S. Acton, A. Rigotti, K. Landschulz, S. Xu, H. Hobbs et al., Identification of Scavenger Receptor SR-BI as a High Density Lipoprotein Receptor, Science, vol.271, issue.5248, pp.518-520, 1996.
DOI : 10.1126/science.271.5248.518

C. Andolina, J. Landier, V. Carrara, C. Chu, J. Franetich et al., The suitability of laboratory-bred Anopheles cracens for the production of Plasmodium vivax sporozoites, Malaria Journal, vol.17, issue.1, pp.312-26259952, 2015.
DOI : 10.1111/j.1365-3156.2011.02940.x

URL : https://hal.archives-ouvertes.fr/hal-01191537

T. Annoura, B. Van-schaijk, I. Ploemen, M. Sajid, J. Lin et al., Two Plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development, The FASEB Journal, vol.28, issue.5, pp.2158-2170, 2014.
DOI : 10.1096/fj.13-241570

D. Bargieri, V. Lagal, N. Andenmatten, I. Tardieux, M. Meissner et al., Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum, PLoS Pathogens, vol.147, issue.9, pp.1004273-1004279, 2014.
DOI : 10.1371/journal.ppat.1004273.t001

URL : https://hal.archives-ouvertes.fr/inserm-01075112

J. Barnwell, A. Asch, R. Nachman, M. Yamaya, M. Aikawa et al., A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes., Journal of Clinical Investigation, vol.84, issue.3, pp.765-772, 1989.
DOI : 10.1172/JCI114234

B. Bartosch, A. Vitelli, C. Granier, C. Goujon, J. Dubuisson et al., Cell Entry of Hepatitis C Virus Requires a Set of Co-receptors That Include the CD81 Tetraspanin and the SR-B1 Scavenger Receptor, Journal of Biological Chemistry, vol.4, issue.43, pp.41624-41630, 2003.
DOI : 10.1053/jhep.2001.27810

D. Baruch, J. Gormely, C. Ma, R. Howard, and B. Pasloske, Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1., Proceedings of the National Academy of Sciences, vol.93, issue.8, pp.3497-3502, 1996.
DOI : 10.1073/pnas.93.8.3497

F. Berditchevski, M. Zutter, and M. Hemler, Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins)., Molecular Biology of the Cell, vol.7, issue.2, pp.193-207, 1996.
DOI : 10.1091/mbc.7.2.193

S. Besteiro, J. Dubremetz, and M. Lebrun, The moving junction of apicomplexan parasites: a key structure for invasion, Cellular Microbiology, vol.151, issue.6, pp.797-805, 2011.
DOI : 10.1016/j.molbiopara.2006.11.005

S. Charrin, S. Jouannet, C. Boucheix, and E. Rubinstein, Tetraspanins at a glance, Journal of Cell Science, vol.127, issue.17, pp.3641-3648, 2014.
DOI : 10.1242/jcs.154906

S. Charrin, L. Naour, F. Oualid, M. Billard, M. Faure et al., The Major CD9 and CD81 Molecular Partner, Journal of Biological Chemistry, vol.39, issue.17, pp.14329-14337, 2001.
DOI : 10.1016/S0952-3278(96)90055-1

S. Charrin, F. Le-naour, O. Silvie, P. Milhiet, C. Boucheix et al., Lateral organization of membrane proteins: tetraspanins spin their web, Biochemical Journal, vol.167, issue.2, pp.133-154, 2009.
DOI : 10.1038/sj.onc.1208156

S. Charrin, S. Yalaoui, B. Bartosch, L. Cocquerel, J. Franetich et al., Infection, Journal of Biological Chemistry, vol.58, issue.46, pp.31572-31578, 2009.
DOI : 10.1371/journal.pone.0001866

C. Colpitts and T. Baumert, Hepatitis C virus cell entry: a target for novel antiviral strategies to address limitations of direct acting antivirals, Hepatology International, vol.10, issue.5, pp.741-748, 2016.
DOI : 10.1371/journal.ppat.1003297

A. Coppi, R. Tewari, J. Bishop, B. Bennett, R. Lawrence et al., Heparan Sulfate Proteoglycans Provide a Signal to Plasmodium Sporozoites to Stop Migrating and Productively Invade Host Cells, Cell Host & Microbe, vol.2, issue.5, pp.316-327, 2007.
DOI : 10.1016/j.chom.2007.10.002

