L. Lim, P. Mitchell, J. Seddon, F. Holz, and T. Wong, Age-related macular degeneration, The Lancet, vol.379, issue.9827, pp.1728-1738, 2012.
DOI : 10.1016/S0140-6736(12)60282-7

D. Dawson, O. Volpert, P. Gillis, S. Crawford, H. Xu et al., Pigment Epithelium-Derived Factor: A Potent Inhibitor of Angiogenesis, Science, vol.285, issue.5425, pp.245-248, 1999.
DOI : 10.1126/science.285.5425.245

G. King and K. Suzuma, Pigment-Epithelium?Derived Factor ? A Key Coordinator of Retinal Neuronal and Vascular Functions, New England Journal of Medicine, vol.342, issue.5, pp.349-351, 2000.
DOI : 10.1056/NEJM200002033420511

A. Adamis, D. Shima, K. Yeo, T. Yeo, L. Brown et al., Synthesis and Secretion of Vascular Permeability Factor/Vascular Endothelial Growth Factor by Human Retinal Pigment Epithelial Cells, Biochemical and Biophysical Research Communications, vol.193, issue.2, pp.631-638, 1993.
DOI : 10.1006/bbrc.1993.1671

P. Lopez, B. Sippy, H. Lambert, A. Thach, and D. Hinton, Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes, Invest Ophthalmol Vis Sci, vol.37, pp.855-868, 1996.

A. Witmer, G. Vrensen, C. Van-noorden, and R. Schlingemann, Vascular endothelial growth factors and angiogenesis in eye disease, Progress in Retinal and Eye Research, vol.22, issue.1, pp.1-29, 2003.
DOI : 10.1016/S1350-9462(02)00043-5

J. Tong and Y. Yao, Contribution of VEGF and PEDF to choroidal angiogenesis: A need for balanced expressions, Clinical Biochemistry, vol.39, issue.3, pp.267-276, 2006.
DOI : 10.1016/j.clinbiochem.2005.11.013

A. Praidou, S. Androudi, P. Brazitikos, G. Karakiulakis, E. Papakonstantinou et al., Angiogenic Growth Factors and their Inhibitors in Diabetic Retinopathy, Current Diabetes Reviews, vol.6, issue.5, pp.304-312, 2010.
DOI : 10.2174/157339910793360815

Z. Ablonczy and C. Crosson, VEGF modulation of retinal pigment epithelium resistance, Experimental Eye Research, vol.85, issue.6, pp.762-771, 2007.
DOI : 10.1016/j.exer.2007.08.010

F. Holz, F. Schutt, J. Kopitz, G. Eldred, F. Kruse et al., Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin, Invest Ophthalmol Vis Sci, vol.40, pp.737-743, 1999.

G. Malek, L. Johnson, B. Mace, P. Saloupis, D. Schmechel et al., Apolipoprotein E allele-dependent pathogenesis: A model for age-related retinal degeneration, Proceedings of the National Academy of Sciences, vol.131, issue.1-2, pp.11900-11905, 2005.
DOI : 10.1016/S0165-5728(02)00272-2

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187976/pdf

A. Bird, Therapeutic targets in age-related macular disease, Journal of Clinical Investigation, vol.120, issue.9, pp.3033-3041, 2010.
DOI : 10.1172/JCI42437

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929720

A. Wenzel, C. Grimm, M. Samardzija, and C. Reme, Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration, Progress in Retinal and Eye Research, vol.24, issue.2, pp.275-306, 2005.
DOI : 10.1016/j.preteyeres.2004.08.002

S. Imai, M. Shimazawa, T. Nakanishi, K. Tsuruma, and H. Hara, Calpain Inhibitor Protects Cells against Light-Induced Retinal Degeneration, Journal of Pharmacology and Experimental Therapeutics, vol.335, issue.3, pp.645-652, 2010.
DOI : 10.1124/jpet.110.171298

O. Perche, M. Doly, and I. Ranchon-cole, Caspase-Dependent Apoptosis in Light-Induced Retinal Degeneration, Investigative Opthalmology & Visual Science, vol.48, issue.6, pp.2753-2759, 2007.
DOI : 10.1167/iovs.06-1258

