M. Armand, J. M. Tarascon, D. Larcher, and J. M. Tarascon, Building better batteries Is lithium the new gold? Nat Chem Towards greener and more sustainable batteries for electrical energy storage Sustainability and in situ monitoring in battery development Advanced Redox-Flow Batteries: A Perspective The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage Angew Chem Int edit, Nature Nat Chem. Grey, C. P.; Tarascon, J. M. Nat Mater J. Electrochem. Soc. Kundu, D.; Talaie, E.; Duffort, V, vol.451, issue.7, pp.652-657, 2008.

N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Research Development on Sodium-Ion Batteries Review?Practical Issues and Future Perspective for Na-Ion Batteries, Chem. Rev. J. Electrochem. Soc, vol.2014, issue.9, pp.11636-11682

Q. Ni, Y. Bai, F. Wu, and C. Wu, Polyanion-Type Electrode Materials for Sodium-Ion Batteries, Advanced Science, vol.22, issue.3, p.1600275
DOI : 10.1002/chem.201600224

URL : http://doi.org/10.1002/advs.201600275

M. H. Han, E. Gonzalo, G. Singh, T. Rojo, Y. Naoaki et al., A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Science Recent research progress on iron-and manganese-based positive electrode materials for rechargeable sodium batteries. Science and Technology of Advanced Materials. 2014, 15, 043501. 12. Fang Phosphate Framework Electrode Materials for Sodium Ion Batteries Optimization of Na-Ion Battery Systems Based on Polyanionic or Layered Positive Electrodes and Carbon Anodes A High- Performance Sodium-Ion Full Cell with a Layered Oxide Cathode and a Phosphorous-Based Composite Anode, Hagenmuller, P. Stabilite relative des environnements octaedrique et prismatique triangulaire dans les oxydes lamellaires alcalins AxMO2, pp.81-102, 2015.

C. Fouassier, C. Hagenmuller, and P. , Structural classification and properties of the layered oxides. Physica B+C Electrochemical investigation of the P2?NaxCoO2 phase diagram, Mater Res Bull Berthelot, R.; Carlier, D. Nat Mater, vol.11, issue.18, pp.1483-1488, 1976.
URL : https://hal.archives-ouvertes.fr/hal-00135169

M. Yoncheva, R. Stoyanova, B. J. Hwang, and C. Delmas, The P2- Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery, Dalton Transactions Sathiya, M.; Hemalatha, K.; Ramesha, K, vol.40, pp.9306-9312, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00619812

M. Prakash, A. S. Ortiz, G. F. Tirado, J. L. Dolotko, O. Zhecheva et al., Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2, Stoyanova, R. P3-Type Layered Sodium-Deficient Nickel?Manganese Oxides: A Flexible Structural Matrix for Reversible Sodium and Lithium Intercalation. ChemPlusChem. 2015, pp.1846-1853, 2012.

Y. Mo, S. P. Ong, and G. Ceder, Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations, Chemistry of Materials, vol.26, issue.18, pp.5208-5214
DOI : 10.1021/cm501563f

N. Yabuuchi and S. Komaba, Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries, Science and Technology of Advanced Materials, vol.150, issue.1318, pp.43501-43525, 2014.
DOI : 10.1021/cm1015614

URL : http://doi.org/10.1088/1468-6996/15/4/043501

S. Guo, Y. Sun, J. Yi, K. Zhu, P. Liu et al., Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance, NPG Asia Materials, vol.26, issue.4, p.266, 2016.
DOI : 10.1021/cm501563f

M. D. Radin, Stability of Prismatic and Octahedral Coordination in Layered Oxides and Sulfides Intercalated with Alkali and Alkaline-Earth Metals, Chemistry of Materials, vol.28, issue.21, pp.7898-7904, 2016.
DOI : 10.1021/acs.chemmater.6b03454

L. G. Chagas, D. Buchholz, C. Vaalma, L. Wu, and S. Passerini, P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance, J. Mater

C. Delmas, J. Braconnier, C. Fouassier, and P. Hagenmuller, Electrochemical intercalation of sodium NaxCoO2 bronzes. Solid State Ionics, pp.165-169, 1981.

Y. Lei, X. Li, L. Liu, and G. Ceder, Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides, Chemistry of Materials, vol.26, issue.18
DOI : 10.1021/cm5021788

Y. Hinuma, Y. S. Meng, and G. Ceder, Temperatureconcentration phase diagram of P2-NaxCoO2 from first principle calculations, pp.77-224111, 2008.

M. Armand, M. Avdeev, J. J. Garitaonandia, and T. Rojo, High performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries, Chem. Mater, vol.28, pp.106-116, 2016.

D. Guyomard and J. M. Tarascon, The carbon/Li1+xMn2O4 system. Solid State Ionics, pp.222-237, 1994.

D. Shanmukaraj, S. Grugeon, S. Laruelle, G. Douglade, J. Tarascon et al., Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries, Electrochemistry Communications, vol.12, issue.10, pp.1344-1347, 2010.
DOI : 10.1016/j.elecom.2010.07.016

M. Tarascon and J. , Insertion compounds and composites made by ball milling for advanced sodium-ion batteries, Nat Commun, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01276328

M. Armand and T. Rojo, An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2, Electrochem. Commun, vol.37, pp.61-63, 2013.

Y. K. Sun, High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method, J. Power sources, vol.162, pp.1346-1350, 2006.

S. H. Park, S. H. Kang, I. Belharouak, Y. K. Sun, and K. Amine, Physical and electrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)1???xO2 cathode materials, Journal of Power Sources, vol.177, issue.1, pp.177-183, 2008.
DOI : 10.1016/j.jpowsour.2007.10.062

A. C. Larson and R. B. Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, p.662, 2000.

M. Dolle, S. Patoux, and M. M. Doeff, Layered Manganese Oxide Intergrowth Electrodes for Rechargeable Lithium Batteries. 1. Substitution with Co or Ni, Chemistry of Materials, vol.17, issue.5, pp.1036-1043, 2005.
DOI : 10.1021/cm048443f