D. Arendt, A. Denes, G. Jékely, and K. Tessmar-raible, The evolution of nervous system centralization, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.94, issue.1-2, pp.1523-1528, 2008.
DOI : 10.1016/S0925-4773(00)00298-7

R. Tomer, A. Denes, K. Tessmar-raible, and D. Arendt, Profiling by Image Registration Reveals Common Origin of Annelid Mushroom Bodies and Vertebrate Pallium, Cell, vol.142, issue.5, pp.800-809, 2010.
DOI : 10.1016/j.cell.2010.07.043

N. Strausfeld and F. Hirth, Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia, Science, vol.139, issue.2, pp.157-161, 2013.
DOI : 10.1016/j.cell.2009.08.034

N. Strausfeld, Brain Homology: Dohrn of a New Era?, Brain, Behavior and Evolution, vol.76, issue.3-4, pp.165-167, 2010.
DOI : 10.1159/000322150

F. Hirth, L. Kammermeier, E. Frei, U. Walldorf, M. Noll et al., An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila, Development, vol.130, issue.11, pp.2365-2373, 2003.
DOI : 10.1242/dev.00438

S. Sen, H. Reichert, and K. Vijayraghavan, Conserved roles of ems/Emx and otd/Otx genes in olfactory and visual system development in Drosophila and mouse, Open Biology, vol.101, issue.17, p.120177, 2013.
DOI : 10.1073/pnas.0401670101

X. Bailly, H. Reichert, and V. Hartenstein, The urbilaterian brain revisited: novel insights into old questions from new flatworm clades, Development Genes and Evolution, vol.416, issue.4, pp.149-157, 2013.
DOI : 10.1002/(SICI)1096-9861(20000124)416:4<461::AID-CNE4>3.0.CO;2-A

URL : https://hal.archives-ouvertes.fr/hal-00817719

E. De-robertis, The molecular ancestry of segmentation mechanisms, Proceedings of the National Academy of Sciences, vol.314, issue.5805, pp.16411-16412, 2008.
DOI : 10.1126/science.1133141

A. Pani, E. Mullarkey, J. Aronowicz, S. Assimacopoulos, E. Grove et al., Ancient deuterostome origins of vertebrate brain signalling centres, Nature, vol.17, issue.7389, pp.289-294, 2012.
DOI : 10.1093/bioinformatics/17.8.754

J. Gerhart, C. Lowe, and M. Kirschner, Hemichordates and the origin of chordates, Current Opinion in Genetics & Development, vol.15, issue.4, pp.461-467, 2005.
DOI : 10.1016/j.gde.2005.06.004

G. Wagner, The Biological Homology Concept, Annual Review of Ecology and Systematics, vol.20, issue.1, pp.51-69, 1989.
DOI : 10.1146/annurev.es.20.110189.000411

J. Cracraft, Phylogeny and evo-devo: Characters, homology, and the historical analysis of the evolution of development, Zoology, vol.108, issue.4, pp.345-356, 2005.
DOI : 10.1016/j.zool.2005.09.003

S. Richter, Homologies in phylogenetic analyses ? concept and tests, Theory Biosci, vol.124, pp.105-120, 2005.

R. Jenner, Unburdening evo-devo: ancestral attractions, model organisms, and basal baloney, Development Genes and Evolution, vol.18, issue.7-8, pp.385-394, 2006.
DOI : 10.1017/CBO9780511623547

M. Ghiselin, The nomenclature of correspondence: a new look at 'homology' and 'analogy'. In Evolution, Brain and Behavior: Persistent Problems, 1976.

G. Wagner, The developmental genetics of homology, Nature Reviews Genetics, vol.22, issue.6, pp.473-479, 2007.
DOI : 10.1007/s00427-004-0407-3

W. Hodos, The concept of homology and the evolution of behavior In Evolution, Brain and Behavior: Persistent Problems, 1976.

A. Remane, Methodological problems of hominid phylogeny. 3. Phylogeny of lifestyles and the origin of upright gait, Z Morphol Anthropol, vol.48, pp.28-54, 1956.

E. Haeckel, The gastraea-theory, the phylogenetic classification of the animal kindgom and the homology of the germ-lamellae, J Microsc Sci, vol.1874, issue.14, pp.142-165

G. Striedter and R. Northcutt, Biological Hierarchies and the Concept of Homology, Brain, Behavior and Evolution, vol.38, issue.4-5, pp.177-189, 1991.
DOI : 10.1159/000114387

J. Bolker and R. Raff, Developmental genetics and traditional homology, BioEssays, vol.265, issue.6, pp.489-494, 1996.
DOI : 10.1101/SQB.1987.052.01.097

Y. Sasai, B. Lu, H. Steinbeisser, D. Robertis, and E. , Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus, Nature, vol.376, issue.6538, pp.333-336, 1995.
DOI : 10.1038/376333a0

E. De-robertis, Evo-Devo: Variations on Ancestral Themes, Cell, vol.132, issue.2, pp.185-195, 2008.
DOI : 10.1016/j.cell.2008.01.003

C. Lowe, M. Wu, A. Salic, L. Evans, E. Lander et al., Anteroposterior Patterning in Hemichordates and the Origins of the Chordate Nervous System, Cell, vol.113, issue.7, pp.853-865, 2003.
DOI : 10.1016/S0092-8674(03)00469-0

J. Aronowicz and C. Lowe, Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems, Integrative and Comparative Biology, vol.46, issue.6, pp.890-901, 2006.
DOI : 10.1093/icb/icl045

A. Hejnol and M. Martindale, Acoel development indicates the independent evolution of the bilaterian mouth and anus, Nature, vol.131, issue.7220, pp.382-386, 2008.
DOI : 10.1038/nature07309

J. Gerhart, Inversion of the chordate body axis: Are there alternatives?, Proceedings of the National Academy of Sciences, vol.13, issue.1, pp.4445-4448, 2000.
DOI : 10.1146/annurev.cellbio.13.1.611

J. Gerhart, The deuterostome ancestor, Journal of Cellular Physiology, vol.4, issue.3, pp.677-685, 2006.
DOI : 10.1016/B978-0-12-282502-6.50012-1