URL : http://doi.org/10.1016/j.chom.2007.10.002

L. Dembele, A. Gego, A. Zeeman, J. Franetich, O. Silvie et al., Towards an In Vitro Model of Plasmodium Hypnozoites Suitable for Drug Discovery, PLoS ONE, vol.65, issue.3, p.21483865, 2011.
DOI : 10.1371/journal.pone.0018162.t001

P. Emsley and K. Cowtan, : model-building tools for molecular graphics, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2126-2132, 2004.
DOI : 10.1107/S0907444904019158

M. Evans, T. Von-hahn, D. Tscherne, A. Syder, M. Panis et al., Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry, Nature, vol.23, issue.7137, pp.801-805, 2007.
DOI : 10.1038/nature05654

D. Felmlee, A. Coilly, R. Chung, D. Samuel, and T. Baumert, New perspectives for preventing hepatitis C virus liver graft infection, The Lancet Infectious Diseases, vol.16, issue.6, pp.735-745, 2016.
DOI : 10.1016/S1473-3099(16)00120-1

L. Foquet, C. Hermsen, L. Verhoye, G. Van-gemert, C. R. Nicosia et al., Anti-CD81 but not anti-SR-BI blocks Plasmodium falciparum liver infection in a humanized mouse model, Journal of Antimicrobial Chemotherapy, vol.70, pp.1784-1787, 2015.
DOI : 10.1093/jac/dkv019

B. Franke-fayard, C. Janse, M. Cunha-rodrigues, J. Ramesar, P. Bü-scher et al., From The Cover: Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration, Proceedings of the National Academy of Sciences, vol.101, issue.37, pp.11468-11473, 2005.
DOI : 10.1073/pnas.0403998101

U. Frevert, P. Sinnis, C. Cerami, W. Shreffler, B. Takacs et al., Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes, Journal of Experimental Medicine, vol.177, issue.5, p.8478608, 1993.
DOI : 10.1084/jem.177.5.1287

T. Ishino, Y. Chinzei, and M. Yuda, Two proteins with 6-cys motifs are required for malarial parasites to commit to infection of the hepatocyte, Molecular Microbiology, vol.116, issue.5, pp.1264-1275, 2005.
DOI : 10.1111/j.1365-2958.2005.04801.x

S. Iwanaga, S. Khan, I. Kaneko, Z. Christodoulou, C. Newbold et al., Functional Identification of the Plasmodium Centromere and Generation of a Plasmodium Artificial Chromosome, Cell Host & Microbe, vol.7, issue.3, pp.245-255, 2010.
DOI : 10.1016/j.chom.2010.02.010

C. Janse, J. Ramesar, and A. Waters, High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei, Nature Protocols, vol.19, issue.1, pp.346-356, 2006.
DOI : 10.1038/nprot.2006.53

S. Kapadia, H. Barth, T. Baumert, J. Mckeating, and F. Chisari, Initiation of Hepatitis C Virus Infection Is Dependent on Cholesterol and Cooperativity between CD81 and Scavenger Receptor B Type I, Journal of Virology, vol.81, issue.1, pp.374-383, 2007.
DOI : 10.1128/JVI.01134-06

A. Kaushansky, A. Douglass, N. Arang, V. Vigdorovich, N. Dambrauskas et al., Malaria parasites target the hepatocyte receptor EphA2 for successful host infection, Science, vol.106, issue.31, pp.1089-1092, 2015.
DOI : 10.1073/pnas.0906387106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783171

A. Kennedy, C. Schmidt, J. Thompson, G. Weiss, T. Taechalertpaisarn et al., Infection, The Journal of Immunology, vol.196, issue.3, pp.1239-1248, 2016.
DOI : 10.4049/jimmunol.1501581

URL : https://hal.archives-ouvertes.fr/hal-01533881

M. Labaied, A. Harupa, R. Dumpit, I. Coppens, S. Mikolajczak et al., Plasmodium yoelii Sporozoites with Simultaneous Deletion of P52 and P36 Are Completely Attenuated and Confer Sterile Immunity against Infection, Infection and Immunity, vol.75, issue.8, pp.3758-3768, 2007.
DOI : 10.1128/IAI.00225-07

S. Lindner, K. Swearingen, A. Harupa, A. Vaughan, P. Sinnis et al., Total and Putative Surface Proteomics of Malaria Parasite Salivary Gland Sporozoites, Molecular & Cellular Proteomics, vol.51, issue.5, pp.1127-1143, 2013.
DOI : 10.1186/gb-2012-13-11-r108