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.329.308

R. Bush, C. Reme, and A. Malnoe, Light damage in the rat retina: The effect of dietary deprivation of n-3 fatty acids on acute structural alterations, Experimental Eye Research, vol.53, issue.6, pp.741-752, 1991.
DOI : 10.1016/0014-4835(91)90109-R

C. Reme, The Dark Side of Light: Rhodopsin and the Silent Death of Vision The Proctor Lecture, Investigative Opthalmology & Visual Science, vol.46, issue.8, pp.2671-2682, 2005.
DOI : 10.1167/iovs.04-1095

M. Rozanowska, W. Korytowski, B. Rozanowski, C. Skumatz, M. Boulton et al., Photoreactivity of aged human RPE melanosomes: a comparison with lipofuscin, Invest Ophthalmol Vis Sci, vol.43, pp.2088-2096, 2002.

D. Vaughan, J. Nemke, S. Fliesler, R. Darrow, and D. Organisciak, Evidence for a Circadian Rhythm of Susceptibility to Retinal Light Damage?????, Photochemistry and Photobiology, vol.196, issue.5, pp.547-553, 2002.
DOI : 10.1139/y80-220

D. Organisciak and D. Vaughan, Retinal light damage: Mechanisms and protection, Progress in Retinal and Eye Research, vol.29, issue.2, pp.113-134, 2010.
DOI : 10.1016/j.preteyeres.2009.11.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831109

N. Bressler, B. Munoz, M. Maguire, S. Vitale, O. Schein et al., Five-Year Incidence and Disappearance of Drusen and Retinal Pigment Epithelial Abnormalities, Archives of Ophthalmology, vol.113, issue.3, pp.301-308, 1995.
DOI : 10.1001/archopht.1995.01100030055022

J. Zhou, Y. Jang, S. Kim, and J. Sparrow, Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium, Proceedings of the National Academy of Sciences, vol.40, issue.12, pp.16182-16187, 2006.
DOI : 10.1167/iovs.05-0820

C. Zhao, D. Yasumura, X. Li, M. Matthes, M. Lloyd et al., mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice, Journal of Clinical Investigation, vol.121, issue.1, pp.369-383, 2011.
DOI : 10.1172/JCI44303DS1

Y. Ban and L. Rizzolo, A culture model of development reveals multiple properties of RPE tight junctions, Mol Vis, vol.3, p.18, 1997.

N. Kanuga, H. Winton, L. Beauchene, A. Koman, A. Zerbib et al., Characterization of genetically modified human retinal pigment epithelial cells developed for in vitro and transplantation studies, Invest Ophthalmol Vis Sci, vol.43, pp.546-555, 2002.

C. Kaur, W. Foulds, and E. Ling, Blood?retinal barrier in hypoxic ischaemic conditions: Basic concepts, clinical features and management, Progress in Retinal and Eye Research, vol.27, issue.6, pp.622-647, 2008.
DOI : 10.1016/j.preteyeres.2008.09.003

K. Konari, N. Sawada, Y. Zhong, H. Isomura, T. Nakagawa et al., Development of the blood-retinal barrier in vitro: Formation of tight junctions as revealed by occludin and ZO-1 correlates with the barrier function of chick retinal pigment epithelial cells, Experimental Eye Research, vol.61, issue.1, pp.99-108, 1995.
DOI : 10.1016/S0014-4835(95)80063-8

J. Marrs, C. Andersson-fisone, M. Jeong, L. Cohen-gould, C. Zurzolo et al., Plasticity in epithelial cell phenotype: modulation by expression of different cadherin cell adhesion molecules, The Journal of Cell Biology, vol.129, issue.2, pp.507-519, 1995.
DOI : 10.1083/jcb.129.2.507

B. Eliceiri, R. Paul, P. Schwartzberg, J. Hood, J. Leng et al., Selective Requirement for Src Kinases during VEGF-Induced Angiogenesis and Vascular Permeability, Molecular Cell, vol.4, issue.6, pp.915-924, 1999.
DOI : 10.1016/S1097-2765(00)80221-X