S. Sprecher and H. Reichert, The urbilaterian brain: developmental insights into the evolutionary origin of the brain in insects and vertebrates, Arthropod Structure & Development, vol.32, issue.1, pp.141-156, 2003.
DOI : 10.1016/S1467-8039(03)00007-0

M. Mark and Q. , Evolution of development: the details are in the entrails, Curr Biol, vol.23, pp.25-28, 2013.

R. Northcutt, Evolution of centralized nervous systems: Two schools of evolutionary thought, Proceedings of the National Academy of Sciences, vol.32, issue.5, pp.10626-10633
DOI : 10.1002/bies.200900175

O. Koizumi, N. Sato, and C. Goto, Chemical anatomy of hydra nervous system using antibodies against hydra neuropeptides: a review, Hydrobiologia, vol.248, issue.1-3, pp.530-53141, 2004.
DOI : 10.1016/S1096-4959(03)00088-5

E. Haag, Echinoderm rudiments, rudimentary bilaterians, and the origin of the chordate CNS, Evolution <html_ent glyph="@amp;" ascii="&"/> Development, vol.106, issue.4, pp.280-281, 2005.
DOI : 10.1046/j.1525-142X.2002.02002.x

N. Holland, Early central nervous system evolution: an era of skin brains?, Nature Reviews Neuroscience, vol.4, issue.8, pp.617-627, 2003.
DOI : 10.1038/nrn1175

H. Philippe, H. Brinkmann, R. Copley, L. Moroz, H. Nakano et al., Acoelomorph flatworms are deuterostomes related to Xenoturbella, Nature, vol.432, issue.7333, pp.255-258, 2011.
DOI : 10.1038/nature03149

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4025995

A. Hejnol, M. Obst, A. Stamatakis, M. Ott, G. Rouse et al., Assessing the root of bilaterian animals with scalable phylogenomic methods, Proceedings of the Royal Society B: Biological Sciences, vol.1, issue.3, pp.4261-4270, 2009.
DOI : 10.1006/jtbi.1999.0999

A. Bery, A. Cardona, P. Martinez, and V. Hartenstein, Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis, Development Genes and Evolution, vol.236, issue.5, pp.61-76, 2010.
DOI : 10.1134/S002209300801012X

O. Raikova, M. Reuter, U. Jondelius, and M. Gustafsson, An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.), Zoomorphology, vol.120, issue.2
DOI : 10.1007/s004350000028

C. Sinigaglia, H. Busengdal, L. Leclère, U. Technau, and F. Rentzsch, The Bilaterian Head Patterning Gene six3/6 Controls Aboral Domain Development in a Cnidarian, PLoS Biology, vol.296, issue.1, p.1001488, 2013.
DOI : 10.1371/journal.pbio.1001488.s010

S. Yaguchi, J. Yaguchi, R. Angerer, and L. Angerer, A Wnt-FoxQ2-Nodal Pathway Links Primary and Secondary Axis Specification in Sea Urchin Embryos, Developmental Cell, vol.14, issue.1, pp.97-107, 2008.
DOI : 10.1016/j.devcel.2007.10.012

J. Yu, N. Holland, and L. Holland, AmphiFoxQ2, a novel winged helix/forkhead gene, exclusively marks the anterior end of the amphioxus embryo, Dev Genes Evol, vol.213, pp.102-105, 2003.

P. Steinmetz, R. Urbach, N. Posnien, J. Eriksson, R. Kostyuchenko et al., Six3 demarcates the anterior-most developing brain region in bilaterian animals, EvoDevo, vol.1, issue.1, p.14, 2010.
DOI : 10.1186/2041-9139-1-14

Z. Kozmik, N. Holland, J. Kreslova, D. Oliveri, M. Schubert et al., Pax???Six???Eya???Dach network during amphioxus development: Conservation in vitro but context specificity in vivo, Developmental Biology, vol.306, issue.1, pp.143-159, 2007.
DOI : 10.1016/j.ydbio.2007.03.009

URL : http://doi.org/10.1016/j.ydbio.2007.03.009

S. Santagata, C. Resh, A. Hejnol, M. Martindale, and Y. Passamaneck, Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system, EvoDevo, vol.3, issue.1, p.3
DOI : 10.1242/dev.01119

F. Hirth and H. Reichert, Conserved genetic programs in insect and mammalian brain development, BioEssays, vol.14, issue.8, pp.677-684, 1999.
DOI : 10.1007/978-3-662-22489-2

R. Lichtneckert and H. Reichert, Anteroposterior Regionalization of the Brain: Genetic and Comparative Aspects, Adv Exp Med Biol, vol.628, pp.32-41, 2008.
DOI : 10.1007/978-0-387-78261-4_2

Y. Sasakura, K. Mita, Y. Ogura, and T. Horie, Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis, Development, Growth & Differentiation, vol.446, issue.3, pp.420-437, 2012.
DOI : 10.1038/nature05744

P. Steinmetz, R. Kostyuchenko, A. Fischer, and D. Arendt, The segmental pattern of otx, gbx, and Hox genes in the annelid Platynereis dumerilii, Evolution & Development, vol.113, issue.1, pp.72-79, 2011.
DOI : 10.1186/1749-8104-2-23

P. Lee, P. Callaerts, H. De-couet, and M. Martindale, Cephalopod Hox genes and the origin of morphological novelties, Nature, vol.424, issue.6952, pp.1061-1065, 2003.
DOI : 10.1038/nature01872

B. Tihanyi, A. Regos, E. Ari, F. Müller, and K. Takács-vellai, The C. elegans Hox gene ceh-13 regulates cell migration and fusion in a non-colinear way. Implications for the early evolution of Hox clusters, BMC Developmental Biology, vol.10, issue.1, p.78, 2010.
DOI : 10.1186/1471-213X-10-78

C. Arenas-mena, A. Cameron, and E. Davidson, Spatial expression of Hox cluster genes in the ontogeny of a sea urchin, Development, vol.127, pp.4631-4643, 2000.