P. Maillard, T. Huby, U. André-o, M. Moreau, J. Chapman et al., The interaction of natural hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins, The FASEB Journal, vol.20, pp.735-737, 2006.
DOI : 10.1096/fj.05-4728fje

G. Manzoni, S. Briquet, V. Risco-castillo, C. Gaultier, S. Topç-u et al., A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites, Scientific Reports, vol.1, issue.1, pp.4760-24755823, 2014.
DOI : 10.1038/nprot.2006.53

URL : https://hal.archives-ouvertes.fr/hal-01359232

K. Matuschewski, A. Nunes, V. Nussenzweig, M. , and R. , Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system, The EMBO Journal, vol.21, issue.7, pp.1597-1606, 2002.
DOI : 10.1093/emboj/21.7.1597

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC125935

D. Mazier, I. Landau, P. Druilhe, F. Miltgen, C. Guguen-guillouzo et al., Cultivation of the liver forms of Plasmodium vivax in human hepatocytes, Nature, vol.193, issue.5949, pp.367-369, 1984.
DOI : 10.1038/307367a0

S. Mikolajczak, V. Lakshmanan, M. Fishbaugher, N. Camargo, A. Harupa et al., A Next-generation Genetically Attenuated Plasmodium falciparum Parasite Created by Triple Gene Deletion, Molecular Therapy, vol.22, issue.9, pp.1707-1715, 2014.
DOI : 10.1038/mt.2014.85

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435496

C. Mineo and P. Shaul, HDL Stimulation of Endothelial Nitric Oxide Synthase A Novel Mechanism of HDL Action, Trends in Cardiovascular Medicine, vol.13, issue.6, pp.226-231, 2003.
DOI : 10.1016/S1050-1738(03)00098-7

A. Molina-cruz, G. Canepa, N. Kamath, N. Pavlovic, J. Mu et al., evasion of mosquito immunity and global malaria transmission: The lock-and-key theory, Proceedings of the National Academy of Sciences, vol.169, issue.12, pp.15178-15183
DOI : 10.1186/1475-2875-11-22

A. Molina-cruz, L. Garver, A. Alabaster, L. Bangiolo, A. Haile et al., The Human Malaria Parasite Pfs47 Gene Mediates Evasion of the Mosquito Immune System, Science, vol.96, issue.15, pp.984-987, 2013.
DOI : 10.1073/pnas.96.15.8716

M. Mota, G. Pradel, J. Vanderberg, J. Hafalla, U. Frevert et al., Migration of Plasmodium Sporozoites Through Cells Before Infection, Science, vol.291, issue.5501, pp.141-144, 2001.
DOI : 10.1126/science.291.5501.141

A. Mueller, N. Camargo, K. Kaiser, C. Andorfer, U. Frevert et al., Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface, Proceedings of the National Academy of Sciences, vol.433, issue.7022, pp.3022-3027, 2005.
DOI : 10.1038/nature03188

R. Mé-nard, J. Tavares, I. Cockburn, M. M. Zavala, F. Amino et al., Looking under the skin: the first steps in malarial infection and immunity, Nature Reviews Microbiology, vol.110, issue.10, pp.701-712, 2013.
DOI : 10.1073/pnas.1303834110

C. Naudin, A. Sirvent, C. Leroy, R. Larive, V. Simon et al., SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2, Nature Communications, vol.1790, pp.3159-3169, 2014.
DOI : 10.1016/j.bbagen.2009.01.005

D. Neculai, M. Schwake, M. Ravichandran, F. Zunke, R. Collins et al., Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36, Nature, vol.51, issue.7478, pp.172-176, 1038.
DOI : 10.1021/bi301203x

C. Ockenhouse, F. Klotz, N. Tandon, and G. Jamieson, Sequestrin, a CD36 recognition protein on Plasmodium falciparum malaria-infected erythrocytes identified by anti-idiotype antibodies., Proceedings of the National Academy of Sciences, vol.88, issue.8, pp.3175-3179, 1991.
DOI : 10.1073/pnas.88.8.3175

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC51408/pdf

P. Oquendo, E. Hundt, J. Lawler, and B. Seed, CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes, Cell, vol.58, issue.1, pp.95-101, 1989.
DOI : 10.1016/0092-8674(89)90406-6

Y. Orito, T. Ishino, S. Iwanaga, I. Kaneko, T. Kato et al., Liver-specific protein 2: a Plasmodium protein exported to the hepatocyte cytoplasm and required for merozoite formation, Molecular Microbiology, vol.71, issue.1, pp.66-79, 2013.
DOI : 10.1111/j.1365-2958.2009.06609.x