URL : http://doi.org/10.1016/s1097-2765(00)80221-x

Z. Ablonczy, A. Prakasam, J. Fant, A. Fauq, C. Crosson et al., Pigment Epithelium-derived Factor Maintains Retinal Pigment Epithelium Function by Inhibiting Vascular Endothelial Growth Factor-R2 Signaling through ?-Secretase, Journal of Biological Chemistry, vol.9, issue.44, pp.30177-30186, 2009.
DOI : 10.1172/JCI24635

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781573

S. Byeon, S. Lee, S. Choi, H. Lee, J. Lee et al., Vascular Endothelial Growth Factor as an Autocrine Survival Factor for Retinal Pigment Epithelial Cells under Oxidative Stress via the VEGF-R2/PI3K/Akt, Investigative Opthalmology & Visual Science, vol.51, issue.2, pp.1190-1197, 2010.
DOI : 10.1167/iovs.09-4144

A. El-remessy, M. Bartoli, D. Platt, D. Fulton, and R. Caldwell, Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration, Journal of Cell Science, vol.118, issue.1, pp.243-252, 2005.
DOI : 10.1242/jcs.01612

B. Hassel, E. Iversen, and F. Fonnum, Neurotoxicity of albumin in vivo, Neuroscience Letters, vol.167, issue.1-2, pp.29-32, 1994.
DOI : 10.1016/0304-3940(94)91020-0

O. Tomkins, O. Friedman, S. Ivens, C. Reiffurth, S. Major et al., Blood?brain barrier disruption results in delayed functional and structural alterations in the rat neocortex, Neurobiology of Disease, vol.25, issue.2, pp.367-377, 2007.
DOI : 10.1016/j.nbd.2006.10.006

T. Afanasieva, M. Wittmer, A. Vitaliti, M. Ajmo, D. Neri et al., Single-chain antibody and its derivatives directed against vascular endothelial growth factor: application for antiangiogenic gene therapy, Gene Therapy, vol.10, issue.21, pp.1850-1859, 2003.
DOI : 10.1038/sj.gt.3302085

A. Vitaliti, M. Wittmer, R. Steiner, L. Wyder, D. Neri et al., Inhibition of tumor angiogenesis by a single-chain antibody directed against vascular endothelial growth factor, Cancer Res, vol.60, pp.4311-4314, 2000.

X. Yi, N. Ogata, M. Komada, C. Yamamoto, K. Takahashi et al., Vascular endothelial growth factor expression in choroidal neovascularization in rats, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.34, issue.5, pp.313-319, 1997.
DOI : 10.1177/33.10.2413102

M. Cachafeiro, A. Bemelmans, K. Canola, V. Pignat, S. Crippa et al., mice., Investigative Opthalmology & Visual Science, vol.51, issue.12, pp.6835-6842, 2010.
DOI : 10.1167/iovs.09-3870

URL : https://hal.archives-ouvertes.fr/hal-01548456

M. Kernt, A. Neubauer, R. Liegl, C. Hirneiss, C. Alge et al., Sorafenib prevents human retinal pigment epithelium cells from light-induced overexpression of VEGF, PDGF and PlGF, British Journal of Ophthalmology, vol.94, issue.11, pp.1533-1539, 2010.
DOI : 10.1136/bjo.2010.182162

URL : https://hal.archives-ouvertes.fr/hal-00587306

T. Ueta, T. Inoue, K. Yuda, T. Furukawa, Y. Yanagi et al., Intense Physiological Light Upregulates Vascular Endothelial Growth Factor and Enhances Choroidal Neovascularization via Peroxisome Proliferator-Activated Receptor ? Coactivator-1? in Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.6, pp.1366-1371, 2012.
DOI : 10.1161/ATVBAHA.112.248021

B. Horvath, L. Magid, P. Mukhopadhyay, S. Batkai, M. Rajesh et al., A new cannabinoid CB2 receptor agonist HU-910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury, British Journal of Pharmacology, vol.4, issue.1, pp.2462-2478, 2011.
DOI : 10.1007/s11481-009-9148-4

Q. Yuan, S. Hong, S. Han, L. Zeng, F. Liu et al., Preconditioning with Physiological Levels of Ethanol Protect Kidney against Ischemia/Reperfusion Injury by Modulating Oxidative Stress, PLoS ONE, vol.43, issue.10, p.25811, 2011.
DOI : 10.1371/journal.pone.0025811.g007