H. Barak, E. Preger-ben-noon, and R. Reshef, gene expression in early stages of intermediate mesoderm formation, Developmental Dynamics, vol.6, issue.10, pp.1637-1649, 2012.
DOI : 10.1371/journal.pone.0023410

Y. Hara, M. Yamaguchi, K. Akasaka, H. Nakano, M. Nonaka et al., Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus, Development Genes and Evolution, vol.94, issue.Suppl 2, pp.797-809, 2006.
DOI : 10.1093/oxfordjournals.molbev.a025670

H. Seo, R. Edvardsen, A. Maeland, M. Bjordal, M. Jensen et al., Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica, Nature, vol.93, issue.7004, pp.67-71, 2004.
DOI : 10.1006/dbio.2000.9647

B. Galliot, M. Quiquand, L. Ghila, R. De-rosa, M. Miljkovic-licina et al., Origins of neurogenesis, a cnidarian view, Developmental Biology, vol.332, issue.1, pp.2-24, 2009.
DOI : 10.1016/j.ydbio.2009.05.563

J. Ryan, M. Mazza, K. Pang, D. Matus, A. Baxevanis et al., Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis, PLoS ONE, vol.4, issue.1, p.153, 2007.
DOI : 10.1371/journal.pone.0000153.s013

R. De-rosa, J. Grenier, T. Andreeva, C. Cook, A. Adoutte et al., Hox genes in brachiopods and priapulids and protostome evolution, Nature, vol.399, pp.772-776, 1999.

A. Hejnol and M. Martindale, Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura, BMC Biology, vol.7, issue.1, p.65, 2009.
DOI : 10.1186/1741-7007-7-65

H. Reichert, A tripartite organization of the urbilaterian brain: Developmental genetic evidence from Drosophila, Brain Research Bulletin, vol.66, issue.4-6, pp.491-494, 2005.
DOI : 10.1016/j.brainresbull.2004.11.028

F. Inoue, D. Kurokawa, M. Takahashi, and S. Aizawa, Gbx2 Directly Restricts Otx2 Expression to Forebrain and Midbrain, Competing with Class III POU Factors, Molecular and Cellular Biology, vol.32, issue.13, pp.2618-2627, 2012.
DOI : 10.1128/MCB.00083-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434480

A. Püschel, M. Westerfield, and G. Dressler, Comparative analysis of Pax-2 protein distributions during neurulation in mice and zebrafish, Mechanisms of Development, vol.38, issue.3, pp.197-208, 1992.
DOI : 10.1016/0925-4773(92)90053-M

B. Pfeiffer, A. Jenett, A. Hammonds, T. Ngo, S. Misra et al., Tools for neuroanatomy and neurogenetics in Drosophila, Proceedings of the National Academy of Sciences, vol.47, issue.2, pp.9715-9720, 2008.
DOI : 10.1002/neu.1018

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447866

M. Irimia, C. Piñeiro, I. Maeso, J. Gómez-skarmeta, F. Casares et al., Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizer, EvoDevo, vol.1, issue.1, p.7, 2010.
DOI : 10.1186/2041-9139-1-7

T. Hirata, M. Nakazawa, O. Muraoka, R. Nakayama, Y. Suda et al., Zinc-finger genes Fez and Fez-like function in the establishment of diencephalon subdivisions, Development, vol.133, issue.20, pp.3993-4004, 2006.
DOI : 10.1242/dev.02585

C. Mizutani and E. Bier, EvoD/Vo: the origins of BMP signalling in the neuroectoderm, Nature Reviews Genetics, vol.169, issue.9, pp.663-677, 2008.
DOI : 10.1016/j.cub.2004.01.015

R. Urbach and G. Technau, Dorsoventral Patterning of the Brain: A Comparative Approach, pp.42-56
DOI : 10.1007/978-0-387-78261-4_3

L. Holland, Chordate roots of the vertebrate nervous system: expanding the molecular toolkit, Nature Reviews Neuroscience, vol.19, issue.8, pp.736-746, 2009.
DOI : 10.1016/j.mrfmmm.2008.08.004

P. Vopalensky, J. Pergner, M. Liegertova, E. Benito-gutierrez, D. Arendt et al., Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye, Proceedings of the National Academy of Sciences, vol.133, issue.6, pp.15383-15388
DOI : 10.1007/s00418-010-0703-0

N. Holland, G. Panganiban, E. Henyey, and L. Holland, Sequence and developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest, Development, vol.122, pp.2911-2920, 1996.

S. Shimeld, M. Van-den-heuvel, R. Dawber, and J. Briscoe, An Amphioxus Gli Gene Reveals Conservation of Midline Patterning and the Evolution of Hedgehog Signalling Diversity in Chordates, PLoS ONE, vol.4, issue.9, p.864, 2007.
DOI : 10.1371/journal.pone.0000864.g007

E. Robertshaw and C. Kiecker, Phylogenetic Origins of Brain Organisers, Scientifica, vol.196, issue.4295, pp.1-14, 2012.
DOI : 10.1126/science.860134

M. Seimiya and W. Gehring, The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism, Development, vol.127, pp.1879-1886, 2000.

L. Beccari, R. Marco-ferreres, and P. Bovolenta, The logic of gene regulatory networks in early vertebrate forebrain patterning, Mechanisms of Development, vol.130, issue.2-3, pp.95-111, 2013.
DOI : 10.1016/j.mod.2012.10.004

F. Mazet, J. Hutt, J. Millard, and S. Shimeld, Pax gene expression in the developing central nervous system of Ciona intestinalis, Gene Expression Patterns, vol.3, issue.6, pp.743-745, 2003.
DOI : 10.1016/S1567-133X(03)00137-6

D. Aniello, S. , D. Aniello, E. Locascio, A. Memoli et al., The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function, Differentiation, vol.74, issue.5, pp.222-234, 2006.
DOI : 10.1111/j.1432-0436.2006.00071.x

A. Caracciolo, D. Gregorio, A. Aniello, F. , D. Lauro et al., Identification and developmental expression of three Distal-less homeobox containing genes in the ascidian Ciona intestinalis, Mechanisms of Development, vol.99, issue.1-2, pp.173-176, 2000.
DOI : 10.1016/S0925-4773(00)00474-3