M. Parker, F. Peng, and M. Boulanger, The Structure of Plasmodium falciparum Blood-Stage 6-Cys Protein Pf41 Reveals an Unexpected Intra-Domain Insertion Required for Pf12 Coordination, PLOS ONE, vol.10, issue.4, p.26414347, 2015.
DOI : 10.1371/journal.pone.0139407.t001

P. Pileri, Y. Uematsu, S. Campagnoli, G. Galli, F. Falugi et al., Binding of Hepatitis C Virus to CD81, Science, vol.282, issue.5390, pp.938-941, 1998.
DOI : 10.1126/science.282.5390.938

A. Ploss, M. Evans, V. Gaysinskaya, M. Panis, H. You et al., Human occludin is a hepatitis C virus entry factor required for infection of mouse cells, Nature, vol.309, issue.7231, pp.882-886, 2009.
DOI : 10.1038/nature07684

M. Prudê-ncio, C. Rodrigues, R. Ataíde, and M. Mota, Dissecting in vitro host cell infection by plasmodium sporozoites using flow cytometry, Cellular Microbiology, vol.10, pp.218-224, 2008.

C. Ramakrishnan, M. Delves, K. Lal, A. Blagborough, G. Butcher et al., Laboratory Maintenance of Rodent Malaria Parasites, Methods in Molecular Biology, vol.923, pp.51-72, 2013.
DOI : 10.1007/978-1-62703-026-7_5

U. Ramphul, L. Garver, A. Molina-cruz, G. Canepa, and C. Barillas-mury, evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells, Proceedings of the National Academy of Sciences, vol.19, issue.11, pp.1273-1280, 2015.
DOI : 10.1007/978-94-009-1535-0_1

V. Risco-castillo, S. Topç-u, C. Marinach, G. Manzoni, A. Bigorgne et al., Malaria Sporozoites Traverse Host Cells within Transient Vacuoles, Cell Host & Microbe, vol.18, issue.5, pp.593-603, 2015.
DOI : 10.1016/j.chom.2015.10.006

URL : https://hal.archives-ouvertes.fr/hal-01226222

V. Risco-castillo, S. Topç-u, O. Son, S. Briquet, G. Manzoni et al., sporozoites, Cellular Microbiology, vol.7, issue.10, pp.1533-1548, 2014.
DOI : 10.1371/journal.pone.0046160

URL : https://hal.archives-ouvertes.fr/hal-01226222

C. Rodrigues, M. Hannus, M. Prudê-ncio, C. Martin, L. Gonç-alves et al., Host Scavenger Receptor SR-BI Plays a Dual Role in the Establishment of Malaria Parasite Liver Infection, Cell Host & Microbe, vol.4, issue.3, pp.271-282, 2008.
DOI : 10.1016/j.chom.2008.07.012

T. Rosa, A. Flammersfeld, C. Ngwa, M. Kiesow, R. Fischer et al., blood stages acquire factor H family proteins to evade destruction by human complement, Cellular Microbiology, vol.29, issue.Suppl 8, pp.573-590, 2016.
DOI : 10.1080/13816810802216472

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063132

E. Scarselli, H. Ansuini, R. Cerino, R. Roccasecca, S. Acali et al., The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus, The EMBO Journal, vol.269, issue.19, pp.5017-5025, 2002.
DOI : 10.1093/ilar.42.2.107

O. Silvie, S. Charrin, M. Billard, J. Franetich, K. Clark et al., Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites, Journal of Cell Science, vol.119, issue.10, pp.1992-2002, 2006.
DOI : 10.1242/jcs.02911

O. Silvie, J. Franetich, C. Boucheix, E. Rubinstein, and D. Mazier, Alternative invasion pathways for plasmodium berghei sporozoites, International Journal for Parasitology, vol.37, issue.2, pp.173-182, 2007.
DOI : 10.1016/j.ijpara.2006.10.005

O. Silvie, J. Franetich, S. Charrin, M. Mueller, A. Siau et al., Sporozoites, Journal of Biological Chemistry, vol.53, issue.10, pp.9490-9496, 2004.
DOI : 10.1016/S0092-8674(00)80511-5

URL : https://hal.archives-ouvertes.fr/hal-01226222

O. Silvie, C. Greco, J. Franetich, A. Dubart-kupperschmitt, L. Hannoun et al., Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species, Cellular Microbiology, vol.33, issue.7, pp.1134-1146, 2006.
DOI : 10.1073/pnas.0503596102

