, Brazil, BMC Public Health, vol.47, issue.1, p.51, 2008.
DOI : 10.4269/ajtmh.1992.47.709

S. Hales, P. Weinstein, and A. Woodward, Dengue fever epidemics in the South Pacific: driven by El Nino Southern Oscillation?, The Lancet, vol.348, issue.9042, pp.1664-1665, 1996.
DOI : 10.1016/S0140-6736(05)65737-6

S. Hales, P. Weinstein, Y. Souares, and A. Woodward, El nino and the dynamics of vectorborne disease transmission, Environmental Health Perspectives, vol.107, issue.2, p.99, 1999.

B. Cazelles, M. Chavez, A. J. Mcmichael, and S. Hales, Nonstationary Influence of El Ni?o on the Synchronous Dengue Epidemics in Thailand, PLoS Medicine, vol.4, issue.4, p.106, 2005.
DOI : 10.1371/journal.pmed.0020106.sg004

M. G. Teixeira, Dengue fever: a call for local, national, and international action, Emerg Infect Dis, vol.12, pp.887-93, 2006.

D. J. Gubler, Cities spawn epidemic dengue viruses, Nature Medicine, vol.10, issue.2, pp.129-130, 2004.
DOI : 10.1038/nm0204-129

D. A. Cummings, R. A. Irizarry, N. E. Huang, T. P. Endy, A. Nisalak et al., Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand, Nature, vol.427, issue.6972, pp.344-347, 2004.
DOI : 10.1038/nature02225

W. G. Van-panhuis, M. Choisy, X. Xiong, N. S. Chok, P. Akarasewi et al., Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia, Proceedings of the National Academy of Sciences, vol.113, issue.4, pp.13-069, 2015.
DOI : 10.1023/A:1009601932481

W. Schmidt, M. Suzuki, V. D. Thiem, R. G. White, A. Tsuzuki et al., Population Density, Water Supply, and the Risk of Dengue Fever in Vietnam: Cohort Study and Spatial Analysis, PLoS Medicine, vol.15, issue.8, p.1001082, 2011.
DOI : 10.1371/journal.pmed.1001082.t002

W. Hu, P. Q. Thai, L. N. Hoat, P. Wright, and P. Martens, Hot spot detection and spatio-temporal dispersion of dengue fever in hanoi, vietnam, Global health action, vol.6, 2013.

T. T. Do, P. Martens, N. H. Luu, P. Wright, and M. Choisy, Climatic-driven seasonality of emerging dengue fever in Hanoi, Vietnam, BMC Public Health, vol.276, issue.1667, p.1078, 2014.
DOI : 10.1098/rspb.2009.0331

T. , L. Viet, M. Choisy, J. E. Bryant, D. V. Trong et al., A dengue outbreak on a floating village at cat ba island in vietnam, BMC public health, vol.15, issue.1, p.1, 2015.

K. T. Thai, B. Cazelles, N. Van-nguyen, L. T. Vo, M. F. Boni et al., Dengue Dynamics in Binh Thuan Province, Southern Vietnam: Periodicity, Synchronicity and Climate Variability, PLoS Neglected Tropical Diseases, vol.30, issue.7, p.747, 2010.
DOI : 10.1371/journal.pntd.0000747.s002

URL : http://doi.org/10.1371/journal.pntd.0000747

W. G. , M. Choisy, X. Xiong, N. S. Chok, P. Akarasewi et al., Region-wide synchrony of dengue incidence in southeast asia during a historic el nio event, Nature, 2014.

C. W. Granger, Investigating Causal Relations by Econometric Models and Cross-Spectral Methods, Econometrica: Journal of the Econometric Society, pp.424-438, 1969.
DOI : 10.1017/CBO9780511753978.002

J. Geweke, Measurement of Linear Dependence and Feedback between Multiple Time Series, Journal of the American Statistical Association, vol.54, issue.378, pp.304-313, 1982.
DOI : 10.1090/S0002-9947-1943-0012401-3

H. Yang, M. Macoris, K. Galvani, M. Andrighetti, and D. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiology and Infection, vol.27, issue.08, pp.1188-1202, 2009.
DOI : 10.1093/jmedent/27.5.892

L. Lambrechts, K. P. Paaijmans, T. Fansiri, L. B. Carrington, L. D. Kramer et al., Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proceedings of the National Academy of Sciences, vol.273, issue.1593, pp.7460-7465, 2011.
DOI : 10.1098/rspb.2006.3483

URL : https://hal.archives-ouvertes.fr/pasteur-00587940

T. W. Scott, P. H. Amerasinghe, A. C. Morrison, L. H. Lorenz, G. G. Clark et al., (Diptera: Culicidae) in Thailand and Puerto Rico: Blood Feeding Frequency, Journal of Medical Entomology, vol.37, issue.1, pp.89-101, 2000.
DOI : 10.1603/0022-2585-37.1.89

D. M. Watts, D. S. Burke, B. A. Harrison, R. E. Whitmire, and A. Nisalak, Effect of Temperature on the Vector Efficiency of Aedes aegypti for Dengue 2 Virus, The American Journal of Tropical Medicine and Hygiene, vol.36, issue.1, 1986.
DOI : 10.4269/ajtmh.1987.36.143

E. Massad, F. A. Coutinho, L. F. Lopez, D. R. Da, and . Silva, Modeling the impact of global warming on vector-borne infections, Physics of Life Reviews, vol.8, issue.2, pp.169-199, 2011.
DOI : 10.1016/j.plrev.2011.01.001

. Fig, 5: Same as figure 3, showing the actual values of the p-values

. Fig, 6: Same as figure 3, showing the actual values of the p-values