K. Imai, N. Satoh, and Y. Satou, Region specific gene expressions in the central nervous system of the ascidian embryo, Mechanisms of Development, vol.119, pp.275-277, 2002.
DOI : 10.1016/S0925-4773(03)00128-X

A. Islam, P. Moly, Y. Miyamoto, and T. Kusakabe, Larva: Implications for a Role of Hedgehog Signaling in Postembryonic Development and Chordate Evolution, Zoological Science, vol.27, issue.2, pp.84-90, 2010.
DOI : 10.2108/zsj.27.84

S. Retaux and S. Kano, Midline Signaling and Evolution of the Forebrain in Chordates: A Focus on the Lamprey Hedgehog Case, Integrative and Comparative Biology, vol.50, issue.1, pp.98-109, 2010.
DOI : 10.1093/icb/icq032

URL : https://hal.archives-ouvertes.fr/hal-00637189

A. Denes, G. Jékely, P. Steinmetz, F. Raible, H. Snyman et al., Molecular Architecture of Annelid Nerve Cord Supports Common Origin of Nervous System Centralization in Bilateria, Cell, vol.129, issue.2, pp.277-288, 2007.
DOI : 10.1016/j.cell.2007.02.040

URL : https://hal.archives-ouvertes.fr/hal-00167457

C. Heuer, C. Mueller, C. Todt, and R. Loesel, Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida, Frontiers in Zoology, vol.7, issue.1, p.13, 2010.
DOI : 10.1186/1742-9994-7-13

J. Sikes and A. Bely, Making heads from tails: Development of a reversed anterior?posterior axis during budding in an acoel, Developmental Biology, vol.338, issue.1, pp.86-97, 2010.
DOI : 10.1016/j.ydbio.2009.10.033

J. Achatz and P. Martinez, The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications, Frontiers in Zoology, vol.9, issue.1, p.27, 2012.
DOI : 10.1007/s00427-007-0166-z

T. Lacalli, Protochordate body plan and the evolutionary role of larvae: old controversies resolved?, Canadian Journal of Zoology, vol.83, issue.1, pp.216-224, 2005.
DOI : 10.1139/z04-162

J. Van-wijhe, Die Terminalbeuge des Vorderhirns bei den Chordaten und die prootischen Nerven der Kranioten bei Amphioxus. Erste Mitteilung plus Zweite Mitteilung: Schluss des Riechorgans Proc Koninklijke Akademie Van Wetenschappen Te Amsterdam, Erste Mitteilung, vol.34, pp.131-141, 1931.

M. Nomaksteinsky, E. Röttinger, H. Dufour, Z. Chettouh, C. Lowe et al., Centralization of the Deuterostome Nervous System Predates Chordates, Current Biology, vol.19, issue.15, pp.1264-1269, 2009.
DOI : 10.1016/j.cub.2009.05.063

E. De-robertis and Y. Sasai, A common plan for dorsoventral patterning in Bilateria, Nature, vol.380, issue.6569, pp.37-40, 1996.
DOI : 10.1038/380037a0

V. Duboc, E. Röttinger, F. Lapraz, L. Besnardeau, and T. Lepage, Left-Right Asymmetry in the Sea Urchin Embryo Is Regulated by Nodal Signaling on the Right Side, Developmental Cell, vol.9, issue.1, pp.147-158, 2005.
DOI : 10.1016/j.devcel.2005.05.008

C. Grande and N. Patel, Nodal signalling is involved in left???right asymmetry in snails, Nature, vol.20, issue.7232, pp.1007-1011, 2009.
DOI : 10.1038/nature07603

C. Nielsen, Homology of echinoderm radial nerve cords and the chordate neural tube???, Evolution <html_ent glyph="@amp;" ascii="&"/> Development, vol.106, issue.1, pp.1-2, 2006.
DOI : 10.1146/annurev.cellbio.18.020402.140619

B. Sly, J. Hazel, E. Popodi, and R. Raff, Patterns of gene expression in the developing adult sea urchin central nervous system reveal multiple domains and deep-seated neural pentamery, Evolution and Development, vol.128, issue.13, pp.189-204, 2002.
DOI : 10.1002/1096-9861(20000101)429:1<127::AID-CNE10>3.0.CO;2-H

P. Cisternas and M. Byrne, Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua, Development Genes and Evolution, vol.97, issue.2, pp.613-618, 2009.
DOI : 10.1098/rspb.2008.1659

V. Morris and M. Byrne, Involvement of two Hox genes and Otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens, J Exp Zool Part B: Mol Dev Evol, vol.304, pp.456-467, 2005.

T. Lacalli, Head organization and the head/trunk relationship in protochordates: problems and prospects, Integrative and Comparative Biology, vol.48, issue.5, pp.620-629, 2008.
DOI : 10.1093/icb/icn012

R. Nieuwenhuys, Deuterostome brains: synopsis and commentary, Brain Research Bulletin, vol.57, issue.3-4, pp.257-270, 2002.
DOI : 10.1016/S0361-9230(01)00668-2

K. Tagawa, T. Humphreys, and N. Satoh, T-brain expression in the apical organ of hemichordate tornaria larvae suggests its evolutionary link to the vertebrate forebrain, Journal of Experimental Zoology, vol.80, issue.5, pp.23-31, 2000.
DOI : 10.1007/978-1-4615-6986-2_8

T. Stach and A. Gruhl, Kaul-Strehlow S: The central and peripheral nervous system of Cephalodiscus gracilis

J. Williams, Sessile lifestyle and origin of chordates, New Zealand Journal of Zoology, vol.36, issue.2, pp.111-133, 1996.
DOI : 10.1017/CBO9780511623547

K. Osborn, L. Kuhnz, I. Priede, M. Urata, A. Gebruk et al., Diversification of acorn worms (Hemichordata, Enteropneusta) revealed in the deep sea, Proceedings of the Royal Society B: Biological Sciences, vol.70, issue.1, pp.1646-1654, 2012.
DOI : 10.1017/S0022336000023167