URL : https://hal.archives-ouvertes.fr/inserm-00180297

O. Silvie, E. Rubinstein, J. Franetich, M. Prenant, E. Belnoue et al., Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity, Nature Medicine, vol.6, issue.1, pp.93-96, 2003.
DOI : 10.1016/0309-1651(82)90187-4

P. Sinnis and M. Febbraio, Plasmodium yoelii Sporozoites Infect CD36-Deficient Mice, Experimental Parasitology, vol.100, issue.1, pp.12-16, 2002.
DOI : 10.1006/expr.2001.4676

K. Swearingen, S. Lindner, L. Shi, M. Shears, A. Harupa et al., Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics, PLOS Pathogens, vol.13, issue.Suppl 16, p.27128092, 2016.
DOI : 10.1371/journal.ppat.1005606.s011

T. Taechalertpaisarn, C. Crosnier, S. Bartholdson, A. Hodder, J. Thompson et al., Biochemical and Functional Analysis of Two Plasmodium falciparum Blood-Stage 6-Cys Proteins: P12 and P41, PLoS ONE, vol.114, issue.7, p.22848665, 2012.
DOI : 10.1371/journal.pone.0041937.s006

M. Tonkin, S. Arredondo, B. Loveless, J. Serpa, K. Makepeace et al., 41, Journal of Biological Chemistry, vol.269, issue.18, pp.12805-12817, 2013.
DOI : 10.1016/S0020-7519(97)00182-3

M. Tsuji, D. Mattei, R. Nussenzweig, D. Eichinger, and F. Zavala, Demonstration of heat-shock protein 70 in the sporozoite stage of malaria parasites, Parasitology Research, vol.26, issue.1, pp.16-21, 1994.
DOI : 10.1007/BF00932618

M. Research, I. Disease-van-dijk, M. Douradinha, B. Franke-fayard, B. Heussler et al., Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells, PNAS, vol.102, pp.12194-12199, 2005.

M. Van-dijk, B. Van-schaijk, S. Khan, M. Van-dooren, J. Ramesar et al., Three Members of the 6-cys Protein Family of Plasmodium Play a Role in Gamete Fertility, PLoS Pathogens, vol.301, issue.5, p.20386715, 2010.
DOI : 10.1371/journal.ppat.1000853.s008

B. Van-schaijk, C. Janse, G. Van-gemert, M. Van-dijk, A. Gego et al., Gene Disruption of Plasmodium falciparum p52 Results in Attenuation of Malaria Liver Stage Development in Cultured Primary Human Hepatocytes, PLoS ONE, vol.20, issue.2, p.18958160, 2008.
DOI : 10.1371/journal.pone.0003549.t001

K. Vanbuskirk, O. Neill, M. , D. L. Vega, P. Maier et al., Preerythrocytic, live-attenuated Plasmodium falciparum vaccine candidates by design, Proceedings of the National Academy of Sciences, vol.124, issue.1, pp.13004-13009, 2009.
DOI : 10.1016/0022-1759(89)90185-3

S. Yalaoui, T. Huby, J. Franetich, A. Gego, A. Rametti et al., Scavenger Receptor BI Boosts Hepatocyte Permissiveness to Plasmodium Infection, Cell Host & Microbe, vol.4, issue.3, pp.283-292, 2008.
DOI : 10.1016/j.chom.2008.07.013

URL : http://doi.org/10.1016/j.chom.2008.07.013

S. Yalaoui, S. Zougbé-dé, S. Charrin, O. Silvie, C. Arduise et al., Hepatocyte Permissiveness to Plasmodium Infection Is Conveyed by a Short and Structurally Conserved Region of the CD81 Large Extracellular Domain, PLoS Pathogens, vol.50, issue.2, p.18389082, 2008.
DOI : 10.1371/journal.ppat.1000010.t001

J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson et al., 2015. The I-TASSER Suite: protein structure and function prediction, Nature Methods, vol.12, p.25549265

M. Zahid, M. Turek, F. Xiao, V. Thi, M. Gué-rin et al., The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination, Hepatology, vol.52, issue.2, pp.492-504, 2013.
DOI : 10.1194/jlr.M019091

URL : https://hal.archives-ouvertes.fr/inserm-00850917

M. Zeisel, G. Koutsoudakis, E. Schnober, A. Haberstroh, H. Blum et al., Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81, Hepatology, vol.279, issue.6, pp.1722-1731, 2007.
DOI : 10.1128/JVI.76.3.1181-1193.2002

URL : https://hal.archives-ouvertes.fr/inserm-00395706