An intrinsic Proper Generalized Decomposition for parametric symmetric elliptic problems

Abstract : We introduce in this paper a technique for the reduced order approximation of parametric symmetric elliptic partial differential equations. For any given dimension, we prove the existence of an optimal subspace of at most that dimension which realizes the best approximation in mean of the error with respect to the parameter in the quadratic norm associated to the elliptic operator between the exact solution and the Galerkin solution calculated on the subspace. This is analogous to the best approximation property of the Proper Orthogonal Decomposition (POD) subspaces, excepting that in our case the norm is parameter-depending, and then the POD optimal sub-spaces cannot be characterized by means of a spectral problem. We apply a deflation technique to build a series of approximating solutions on finite-dimensional optimal subspaces, directly in the on-line step. We prove that the partial sums converge to the continuous solutions in mean quadratic elliptic norm.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

http://hal.upmc.fr/hal-01557190
Contributeur : Francois Murat <>
Soumis le : mercredi 5 juillet 2017 - 18:34:48
Dernière modification le : mercredi 21 mars 2018 - 18:56:47
Document(s) archivé(s) le : mardi 23 janvier 2018 - 21:19:05

Fichier

ROMElipr-v8-2017-06-252.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01557190, version 1

Collections

Citation

Mejdi Azaiez, Faker Ben Belgacem, Juan Casado-Diaz, Tomas Chacon Rebollo, François Murat. An intrinsic Proper Generalized Decomposition for parametric symmetric elliptic problems. 2017. 〈hal-01557190〉

Partager

Métriques

Consultations de la notice

242

Téléchargements de fichiers

84