J. Cannon, A. Rychel, H. Eccleston, K. Halanych, and B. Swalla, Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts, Molecular Phylogenetics and Evolution, vol.52, issue.1, pp.17-24, 2009.
DOI : 10.1016/j.ympev.2009.03.027

J. Caron, S. Morris, and C. Cameron, Tubicolous enteropneusts from the Cambrian period, Nature, vol.70, issue.7442, pp.503-506, 2013.
DOI : 10.1017/S0022336000023167

E. Röttinger and C. Lowe, Evolutionary crossroads in developmental biology: hemichordates, Development, vol.139, issue.14, pp.2463-2475, 2012.
DOI : 10.1242/dev.066712

N. Miyamoto, Y. Nakajima, H. Wada, and Y. Saito, Development of the nervous system in the acorn worm Balanoglossus simodensis: insights into nervous system evolution, Evolution & Development, vol.4, issue.4, pp.416-424, 2010.
DOI : 10.1093/icb/34.4.533

S. Kaul and T. Stach, Ontogeny of the collar cord: Neurulation in the hemichordate Saccoglossus kowalevskii, Journal of Morphology, vol.139, issue.part 1, pp.1240-1259, 2010.
DOI : 10.1007/978-3-8274-2220-0_5

W. Bateson, The later stages in the development of Balanoglossus kowalevskii, with a suggestion as to the affinities of the Enteropneusta, Q J Microsc Sci, vol.1886, issue.126, pp.511-533

G. Rehkämper, U. Welsch, and P. Dilly, (pterobranchia, hemichordata), Journal of Comparative Neurology, vol.4, issue.5, pp.308-315, 1987.
DOI : 10.1007/BF00340569

F. Brown, A. Prendergast, and B. Swalla, Man is but a worm: Chordate origins, genesis, vol.445, issue.10, pp.605-613, 2008.
DOI : 10.7150/ijbs.2.104

T. Bullock, The giant nerve fiber system in balanoglossids, The Journal of Comparative Neurology, vol.229, issue.3, pp.355-367, 1944.
DOI : 10.1002/cne.900800305

C. Nielsen and . Hay-schmidt, Development of the enteropneustPtychodera flava: Ciliary bands and nervous system, Journal of Morphology, vol.21, issue.7, pp.551-570, 2007.
DOI : 10.7150/ijbs.2.104

C. Lowe, M. Terasaki, M. Wu, R. Freeman, . Jr et al., Dorsoventral Patterning in Hemichordates: Insights into Early Chordate Evolution, PLoS Biology, vol.74, issue.9, p.291, 2006.
DOI : 10.1371/journal.pbio.0040291.sg004

URL : http://doi.org/10.1371/journal.pbio.0040291

S. Taguchi, K. Tagawa, T. Humphreys, and N. Satoh, Genes That Contribute to Specification of the Vertebrate Brain are Expressed in the Apical Organ and Ciliary Bands of Hemichordate Larvae, Zoological Science, vol.19, issue.1, pp.57-66, 2002.
DOI : 10.2108/zsj.19.57

K. Tagawa, N. Satoh, and T. Humphreys, Molecular studies of hemichordate development: a key to understanding the evolution of bilateral animals and chordates, Evolution and Development, vol.36, issue.6, pp.443-454, 2001.
DOI : 10.1080/10635150050207375

K. Peterson, R. Cameron, K. Tagawa, N. Satoh, and E. Davidson, A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava, Development, vol.126, pp.85-95, 1999.

T. Onai, J. Yu, I. Blitz, K. Cho, and L. Holland, Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus, Developmental Biology, vol.344, issue.1, pp.377-389, 2010.
DOI : 10.1016/j.ydbio.2010.05.016

M. Wlizla, Evolution of Nodal signaling in deuterostomes: insights from Saccoglossus kowalevskii. PhD dissertation, p.195, 2011.

A. Saudemont, E. Haillot, F. Mekpoh, N. Bessodes, M. Quirin et al., Ancestral Regulatory Circuits Governing Ectoderm Patterning Downstream of Nodal and BMP2/4 Revealed by Gene Regulatory Network Analysis in an Echinoderm, PLoS Genetics, vol.246, issue.1, p.1001259, 2010.
DOI : 10.1371/journal.pgen.1001259.s007

C. Grande and N. Patel, Lophotrochozoa Get into the Game: The Nodal Pathway and Left/Right Asymmetry in Bilateria, Cold Spring Harbor Symposia on Quantitative Biology, vol.74, issue.0, pp.281-287, 2009.
DOI : 10.1101/sqb.2009.74.044

G. De-beer, Homology, An Unsolved Problem, 1971.

V. Roth, The biological basis of homology, Ontogeny and Systematics. Edited by Humphries CJ, 1988.

G. Panganiban, S. Irvine, C. Lowe, H. Roehl, L. Corley et al., The origin and evolution of animal appendages, Proceedings of the National Academy of Sciences, vol.71, issue.3, pp.5162-5166, 1997.
DOI : 10.1016/0092-8674(92)90513-C

R. Northcutt, Changing views of brain evolution, Brain Research Bulletin, vol.55, issue.6, pp.663-674, 2001.
DOI : 10.1016/S0361-9230(01)00560-3

N. Shubin, C. Tabin, and S. Carroll, Deep homology and the origins of evolutionary novelty, Nature, vol.129, issue.7231, pp.818-823, 2009.
DOI : 10.1111/j.0014-3820.2006.tb01868.x

C. Lowe, Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate Saccoglossus kowalevskii, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.19, issue.5, pp.1569-1578, 2008.
DOI : 10.1093/oxfordjournals.molbev.a004134

M. Stokes and N. Holland, , from Hatching through Metamorphosis: Growth in the Laboratory and External Morphology, Acta Zoologica, vol.69, issue.No. 4, pp.105-120, 1995.
DOI : 10.5962/bhl.title.55924

Q. Bone and K. Ryan, Cupular sense organs in Ciona (Tunicata: Ascidiacea), Journal of Zoology, vol.10, issue.12
DOI : 10.1080/00222935708655965