D. Cruz, P. Yasumura, D. Weir, J. Matthes, M. Abderrahim et al., Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat, Human Molecular Genetics, vol.9, issue.4, pp.645-651, 2000.
DOI : 10.1093/hmg/9.4.645

D. Vollrath, W. Feng, J. Duncan, D. Yasumura, D. Cruz et al., Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk, Proceedings of the National Academy of Sciences, vol.47, issue.6, pp.12584-12589, 2001.
DOI : 10.1016/0014-4835(88)90073-5

K. Kunchithapautham and B. Rohrer, Sublytic Membrane-Attack-Complex (MAC) Activation Alters Regulated Rather than Constitutive Vascular Endothelial Growth Factor (VEGF) Secretion in Retinal Pigment Epithelium Monolayers, Journal of Biological Chemistry, vol.284, issue.27, pp.23717-23724, 2011.
DOI : 10.1167/iovs.08-2222

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129152

F. Hafezi, A. Marti, C. Grimm, A. Wenzel, and C. Reme, Differential DNA binding activities of the transcription factors AP-1 and Oct-1 during light-induced apoptosis of photoreceptors, Vision Research, vol.39, issue.15, pp.2511-2518, 1999.
DOI : 10.1016/S0042-6989(98)00313-7

A. Wenzel, C. Grimm, A. Marti, N. Kueng-hitz, F. Hafezi et al., c-fos controls the "private pathway" of light-induced apoptosis of retinal photoreceptors, J Neurosci, vol.20, pp.81-88, 2000.

W. Hao, A. Wenzel, M. Obin, C. Chen, E. Brill et al., Evidence for two apoptotic pathways in light-induced retinal degeneration, Nature Genetics, vol.153, issue.2, pp.254-260, 2002.
DOI : 10.1016/S0042-6989(98)00313-7

M. Houssier, R. W. Lavalette, S. Keller, N. Guillonneau, X. Baragatti et al., CD36 Deficiency Leads to Choroidal Involution via COX2 Down-Regulation in Rodents, PLoS Medicine, vol.278, issue.2, p.39, 2008.
DOI : 10.1371/journal.pmed.0050039.g004

URL : https://hal.archives-ouvertes.fr/inserm-00258554

U. Luhmann, C. Lange, R. S. Munro, P. Cowing, J. Armer et al., Differential Modulation of Retinal Degeneration by Ccl2 and Cx3cr1 Chemokine Signalling, PLoS ONE, vol.152, issue.4, p.35551, 2012.
DOI : 10.1371/journal.pone.0035551.s002

D. Martin, M. Maguire, G. Ying, J. Grunwald, S. Fine et al., Ranibizumab and Bevacizumab for Treatment of Neovascular Age-related Macular Degeneration, Ophthalmology, vol.119, issue.7, pp.1897-1908, 2011.
DOI : 10.1016/j.ophtha.2012.03.053

G. Lang, Diabetic Macular Edema, Ophthalmologica, vol.227, issue.s1, pp.21-29, 2012.
DOI : 10.1159/000337156

A. Truong, T. Wong, and L. Khachigian, Emerging therapeutic approaches in the management of retinal angiogenesis and edema, Journal of Molecular Medicine, vol.26, issue.5, pp.343-361, 2011.
DOI : 10.1089/jop.2009.0131

C. Grimm, A. Wenzel, F. Hafezi, S. Yu, T. Redmond et al., Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced retinal degeneration, Nature Genetics, vol.98, issue.1, pp.63-66, 2000.
DOI : 10.1016/S0092-8674(00)80602-9

A. Bemelmans, C. Kostic, S. Crippa, W. Hauswirth, J. Lem et al., Lentiviral Gene Transfer of Rpe65 Rescues Survival and Function of Cones in a Mouse Model of Leber Congenital Amaurosis, PLoS Medicine, vol.11, issue.10, p.347, 2006.
DOI : 10.1371/journal.pmed.0030347.g006

R. Douglas, N. Alam, B. Silver, T. Mcgill, W. Tschetter et al., Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system, Visual Neuroscience, vol.37, issue.05, pp.677-684, 2005.
DOI : 10.1016/j.visres.2004.09.001