H. Wood and V. Episkopou, Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages, Mechanisms of Development, vol.86, issue.1-2, pp.197-201, 1999.
DOI : 10.1016/S0925-4773(99)00116-1

G. Satoh, Y. Wang, P. Zhang, and N. Satoh, Early development of amphioxus nervous system with special reference to segmental cell organization and putative sensory cell precursors: A study based on the expression of pan-neuronal marker geneHu/elav, Journal of Experimental Zoology, vol.393, issue.11, pp.354-364, 2001.
DOI : 10.1002/jez.1134

M. Schubert, N. Holland, H. Escriva, L. Holland, and V. Laudet, Retinoic acid influences anteroposterior positioning of epidermal sensory neurons and their gene expression in a developing chordate (amphioxus), Proceedings of the National Academy of Sciences, vol.23, issue.5
DOI : 10.1111/j.1463-6395.1981.tb00624.x

Y. Sasakura, M. Kanda, T. Ikeda, T. Horie, N. Kawai et al., Retinoic acid-driven Hox1 is required in the epidermis for forming the otic/atrial placodes during ascidian metamorphosis, Development, vol.139, issue.12, pp.2156-2160, 2012.
DOI : 10.1242/dev.080234

N. Watari-goshima and O. Chisaka, Chicken HOXA3 Gene: Its Expression Pattern and Role in Branchial Nerve Precursor Cell Migration, International Journal of Biological Sciences, vol.7, issue.1, pp.87-101, 2011.
DOI : 10.7150/ijbs.7.87

URL : http://doi.org/10.7150/ijbs.7.87

L. Castro, S. Rasmussen, P. Holland, N. Holland, and L. Holland, A Gbx homeobox gene in amphioxus: Insights into ancestry of the ANTP class and evolution of the midbrain/hindbrain boundary, Developmental Biology, vol.295, issue.1, pp.40-51, 2006.
DOI : 10.1016/j.ydbio.2006.03.003

H. Sánchez-calderón, G. Martín-partido, and M. Hidalgo-sánchez, Differential expression of Otx2, Gbx2, Pax2, and Fgf8 in the developing vestibular and auditory sensory organs, Brain Research Bulletin, vol.57, issue.3-4, pp.321-323, 2002.
DOI : 10.1016/S0361-9230(01)00725-0

B. Steventon, R. Mayor, and A. Streit, Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning, Developmental Biology, vol.367, issue.1, pp.55-65, 2012.
DOI : 10.1016/j.ydbio.2012.04.025

A. Sharman, S. Shimeld, and P. Holland, An amphioxus Msx gene expressed predominantly in the dorsal neural tube, Development Genes and Evolution, vol.209, issue.4, pp.260-263, 1999.
DOI : 10.1007/s004270050251

P. Osborne, G. Benoit, V. Laudet, M. Schubert, and D. Ferrier, Differential regulation of ParaHox genes by retinoic acid in the invertebrate chordate amphioxus (Branchiostoma floridae), Developmental Biology, vol.327, issue.1, pp.252-262, 2009.
DOI : 10.1016/j.ydbio.2008.11.027

T. Venkatesh, N. Holland, L. Holland, M. Su, and R. Bodmer, Sequence and developmental expression of amphioxus AmphiNk2?1: insights into the evolutionary origin of the vertebrate thyroid gland and forebrain, Dev Genes Evol, vol.209, pp.254-259, 1999.

T. Kawashima, A. Murakami, M. Ogasawara, K. Tanaka, R. Isoda et al., Expression patterns of musashi homologs of the ascidians, Halocynthia roretzi and Ciona intestinalis, Development Genes and Evolution, vol.210, issue.3, pp.162-165, 2000.
DOI : 10.1007/s004270050024

S. Wada, M. Tokuoka, E. Shoguchi, K. Kobayashi, D. Gregorio et al., A genomewide survey of developmentally relevant genes in Ciona intestinalis, Development Genes and Evolution, vol.83, issue.5-6, pp.222-234, 2003.
DOI : 10.1016/S0925-4773(99)00045-3

H. Ghanbari, H. Seo, A. Fjose, and A. Brändli, Molecular cloning and embryonic expression of Xenopus Six homeobox genes, Mechanisms of Development, vol.101, issue.1-2, pp.271-277, 2001.
DOI : 10.1016/S0925-4773(00)00572-4

J. Osorio, S. Mazan, and S. Rétaux, Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: Insights from LIM-homeodomain, Pax and hedgehog genes, Developmental Biology, vol.288, issue.1, pp.100-112, 2005.
DOI : 10.1016/j.ydbio.2005.08.042

URL : https://hal.archives-ouvertes.fr/hal-00094629

H. Toresson, J. Martinez-barbera, A. Bardsley, X. Caubit, and S. Krauss, Conservation of BF-1 expression in amphioxus and zebrafish suggests evolutionary ancestry of anterior cell types that contribute to the vertebrate telencephalon, Development Genes and Evolution, vol.208, issue.8, pp.431-439, 1998.
DOI : 10.1007/s004270050200

V. Hatini, X. Ye, G. Balas, and E. Lai, Dynamics of placodal lineage development revealed by targeted transgene expression, Developmental Dynamics, vol.14, issue.4, pp.332-343, 1999.
DOI : 10.1002/(SICI)1097-0177(199908)215:4<332::AID-AJA5>3.0.CO;2-R

S. Kaltenbach, J. Yu, and N. Holland, The origin and migration of the earliest-developing sensory neurons in the peripheral nervous system of amphioxus, Evolution & Development, vol.11, issue.2, pp.142-151, 2009.
DOI : 10.1111/j.1525-142X.2009.00315.x

C. Logan, R. Wingate, I. Mckay, and A. Lumsden, Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity, J Neurosci, vol.18, pp.5389-5402, 1998.

R. Chellappa, S. Li, S. Pauley, I. Jahan, J. K. Xiang et al., Barhl1 Regulatory Sequences Required for Cell-Specific Gene Expression and Autoregulation in the Inner Ear and Central Nervous System, Molecular and Cellular Biology, vol.28, issue.6, pp.1905-1914, 2008.
DOI : 10.1128/MCB.01454-07

A. Kawahara and I. Dawid, Developmental expression of zebrafish emx1 during early embryogenesis, Gene Expression Patterns, vol.2, issue.3-4, pp.201-206, 2002.
DOI : 10.1016/S1567-133X(02)00062-5

S. Bardet, M. Martinez-de-la-torre, R. Northcutt, J. Rubenstein, and L. Puelles, Conserved pattern of OTP-positive cells in the paraventricular nucleus and other hypothalamic sites of tetrapods, Brain Research Bulletin, vol.75, issue.2-4, pp.231-235, 2008.
DOI : 10.1016/j.brainresbull.2007.10.037

URL : https://hal.archives-ouvertes.fr/hal-01082204

P. Ma, S. Zhao, W. Zeng, Q. Yang, C. Li et al., Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning, Biochemical and Biophysical Research Communications, vol.412, issue.1, pp.170-174, 2011.
DOI : 10.1016/j.bbrc.2011.07.068

J. Langeland, L. Holland, R. Chastain, and N. Holland, An amphioxus LIMhomeobox gene, AmphiLim1/5, expressed early in the invaginating organizer region and later in differentiating cells of the kidney and central nervous system, Int J Biol Sci, vol.2, pp.110-116, 2006.

C. Feijóo, M. Saldias, D. Paz, J. Gómez-skarmeta, J. Allende et al., Formation of posterior cranial placode derivatives requires the Iroquois transcription factor irx4a, Molecular and Cellular Neuroscience, vol.40, issue.3, pp.328-337, 2009.
DOI : 10.1016/j.mcn.2008.11.003

M. Matsuura, H. Nishihara, K. Onimaru, N. Kokubo, S. Kuraku et al., Identification of fourEngrailed genes in the Japanese lamprey,Lethenteron japonicum, Developmental Dynamics, vol.120, issue.6, pp.1581-1589, 2008.
DOI : 10.1002/jez.b.20009

T. Ikuta, N. Yoshida, N. Satoh, and H. Saiga, Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development, Proceedings of the National Academy of Sciences, vol.213, issue.1, pp.15118-15123, 2004.
DOI : 10.1002/(SICI)1097-0177(199809)213:1<82::AID-AJA8>3.0.CO;2-U

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC524048

N. Makki and M. Capecchi, Hoxa1 lineage tracing indicates a direct role for Hoxa1 in the development of the inner ear, the heart, and the third rhombomere, Developmental Biology, vol.341, issue.2, pp.499-509, 2010.
DOI : 10.1016/j.ydbio.2010.02.014

Y. Takio, S. Kuraku, Y. Murakami, M. Pasqualetti, F. Rijli et al., Hox gene expression patterns in Lethenteron japonicum embryos?Insights into the evolution of the vertebrate Hox code, Developmental Biology, vol.308, issue.2, pp.606-620, 2007.
DOI : 10.1016/j.ydbio.2007.05.009

URL : https://hal.archives-ouvertes.fr/hal-00189127

K. Uchiyama, R. Otsuka, and K. Hanaoka, cHox11L2, a Hox11 related gene, is expressed in the peripheral nervous system and subpopulation of the spinal cord during chick development, Neuroscience Letters, vol.273, issue.2, pp.97-100, 1999.
DOI : 10.1016/S0304-3940(99)00637-0

L. Sanchez-arrones, C. Stern, P. Bovolenta, and L. Puelles, Sharpening of the anterior neural border in the chick by rostral endoderm signalling, Development, vol.139, issue.5, pp.1034-1044, 2012.
DOI : 10.1242/dev.067934

C. Tendeng and C. Houart, Cloning and embryonic expression of five distinct sfrp genes in the zebrafish Danio rerio, Gene Expression Patterns, vol.6, issue.8, pp.761-771, 2006.
DOI : 10.1016/j.modgep.2006.01.006

G. Eagleson and R. Dempewolf, The role of the anterior neural ridge and Fgf-8 in early forebrain patterning and regionalization in Xenopus laevis, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.132, issue.1, pp.179-189, 2002.
DOI : 10.1016/S1096-4959(01)00521-8

C. Vieira and S. Martinez, Sonic hedgehog from the basal plate and the zona limitans intrathalamica exhibits differential activity on diencephalic molecular regionalization and nuclear structure, Neuroscience, vol.143, issue.1, pp.129-140, 2006.
DOI : 10.1016/j.neuroscience.2006.08.032

S. Green, R. Norris, M. Terasaki, and C. Lowe, FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii, Development, vol.140, issue.5, pp.1024-1033, 2013.
DOI : 10.1242/dev.083790

N. Holland and L. Holland, Amphioxus and the Utility of Molecular Genetic Data for Hypothesizing Body Part Homologies between Distantly Related Animals, American Zoologist, vol.39, issue.3, pp.630-640, 1999.
DOI : 10.1093/icb/39.3.630

L. Holland, Evolution of new characters after whole genome duplications: Insights from amphioxus, Seminars in Cell & Developmental Biology, vol.24, issue.2, pp.101-109, 2013.
DOI : 10.1016/j.semcdb.2012.12.007

J. Capdevila and J. Belmonte, Patterning Mechanisms Controlling Vertebrate Limb Development, Annual Review of Cell and Developmental Biology, vol.17, issue.1, pp.87-132, 2001.
DOI : 10.1146/annurev.cellbio.17.1.87

E. Röttinger and M. Martindale, Ventralization of an indirect developing hemichordate by NiCl2 suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms), Developmental Biology, vol.354, issue.1, pp.173-190, 2011.
DOI : 10.1016/j.ydbio.2011.03.030

R. Range, R. Angerer, and L. Angerer, Integration of Canonical and Noncanonical Wnt Signaling Pathways Patterns the Neuroectoderm Along the Anterior?Posterior Axis of Sea Urchin Embryos, PLoS Biology, vol.354, issue.1, p.1001467, 2013.
DOI : 10.1371/journal.pbio.1001467.s007

F. Emily-fenouil, C. Ghiglione, G. Lhomond, T. Lepage, and C. Gache, GSK3beta/ shaggy mediates patterning along the animal?vegetal axis of the sea urchin embryo, pp.2489-2498, 1998.

J. Jeong, Z. Einhorn, P. Mathur, L. Chen, S. Lee et al., Patterning the zebrafish diencephalon by the conserved zinc-finger protein Fezl, Development, vol.134, issue.1, pp.127-136, 2007.
DOI : 10.1242/dev.02705

S. Scholpp, I. Foucher, N. Staudt, D. Peukert, A. Lumsden et al., Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon, Development, vol.134, issue.17, pp.3167-3176, 2007.
DOI : 10.1242/dev.001461

A. Martinez-ferre, M. Navarro-garberi, C. Bueno, and S. Martinez, Wnt Signal Specifies the Intrathalamic Limit and Its Organizer Properties by Regulating Shh Induction in the Alar Plate, Journal of Neuroscience, vol.33, issue.9, pp.3967-3980, 2013.
DOI : 10.1523/JNEUROSCI.0726-12.2013

A. Martinez-ferre and S. Martinez, Molecular Regionalization of the Diencephalon, Frontiers in Neuroscience, vol.6, p.73, 2012.
DOI : 10.3389/fnins.2012.00073

E. Puelles, A. Annino, F. Tuorto, A. Usiello, D. Acampora et al., Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain, Development, vol.131, issue.9, pp.2037-2048, 2004.
DOI : 10.1242/dev.01107

J. Partanen, FGF signalling pathways in development of the midbrain and anterior hindbrain, Journal of Neurochemistry, vol.281, issue.5, pp.1185-1193, 2007.
DOI : 10.1016/j.neuron.2004.07.010

M. Kengaku, J. Capdevila, C. Rodriguez-esteban, D. L. Peña, J. Johnson et al., Distinct WNT Pathways Regulating AER Formation and Dorsoventral Polarity in the Chick Limb Bud, Science, vol.280, issue.5367, pp.1274-1277, 1998.
DOI : 10.1126/science.280.5367.1274

M. Tanaka, Y. Shigetani, S. Sugiyama, K. Tamura, H. Nakamura et al., Apical ectodermal ridge induction by the transplantation of En-1- overexpressing ectoderm in chick limb bud. Dev Growth Differ, pp.423-429, 1998.

S. Glardon, L. Holland, W. Gehring, and N. Holland, Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution, pp.2701-2710, 1998.

J. Yu, Y. Satou, N. Holland, S. Kohara, Y. Satoh et al., Axial patterning in cephalochordates and the evolution of the organizer, Nature, vol.6, issue.7128, pp.613-617, 2007.
DOI : 10.7150/ijbs.2.110

S. Shimeld, The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog, Development Genes and Evolution, vol.209, issue.1, pp.40-47, 1999.
DOI : 10.1007/s004270050225

K. Shimamura and J. Rubenstein, Inductive interactions direct early regionalization of the mouse forebrain, pp.2709-2718, 1997.

K. Imai, A. Stolfi, M. Levine, and Y. Satou, Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system, Development, vol.136, issue.2, pp.285-293, 2009.
DOI : 10.1242/dev.026419

M. Schubert, L. Holland, G. Panopoulou, H. Lehrach, and N. Holland, Characterization of amphioxus AmphiWnt8 : insights into the evolution of patterning of the embryonic dorsoventral axis, Evolution and Development, vol.91, issue.2, pp.85-92, 2000.
DOI : 10.1038/367489a0

F. Mazet and S. Shimeld, Characterisation of an amphioxus Fringe gene and the evolution of the vertebrate segmentation clock, Development Genes and Evolution, vol.213, issue.10, pp.505-509, 2003.
DOI : 10.1007/s00427-003-0351-7

L. Holland, T. Venkatesh, A. Gorlin, R. Bodmer, and N. Holland, Characterization and developmental expression of AmphiNk2-2 , an NK2 class homeobox gene from amphioxus (Phylum Chordata; Subphylum Cephalochordata), Development Genes and Evolution, vol.208, issue.2
DOI : 10.1007/s004270050159

S. Bertrand, A. Camasses, I. Somorjai, M. Belgacem, O. Chabrol et al., Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits, Proceedings of the National Academy of Sciences, vol.96, issue.11-12, pp.9160-9165, 2011.
DOI : 10.1007/s00427-008-0256-6

URL : https://hal.archives-ouvertes.fr/hal-00831149

T. Onai, H. Lin, M. Schubert, D. Koop, P. Osborne et al., Retinoic acid and Wnt/?-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus, Developmental Biology, vol.332, issue.2, pp.223-233, 2009.
DOI : 10.1016/j.ydbio.2009.05.571

K. Hotta, H. Takahashi, N. Ueno, and T. Gojobori, A genome-wide survey of the genes for planar polarity signaling or convergent extension-related genes in Ciona intestinalis and phylogenetic comparisons of evolutionary conserved signaling components, Gene, vol.317, pp.165-185, 2003.
DOI : 10.1016/S0378-1119(03)00700-5

E. Wagner and M. Levine, FGF signaling establishes the anterior border of the Ciona neural tube, Development, vol.139, issue.13, pp.2351-2359, 2012.
DOI : 10.1242/dev.078485

Z. Kozmik, N. Holland, A. Kalousova, J. Paces, M. Schubert et al., Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrainhindbrain boundary region, pp.1295-1304, 1999.

D. Meulemans and M. Bronner-fraser, Family: Implications for the Evolution of Vertebrate Placodes, International Journal of Biological Sciences, vol.3, pp.356-364, 2007.
DOI : 10.7150/ijbs.3.356

L. Holland, M. Kene, N. Williams, and N. Holland, Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila, pp.1723-1732, 1997.

T. Ikuta and H. Saiga, Dynamic change in the expression of developmental genes in the ascidian central nervous system: Revisit to the tripartite model and the origin of the midbrain?hindbrain boundary region, Developmental Biology, vol.312, issue.2, pp.631-643, 2007.
DOI : 10.1016/j.ydbio.2007.10.005

. Holland, Cite this article as Evolution of bilaterian central nervous systems: a single origin? EvoDevo, p.27, 2013.